1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
/*
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
*/
#include <string.h>
#include <math.h>
#include <assert.h>
#include "os-features.h"
#include "plotimage.h"
#include "cairoutils.h"
#include "ioutils.h"
#include "sip_qfits.h"
#include "log.h"
#include "errors.h"
#include "anwcs.h"
#include "permutedsort.h"
#include "wcs-resample.h"
#include "mathutil.h"
#include "anqfits.h"
DEFINE_PLOTTER(image);
static void set_format(plotimage_t* args) {
if (args->format == 0) {
assert(args->fn);
args->format = guess_image_format_from_filename(args->fn);
logverb("Guessing format of image from filename: \"%s\" -> %s\n", args->fn, image_format_name_from_code(args->format));
}
}
plotimage_t* plot_image_get(plot_args_t* pargs) {
return plotstuff_get_config(pargs, "image");
}
void* plot_image_init(plot_args_t* plotargs) {
plotimage_t* args = calloc(1, sizeof(plotimage_t));
args->gridsize = 50;
args->alpha = 1;
args->image_null = 1.0 / 0.0;
//args->scalex = args->scaley = 1.0;
args->rgbscale[0] = 1.0;
args->rgbscale[1] = 1.0;
args->rgbscale[2] = 1.0;
return args;
}
void plot_image_add_to_pixels(plotimage_t* args, int rgb[3]) {
int i, j, N;
assert(args->img);
N = args->W * args->H;
for (i=0; i<N; i++)
for (j=0; j<3; j++)
args->img[i*4+j] = (unsigned char)MIN(255, MAX(0, ((int)args->img[i*4+j]) + rgb[j]));
}
int plot_image_get_percentile(plot_args_t* pargs, plotimage_t* args,
double percentile,
unsigned char* rgb) {
int j;
int N;
int I;
if (percentile < 0.0 || percentile > 1.0) {
ERROR("percentile must be between 0 and 1 (ok, so it's badly named, sue me)");
return -1;
}
if (!args->img) {
if (plot_image_read(pargs, args)) {
ERROR("Failed to read image file: can't get percentile!\n");
return -1;
}
}
N = args->W * args->H;
I = MAX(0, MIN(N-1, floor(N * percentile)));
for (j=0; j<3; j++) {
int* P;
P = permuted_sort(args->img + j, 4, compare_uchars_asc, NULL, N);
rgb[j] = args->img[4 * P[I] + j];
free(P);
}
return 0;
}
static void plot_rgba_data(cairo_t* cairo, unsigned char* img,
int W, int H, double alpha) {
cairo_surface_t* thissurf;
cairo_pattern_t* pat;
cairoutils_rgba_to_argb32(img, W, H);
thissurf = cairo_image_surface_create_for_data(img, CAIRO_FORMAT_ARGB32, W, H, W*4);
pat = cairo_pattern_create_for_surface(thissurf);
cairo_save(cairo);
cairo_set_source(cairo, pat);
//cairo_scale(cairo, scalex, scaley);
if (alpha == 1.0)
cairo_paint(cairo);
else
cairo_paint_with_alpha(cairo, alpha);
cairo_pattern_destroy(pat);
cairo_surface_destroy(thissurf);
cairo_restore(cairo);
}
void plot_image_rgba_data(cairo_t* cairo, plotimage_t* args) {
plot_rgba_data(cairo, args->img, args->W, args->H, args->alpha);
}
void plot_image_wcs(cairo_t* cairo, unsigned char* img, int W, int H,
plot_args_t* pargs, plotimage_t* args) {
cairo_surface_t* thissurf;
cairo_pattern_t* pat;
cairo_matrix_t mat;
int i,j;
double *xs, *ys;
int NX, NY;
double x,y;
if (args->resample) {
assert(args->img);
// FITS images get resampled right after reading (in read_fits_image).
