File: sdss_sspp.py

package info (click to toggle)
astroml 1.0.2-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 932 kB
  • sloc: python: 5,731; makefile: 3
file content (151 lines) | stat: -rw-r--r-- 4,862 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os

import numpy as np
from astropy.table import Table

from . import get_data_home


DATA_URL = ("https://github.com/astroML/astroML-data/raw/main/datasets/"
            "SDSSssppDR9_rerun122.fit.gz")


def compute_distances(data):
    """Compute the distances to select stars in the sdss_sspp sample.

    Distance are determined using empirical color/magnitude fits from
    Ivezic et al 2008, ApJ 684:287

    Extinction correcctions come from Berry et al 2011, arXiv 1111.4985

    This distance only works for stars with log(g) > 3.3
    Other stars will have distance=-1
    """
    # extinction terms from Berry et al
    Ar = data['Ar']
    # Au = 1.810 * Ar
    Ag = 1.400 * Ar
    Ai = 0.759 * Ar
    # Az = 0.561 * Ar

    # compute corrected mags and colors
    gmag = data['gpsf'] - Ag
    rmag = data['rpsf'] - Ar
    imag = data['ipsf'] - Ai
    gi = gmag - imag

    # compute distance fit from Ivezic et al
    FeH = data['FeH']
    Mr0 = (-5.06 + 14.32 * gi - 12.97 * gi ** 2 +
           6.127 * gi ** 3 - 1.267 * gi ** 4 + 0.0967 * gi ** 5)
    FeHoffset = 4.50 - 1.11 * FeH - 0.18 * FeH ** 2
    Mr = Mr0 + FeHoffset
    dist = 0.01 * 10 ** (0.2 * (rmag - Mr))

    # stars with log(g) < 3.3 don't work for this fit: set distance to -1
    dist[data['logg'] < 3.3] = -1

    return dist


def fetch_sdss_sspp(data_home=None, download_if_missing=True, cleaned=False):
    """Loader for SDSS SEGUE Stellar Parameter Pipeline data

    Parameters
    ----------
    data_home : optional, default=None
        Specify another download and cache folder for the datasets. By default
        all astroML data is stored in '~/astroML_data'.

    download_if_missing : bool (optional) default=True
        If False, raise a IOError if the data is not locally available
        instead of trying to download the data from the source site.

    cleaned : bool (optional) default=False
        if True, then return a cleaned catalog where objects with extreme
        values are removed.

    Returns
    -------
    data : recarray, shape = (327260,)
        record array containing pipeline parameters

    Notes
    -----
    Here are the comments from the fits file header:

    Imaging data and spectrum identifiers for a sample of 327,260
    stars with SDSS spectra,  selected as:

      1) available SSPP parameters in SDSS Data Release 9
         (SSPP rerun 122, file from Y.S. Lee)
      2) 14 < r < 21 (psf magnitudes, uncorrected for ISM extinction)
      3) 10 < u < 25 & 10 < z < 25 (same as above)
      4) errors in ugriz well measured (>0) and <10
      5) 0 < u-g < 3 (all color cuts based on psf mags, dereddened)
      6) -0.5 < g-r < 1.5 & -0.5 < r-i < 1.0 & -0.5 < i-z < 1.0
      7) -200 < pmL < 200 & -200 < pmB < 200 (proper motion in mas/yr)
      8) pmErr < 10 mas/yr (proper motion error)
      9) 1 < log(g) < 5
      10) TeffErr < 300 K

    Teff and TeffErr are given in Kelvin, radVel and radVelErr in km/s.
    (ZI, Feb 2012, ivezic@astro.washington.edu)

    Examples
    --------
    >>> from astroML.datasets import fetch_sdss_sspp
    >>> data = fetch_sdss_sspp()  # doctest: +IGNORE_OUTPUT +REMOTE_DATA
    >>> # number of objects in dataset
    >>> data.shape  # doctest: +REMOTE_DATA
    (327260,)
    >>> # names of the first five columns
    >>> print(data.dtype.names[:5])  # doctest: +REMOTE_DATA
    ('ra', 'dec', 'Ar', 'upsf', 'uErr')
    >>> # first RA value
    >>> print(data['ra'][:1])  # doctest: +REMOTE_DATA
    [49.6275024]
    >>> # first DEC value
    >>> print(data['dec'][:1])  # doctest: +REMOTE_DATA
    [-1.04175591]
    """
    data_home = get_data_home(data_home)

    archive_file = os.path.join(data_home, os.path.basename(DATA_URL))

    if not os.path.exists(archive_file):
        if not download_if_missing:
            raise IOError('data not present on disk. '
                          'set download_if_missing=True to download')

        data = Table.read(DATA_URL)
        data.write(archive_file)
    else:
        data = Table.read(archive_file)

    if cleaned:
        # -1.1 < FeH < 0.1
        data = data[(data['FeH'] > -1.1) & (data['FeH'] < 0.1)]

        # -0.03 < alpha/Fe < 0.57
        data = data[(data['alphFe'] > -0.03) & (data['alphFe'] < 0.57)]

        # 5000 < Teff < 6500
        data = data[(data['Teff'] > 5000) & (data['Teff'] < 6500)]

        # 3.5 < log(g) < 5
        data = data[(data['logg'] > 3.5) & (data['logg'] < 5)]

        # 0 < error for FeH < 0.1
        data = data[(data['FeHErr'] > 0) & (data['FeHErr'] < 0.1)]

        # 0 < error for alpha/Fe < 0.05
        data = data[(data['alphFeErr'] > 0) & (data['alphFeErr'] < 0.05)]

        # 15 < g mag < 18
        data = data[(data['gpsf'] > 15) & (data['gpsf'] < 18)]

        # abs(radVel) < 100 km/s
        data = data[(abs(data['radVel']) < 100)]

    return np.asarray(data)