File: sdss_filters.py

package info (click to toggle)
astroml 1.0.2-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 932 kB
  • sloc: python: 5,731; makefile: 3
file content (97 lines) | stat: -rw-r--r-- 3,197 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os

import numpy as np
from urllib.request import urlopen

from astroML.datasets import get_data_home

# Info on vega spectrum: http://www.stsci.edu/hst/observatory/cdbs/calspec.html
VEGA_URL = ('https://github.com/astroML/astroML-data/raw/main/datasets/'
            '1732526_nic_002.ascii')
FILTER_URL = 'http://classic.sdss.org/dr7/instruments/imager/filters/%s.dat'


def fetch_sdss_filter(fname, data_home=None, download_if_missing=True):
    """Loader for SDSS Filter profiles

    Parameters
    ----------
    fname : str
        filter name: must be one of 'ugriz'
    data_home : optional, default=None
        Specify another download and cache folder for the datasets. By default
        all data is stored in '~/astroML_data'.

    download_if_missing : optional, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    Returns
    -------
    data : ndarray
        data is an array of shape (5, Nlam)
        first row: wavelength in angstroms
        second row: sensitivity to point source, airmass 1.3
        third row: sensitivity to extended source, airmass 1.3
        fourth row: sensitivity to extended source, airmass 0.0
        fifth row: assumed atmospheric extinction, airmass 1.0
    """
    if fname not in 'ugriz':
        raise ValueError("Unrecognized filter name '%s'" % fname)
    url = FILTER_URL % fname

    data_home = get_data_home(data_home)

    archive_file = os.path.join(data_home, '%s.dat' % fname)

    if not os.path.exists(archive_file):
        if not download_if_missing:
            raise IOError('data not present on disk. '
                          'set download_if_missing=True to download')

        print("downloading from %s" % url)
        F = urlopen(url)
        open(archive_file, 'wb').write(F.read())

    F = open(archive_file)

    return np.loadtxt(F, unpack=True)


def fetch_vega_spectrum(data_home=None, download_if_missing=True):
    """Loader for Vega reference spectrum

    Parameters
    ----------
    fname : str
        filter name: must be one of 'ugriz'
    data_home : optional, default=None
        Specify another download and cache folder for the datasets. By default
        all astroML data is stored in '~/astroML_data'.

    download_if_missing : optional, default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    Returns
    -------
    data : ndarray
        data[0] is the array of wavelength in angstroms
        data[1] is the array of fluxes in Jy (F_nu, not F_lambda)
    """
    data_home = get_data_home(data_home)

    archive_name = os.path.join(data_home, VEGA_URL.split('/')[-1])

    if not os.path.exists(archive_name):
        if not download_if_missing:
            raise IOError('data not present on disk. '
                          'set download_if_missing=True to download')

        print("downnloading from %s" % VEGA_URL)
        F = urlopen(VEGA_URL)
        open(archive_name, 'wb').write(F.read())

    F = open(archive_name, 'r')

    return np.loadtxt(F, unpack=True)