File: moving_objects.py

package info (click to toggle)
astroml 1.0.2-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 932 kB
  • sloc: python: 5,731; makefile: 3
file content (153 lines) | stat: -rw-r--r-- 4,948 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
from gzip import GzipFile
from io import BytesIO
import numpy as np

from .tools import download_with_progress_bar
from . import get_data_home

DATA_URL = ('https://github.com/astroML/astroML-data/raw/main/datasets/'
            'ADR3.dat.gz')

ARCHIVE_FILE = 'moving_objects.npy'

ADR4_dtype = [('moID', 'a6'),
              ('sdss_run', 'i4'),
              ('sdss_col', 'i4'),
              ('sdss_field', 'i4'),
              ('sdss_obj', 'i4'),
              ('rowc', 'f4'),
              ('colc', 'f4'),
              ('mjd', 'f8'),
              ('ra', 'f8'),
              ('dec', 'f8'),
              ('lambda', 'f8'),
              ('beta', 'f8'),
              ('phi', 'f8'),
              ('vmu', 'f4'),
              ('vmu_err', 'f4'),
              ('vnu', 'f4'),
              ('vnu_err', 'f4'),
              ('vlambda', 'f4'),
              ('vbeta', 'f4'),
              ('mag_u', 'f4'),
              ('err_u', 'f4'),
              ('mag_g', 'f4'),
              ('err_g', 'f4'),
              ('mag_r', 'f4'),
              ('err_r', 'f4'),
              ('mag_i', 'f4'),
              ('err_i', 'f4'),
              ('mag_z', 'f4'),
              ('err_z', 'f4'),
              ('mag_a', 'f4'),
              ('err_a', 'f4'),
              ('mag_V', 'f4'),
              ('mag_B', 'f4'),
              ('ast_flag', 'i4'),
              ('ast_num', 'i8'),
              ('ast_designation', 'a17'),
              ('ast_det_count', 'i4'),
              ('ast_det_total', 'i4'),
              ('ast_flags', 'i8'),
              ('ra_comp', 'f8'),
              ('dec_comp', 'f8'),
              ('mag_comp', 'f4'),
              ('r_helio', 'f4'),
              ('r_geo', 'f4'),
              ('phase', 'f4'),
              ('cat_id', 'a15'),
              ('H', 'f4'),
              ('G', 'f4'),
              ('Arc', 'f4'),
              ('Epoch', 'f8'),
              ('a', 'f8'),
              ('e', 'f8'),
              ('i', 'f8'),
              ('asc_node', 'f8'),
              ('arg_peri', 'f8'),
              ('M', 'f8'),
              ('PEcat_id', 'a17'),
              ('aprime', 'f8'),
              ('eprime', 'f8'),
              ('sin_iprime', 'f8')]


def fetch_moving_objects(data_home=None, download_if_missing=True,
                         Parker2008_cuts=False):
    """Loader for SDSS moving objects datasets

    Parameters
    ----------
    data_home : optional, default=None
        Specify another download and cache folder for the datasets. By default
        all astroML data is stored in '~/astroML_data'.

    download_if_missing : optional, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    Parker2008_cuts : bool (optional)
        If true, apply cuts on magnitudes and orbital parameters used in
        Parker et al. 2008

    Returns
    -------
    data : recarray, shape = (??,)
        record array containing 60 values for each item

    Notes
    -----
    See http://www.astro.washington.edu/users/ivezic/sdssmoc/sdssmoc3.html
    Columns 0, 35, 45, and 56 are left out of the fetch: they are string
    parameters.  Only columns with known orbital parameters are saved.

    Examples
    --------
    >>> from astroML.datasets import fetch_moving_objects
    >>> data = fetch_moving_objects()  # doctest: +IGNORE_OUTPUT +REMOTE_DATA
    >>> # number of objects
    >>> print(len(data))  # doctest: +REMOTE_DATA
    43424
    >>> # first five u-g colors of the dataset
    >>> u_g = data['mag_u'] - data['mag_g']  # doctest: +REMOTE_DATA
    >>> print(u_g[:5])  # doctest: +REMOTE_DATA
    [1.4899998 1.7800007 1.6500015 2.0100002 1.8199997]
    """
    data_home = get_data_home(data_home)

    archive_file = os.path.join(data_home, ARCHIVE_FILE)

    if not os.path.exists(archive_file):
        if not download_if_missing:
            raise IOError('data not present on disk. '
                          'set download_if_missing=True to download')

        print("downloading moving object catalog from %s to %s"
              % (DATA_URL, data_home))

        zipped_buf = download_with_progress_bar(DATA_URL, return_buffer=True)
        gzf = GzipFile(fileobj=zipped_buf, mode='rb')
        print("uncompressing file...")
        extracted_buf = BytesIO(gzf.read())
        data = np.loadtxt(extracted_buf, dtype=ADR4_dtype)

        # Select unique sources with known orbital elements
        flag = (data['ast_flag'] == 1) & (data['ast_det_count'] == 1)
        data = data[flag]

        np.save(archive_file, data)

    else:
        data = np.load(archive_file)

    if Parker2008_cuts:
        i_z = data['mag_i'] - data['mag_z']

        flag = ((data['aprime'] >= 0.01) & (data['aprime'] <= 100) &
                (data['mag_a'] <= 0.4) & (data['mag_a'] >= -0.3) &
                (i_z <= 0.6) & (i_z >= -0.8))

        data = data[flag]

    return data