// Others...
if (args->format == PLOTSTUFF_FORMAT_FITS) {
plot_image_rgba_data(cairo, args);
} else {
// resample onto the output grid...
unsigned char* img2 = NULL;
//int Nin = args->W * args->H;
int Nout = pargs->W * pargs->H;
img2 = calloc(Nout * 4, 1);
if (resample_wcs_rgba(args->wcs, args->img, args->W, args->H,
pargs->wcs, img2, pargs->W, pargs->H)) {
ERROR("Failed to resample image");
return;
}
plot_rgba_data(cairo, img2, pargs->W, pargs->H, args->alpha);
free(img2);
}
return;
}
cairoutils_rgba_to_argb32(img, W, H);
thissurf = cairo_image_surface_create_for_data(img, CAIRO_FORMAT_ARGB32, W, H, W*4);
cairoutils_surface_status_errors(thissurf);
cairoutils_cairo_status_errors(cairo);
// Are we double-applying alpha?
if (args->alpha != 1.0) {
unsigned char a = MIN(255, MAX(0, args->alpha * 255));
for (i=0; i<(W*H); i++)
img[i*4+3] = a;
cairoutils_premultiply_alpha_rgba(img, W, H);
}
pat = cairo_pattern_create_for_surface(thissurf);
cairoutils_cairo_status_errors(cairo);
assert(args->gridsize >= 1);
NX = 1 + ceil(W / args->gridsize);
NY = 1 + ceil(H / args->gridsize);
xs = malloc(NX*NY * sizeof(double));
ys = malloc(NX*NY * sizeof(double));
// FIXME -- NEAREST is good when we're zooming in on individual pixels;
// some smoothing is necessary if we're zoomed out. Should probably
// resample image in this case, since I doubt cairo is very smart in this case.
cairo_pattern_set_filter(pat, CAIRO_FILTER_GOOD);
//CAIRO_FILTER_NEAREST);
for (j=0; j<NY; j++) {
double ra,dec;
y = MIN(j * args->gridsize, H-1);
for (i=0; i<NX; i++) {
double ox,oy;
#if 0
anbool ok;
#endif
x = MIN(i * args->gridsize, W-1);
anwcs_pixelxy2radec(args->wcs, x+1, y+1, &ra, &dec);
#if 0
ok = plotstuff_radec2xy(pargs, ra, dec, &ox, &oy);
#else
(void)plotstuff_radec2xy(pargs, ra, dec, &ox, &oy);
#endif
xs[j*NX+i] = ox-1;
ys[j*NX+i] = oy-1;
debug("image (%.1f,%.1f) -> radec (%.4f,%.4f), plot (%.1f,%.1f)\n", x, y, ra, dec, xs[j*NX+i], ys[j*NX+i]);
}
}
cairo_save(cairo);
cairo_set_source(cairo, pat);
//cairo_set_source_rgb(cairo, 1,0,0);
for (j=0; j<(NY-1); j++) {
for (i=0; i<(NX-1); i++) {
int aa = j*NX + i;
int ab = aa + 1;
int ba = aa + NX;
int bb = aa + NX + 1;
double midx = (xs[aa] + xs[ab] + xs[bb] + xs[ba])*0.25;
double midy = (ys[aa] + ys[ab] + ys[bb] + ys[ba])*0.25;
cairo_status_t st;
double xlo,xhi,ylo,yhi;
ylo = MIN(j * args->gridsize, H-1);
yhi = MIN((j+1) * args->gridsize, H-1);
xlo = MIN(i * args->gridsize, W-1);
xhi = MIN((i+1) * args->gridsize, W-1);
if (xlo == xhi || ylo == yhi)
continue;
cairo_move_to(cairo,
0.5 + xs[aa]+0.5*(xs[aa] >= midx ? 1 : -1),
0.5 + ys[aa]+0.5*(ys[aa] >= midy ? 1 : -1));
cairo_line_to(cairo,
0.5 + xs[ab]+0.5*(xs[ab] >= midx ? 1 : -1),
0.5 + ys[ab]+0.5*(ys[ab] >= midy ? 1 : -1));
cairo_line_to(cairo,
0.5 + xs[bb]+0.5*(xs[bb] >= midx ? 1 : -1),
0.5 + ys[bb]+0.5*(ys[bb] >= midy ? 1 : -1));
cairo_line_to(cairo,
0.5 + xs[ba]+0.5*(xs[ba] >= midx ? 1 : -1),
0.5 + ys[ba]+0.5*(ys[ba] >= midy ? 1 : -1));
cairo_close_path(cairo);
cairo_matrix_init(&mat,
(xs[ab]-xs[aa])/(xhi-xlo),
(ys[ab]-ys[aa])/(yhi-ylo),
(xs[ba]-xs[aa])/(xhi-xlo),
(ys[ba]-ys[aa])/(yhi-ylo),
xs[0], ys[0]);
st = cairo_matrix_invert(&mat);
if (st != CAIRO_STATUS_SUCCESS) {
ERROR("Cairo: %s", cairo_status_to_string(st));
ERROR("Matrix: AB %g, %g, BA %g, %g, AA %g, %g\n"
" xlo,xhi %g, %g ylo,yhi %g, %g",
xs[ab], ys[ab], xs[ba], ys[ba], xs[aa], ys[aa],
xlo, xhi, ylo, yhi);
// Matrix: AB 270.892, 121.737, BA 274.958, 129.407, AA 274.958, 129.407
// xlo,xhi 0, 50 ylo,yhi 2050, 2050
continue;
}
cairo_pattern_set_matrix(pat, &mat);
cairo_fill(cairo);
}
}
/* Grid:
cairo_set_source_rgb(cairo, 1,0,0);
for (j=0; j<(NY-1); j++) {
for (i=0; i<(NX-1); i++) {
int aa = j*NX + i;
int ab = aa + 1;
int ba = aa + NX;
int bb = aa + NX + 1;
cairo_move_to(cairo, xs[aa], ys[aa]);
cairo_line_to(cairo, xs[ab], ys[ab]);
cairo_line_to(cairo, xs[bb], ys[bb]);
cairo_line_to(cairo, xs[ba], ys[ba]);
cairo_close_path(cairo);
cairo_stroke(cairo);
}
}
{
int aa = 0;
int ab = 1;
int ba = NX;
int bb = NX + 1;
cairo_set_source_rgb(cairo, 0,1,0);
cairo_move_to(cairo, xs[aa], ys[aa]);
cairo_line_to(cairo, xs[ab], ys[ab]);
cairo_line_to(cairo, xs[bb], ys[bb]);
cairo_line_to(cairo, xs[ba], ys[ba]);
cairo_close_path(cairo);
cairo_move_to(cairo, 0, 0);
cairo_line_to(cairo, 0, args->gridsize);
cairo_line_to(cairo, args->gridsize, args->gridsize);
cairo_line_to(cairo, args->gridsize, 0);
cairo_close_path(cairo);
cairo_stroke(cairo);
}
*/
free(xs);
free(ys);
cairo_pattern_destroy(pat);
cairo_surface_destroy(thissurf);
cairo_restore(cairo);
}
static unsigned char* read_fits_image(const plot_args_t* pargs, plotimage_t* args) {
float* fimg;
anqfits_t* anq;
unsigned char* img;
float* rimg = NULL;
float* dimg = NULL;
anq = anqfits_open(args->fn);
if (!anq) {
ERROR("Failed to read input file: \"%s\"", args->fn);
return NULL;
}
fimg = anqfits_readpix(anq, args->fitsext, 0,0,0,0, args->fitsplane,
PTYPE_FLOAT, NULL, &args->W, &args->H);
anqfits_close(anq);
if (!fimg) {
ERROR("Failed to load pixels.");
return NULL;
}
if (args->downsample) {
int nw, nh;
dimg = average_image_f(fimg, args->W, args->H, args->downsample,
EDGE_AVERAGE, &nw, &nh, NULL);
args->W = nw;
args->H = nh;
fimg = dimg;
anwcs_scale_wcs(args->wcs, 1.0/(float)args->downsample);
}
if (args->resample) {
// resample onto the output grid...
//rimg = calloc(pargs->W * pargs->H, sizeof(float));
rimg = malloc(pargs->W * pargs->H * sizeof(float));
int i;
for (i=0; i<(pargs->W * pargs->H); i++) {
rimg[i] = args->image_null;
}
if (resample_wcs(args->wcs, fimg, args->W, args->H,
pargs->wcs, rimg, pargs->W, pargs->H, 0, 0)) {
ERROR("Failed to resample image");
return NULL;
}
{
// DEBUG
double plo = LARGE_VAL;
double phi = -LARGE_VAL;
int i;
for (i=0; i<(pargs->W * pargs->H); i++) {
plo = MIN(plo, rimg[i]);
phi = MAX(phi, rimg[i]);
}
logverb("Resampled pixel value range: %g, %g\n", plo, phi);
}
// ?
args->W = pargs->W;
args->H = pargs->H;
fimg = rimg;
}
img = plot_image_scale_float(args, fimg);
free(fimg);
free(rimg);
free(dimg);
return img;
}
unsigned char* plot_image_scale_float(plotimage_t* args, const float* fimg) {
float offset, scale;
int i,j;
unsigned char* img = NULL;
if (args->image_low == 0 && args->image_high == 0) {
if (args->auto_scale) {
// min/max, or percentiles?
/*
double mn = LARGE_VAL;
double mx = -LARGE_VAL;
for (i=0; i<(args->W*args->H); i++) {
mn = MIN(mn, fimg[i]);
mx = MAX(mx, fimg[i]);
}
*/
int N = args->W * args->H;
int* perm = permutation_init(NULL, N);
int i;
int Nreal = 0;
for (i=0; i<N; i++) {
if (isfinite(fimg[i])) {
perm[Nreal] = perm[i];
Nreal++;
}
}
permuted_sort(fimg, sizeof(float), compare_floats_asc, perm, Nreal);
double mn = fimg[perm[(int)(Nreal * 0.1)]];
double mx = fimg[perm[(int)(Nreal * 0.98)]];
logmsg("Image auto-scaling: range %g, %g; percentiles %g, %g\n", fimg[perm[0]], fimg[perm[N-1]], mn, mx);
free(perm);
offset = mn;
scale = (255.0 / (mx - mn));
logmsg("Image range %g, %g --> offset %g, scale %g\n", mn, mx, offset, scale);
} else {
offset = 0.0;
scale = 1.0;
}
} else {
offset = args->image_low;
scale = 255.0 / (args->image_high - args->image_low);
logmsg("Image range %g, %g --> offset %g, scale %g\n", args->image_low, args->image_high, offset, scale);
}
img = malloc(args->W * args->H * 4);
for (j=0; j<args->H; j++) {
for (i=0; i<args->W; i++) {
int k;
double v;
double pval = fimg[j*args->W + i];
k = 4*(j*args->W + i);
if ((args->image_null == pval) ||
(isnan(args->image_null) && isnan(pval)) ||
((args->image_valid_low != 0.0) && (pval < args->image_valid_low)) ||
((args->image_valid_high != 0.0) && (pval > args->image_valid_high))) {
img[k+0] = 0;
img[k+1] = 0;
img[k+2] = 0;
img[k+3] = 0;
if ((pval == args->image_null) ||
(isnan(args->image_null) && isnan(pval))) {
args->n_invalid_null++;
}
if (pval < args->image_valid_low) {
args->n_invalid_low++;
}
if (pval > args->image_valid_high) {
args->n_invalid_high++;
}
} else {
v = (pval - offset) * scale;
if (args->arcsinh != 0) {
v = (255. / args->arcsinh) * asinh((v / 255.) * args->arcsinh);
v /= (asinh(args->arcsinh) / args->arcsinh);
}
img[k+0] = MIN(255, MAX(0, v * args->rgbscale[0]));
img[k+1] = MIN(255, MAX(0, v * args->rgbscale[1]));
img[k+2] = MIN(255, MAX(0, v * args->rgbscale[2]));
img[k+3] = 255;
}
}
}
return img;
}
void plot_image_make_color_transparent(plotimage_t* args, unsigned char r, unsigned char g, unsigned char b) {
int i;
assert(args->img);
for (i=0; i<(args->W * args->H); i++) {
if ((args->img[4*i + 0] == r) &&
(args->img[4*i + 1] == g) &&
(args->img[4*i + 2] == b)) {
args->img[4*i + 3] = 0;
}
}
}
int plot_image_read(const plot_args_t* pargs, plotimage_t* args) {
set_format(args);
switch (args->format) {
case PLOTSTUFF_FORMAT_JPG:
args->img = cairoutils_read_jpeg(args->fn, &(args->W), &(args->H));
break;
case PLOTSTUFF_FORMAT_PNG:
args->img = cairoutils_read_png(args->fn, &(args->W), &(args->H));
break;
case PLOTSTUFF_FORMAT_PPM:
args->img = cairoutils_read_ppm(args->fn, &(args->W), &(args->H));
break;
case PLOTSTUFF_FORMAT_FITS:
assert(pargs);
args->img = read_fits_image(pargs, args);
break;
case PLOTSTUFF_FORMAT_PDF:
ERROR("PDF format not supported");
return -1;
default:
ERROR("You must set the image format with \"image_format <png|jpg|ppm>\"");
return -1;
}
return 0;
}
int plot_image_set_filename(plotimage_t* args, const char* fn) {
free(args->fn);
args->fn = strdup_safe(fn);
// ??
free(args->img);
args->img = NULL;
return 0;
}
int plot_image_plot(const char* command,
cairo_t* cairo, plot_args_t* pargs, void* baton) {
plotimage_t* args = (plotimage_t*)baton;
// Plot it!
if (!args->img) {
if (plot_image_read(pargs, args)) {
return -1;
}
}
plotstuff_builtin_apply(cairo, pargs);
if (pargs->wcs && args->wcs) {
double ralo1, declo1, rahi1, dechi1;
double ralo2, declo2, rahi2, dechi2;
anwcs_get_radec_bounds(pargs->wcs, args->gridsize,
&ralo1, &rahi1, &declo1, &dechi1);
anwcs_get_radec_bounds(args->wcs, args->gridsize,
&ralo2, &rahi2, &declo2, &dechi2);
logverb("Plot WCS range: RA [%g,%g], Dec [%g, %g]\n",
ralo1, rahi1, declo1, dechi1);
logverb("Image WCS range: RA [%g,%g], Dec [%g, %g]\n",
ralo2, rahi2, declo2, dechi2);
if (declo1 > dechi2 || declo2 > dechi1) {
logverb("No overlap in Dec ranges\n");
return 0;
}
// FIXME -- this has not been tested for wrap-around
// edge cases.
if (ralo1 > fmod(rahi1, 360.) || ralo2 > fmod(rahi2, 360.)) {
logverb("No overlap in RA ranges\n");
return 0;
}
plot_image_wcs(cairo, args->img, args->W, args->H, pargs, args);
} else {
plot_image_rgba_data(cairo, args);
}
// ?
free(args->img);
args->img = NULL;
return 0;
}
static int read_fits_size(plotimage_t* args, int* W, int* H) {
anqfits_t* anq;
const anqfits_image_t* img;
anq = anqfits_open(args->fn);
if (!anq) {
ERROR("Failed to read input file: \"%s\"", args->fn);
return -1;
}
img = anqfits_get_image_const(anq, args->fitsext);
if (!img) {
ERROR("Failed to read image extension %i from file \"%s\"\n",
args->fitsext, args->fn);
anqfits_close(anq);
return -1;
}
if (W)
*W = img->width;
if (H)
*H = img->height;
if (args->fitsplane >= img->planes) {
ERROR("Requested FITS image plane %i, but only %i available\n",
args->fitsplane, (int)img->planes);
anqfits_close(anq);
return -1;
}
anqfits_close(anq);
return 0;
}
int plot_image_getsize(plotimage_t* args, int* W, int* H) {
set_format(args);
if (args->format == PLOTSTUFF_FORMAT_FITS)
return read_fits_size(args, W, H);
if (!args->img) {
// HACK -- only FITS format needs pargs.
if (plot_image_read(NULL, args)) {
return -1;
}
}
if (W)
*W = args->W;
if (H)
*H = args->H;
return 0;
}
int plot_image_setsize(plot_args_t* pargs, plotimage_t* args) {
if (!args->img) {
if (plot_image_read(pargs, args)) {
return -1;
}
}
plotstuff_set_size(pargs, args->W, args->H);
//plotstuff_set_size(pargs, args->W * args->scalex, args->H * args->scaley);
return 0;
}
int plot_image_set_wcs(plotimage_t* args, const char* filename, int ext) {
if (args->wcs)
anwcs_free(args->wcs);
if (streq(filename, "none")) {
args->wcs = NULL;
} else {
args->wcs = anwcs_open(filename, ext);
if (!args->wcs) {
ERROR("Failed to read WCS file \"%s\"", filename);
return -1;
}
if (log_get_level() >= LOG_VERB) {
logverb("Set image WCS to:");
anwcs_print(args->wcs, stdout);
}
}
return 0;
}
int plot_image_command(const char* cmd, const char* cmdargs,
plot_args_t* pargs, void* baton) {
plotimage_t* args = (plotimage_t*)baton;
if (streq(cmd, "image_file")) {
plot_image_set_filename(args, cmdargs);
} else if (streq(cmd, "image_alpha")) {
args->alpha = atof(cmdargs);
} else if (streq(cmd, "image_format")) {
args->format = parse_image_format(cmdargs);
if (args->format == -1)
return -1;
} else if (streq(cmd, "image_setsize")) {
if (plot_image_setsize(pargs, args))
return -1;
} else if (streq(cmd, "image_wcslib")) {
// force reading WCS using WCSLIB.
if (args->wcs)
anwcs_free(args->wcs);
args->wcs = anwcs_open_wcslib(cmdargs, 0);
if (!args->wcs) {
ERROR("Failed to read WCS file \"%s\"", cmdargs);
return -1;
}
if (log_get_level() >= LOG_VERB) {
logverb("Set image WCS to:");
anwcs_print(args->wcs, stdout);
}
} else if (streq(cmd, "image_wcs")) {
return plot_image_set_wcs(args, cmdargs, args->fitsext);
} else if (streq(cmd, "image_ext")) {
args->fitsext = atoi(cmdargs);
} else if (streq(cmd, "image_grid")) {
args->gridsize = atof(cmdargs);
} else if (streq(cmd, "image_low")) {
args->image_low = atof(cmdargs);
logmsg("set image_low %g\n", args->image_low);
} else if (streq(cmd, "image_null")) {
args->image_null = atof(cmdargs);
} else if (streq(cmd, "image_high")) {
args->image_high = atof(cmdargs);
logmsg("set image_high %g\n", args->image_high);
} else {
ERROR("Did not understand command \"%s\"", cmd);
return -1;
}
return 0;
}
void plot_image_free(plot_args_t* plotargs, void* baton) {
plotimage_t* args = (plotimage_t*)baton;
if (args->wcs)
anwcs_free(args->wcs);
free(args->fn);
free(args);
}
|