1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
import numpy as np
from scipy import linalg
from sklearn.utils import check_random_state as sk_check_random_state
from astroML.utils.decorators import deprecated
from astroML.utils.exceptions import AstroMLDeprecationWarning
try: # SciPy >= 0.19
from scipy.special import logsumexp as scipy_logsumexp
except ImportError:
from scipy.misc import logsumexp as scipy_logsumexp
__all__ = ['logsumexp', 'log_multivariate_gaussian', 'check_random_state',
'split_samples', 'completeness_contamination', 'convert_2D_cov']
@deprecated('1.0', alternative='scipy.special.logsumexp',
warning_type=AstroMLDeprecationWarning)
def logsumexp(arr, axis=None):
return scipy_logsumexp(arr, axis)
def log_multivariate_gaussian(x, mu, V, Vinv=None, method=1):
"""Evaluate a multivariate gaussian N(x|mu, V)
This allows for multiple evaluations at once, using array broadcasting
Parameters
----------
x: array_like
points, shape[-1] = n_features
mu: array_like
centers, shape[-1] = n_features
V: array_like
covariances, shape[-2:] = (n_features, n_features)
Vinv: array_like or None
pre-computed inverses of V: should have the same shape as V
method: integer, optional
method = 0: use cholesky decompositions of V
method = 1: use explicit inverse of V
Returns
-------
values: ndarray
shape = broadcast(x.shape[:-1], mu.shape[:-1], V.shape[:-2])
Examples
--------
>>> x = [1, 2]
>>> mu = [0, 0]
>>> V = [[2, 1], [1, 2]]
>>> float(log_multivariate_gaussian(x, mu, V))
-3.3871832107434003
"""
x = np.asarray(x, dtype=float)
mu = np.asarray(mu, dtype=float)
V = np.asarray(V, dtype=float)
ndim = x.shape[-1]
x_mu = x - mu
if V.shape[-2:] != (ndim, ndim):
raise ValueError("Shape of (x-mu) and V do not match")
Vshape = V.shape
V = V.reshape([-1, ndim, ndim])
if Vinv is not None:
assert Vinv.shape == Vshape
method = 1
if method == 0:
Vchol = np.array([linalg.cholesky(V[i], lower=True)
for i in range(V.shape[0])])
# we may be more efficient by using scipy.linalg.solve_triangular
# with each cholesky decomposition
VcholI = np.array([linalg.inv(Vchol[i])
for i in range(V.shape[0])])
logdet = np.array([2 * np.sum(np.log(np.diagonal(Vchol[i])))
for i in range(V.shape[0])])
VcholI = VcholI.reshape(Vshape)
logdet = logdet.reshape(Vshape[:-2])
VcIx = np.sum(VcholI * x_mu.reshape(x_mu.shape[:-1]
+ (1,) + x_mu.shape[-1:]), -1)
xVIx = np.sum(VcIx ** 2, -1)
elif method == 1:
if Vinv is None:
Vinv = np.array([linalg.inv(V[i])
for i in range(V.shape[0])]).reshape(Vshape)
else:
assert Vinv.shape == Vshape
logdet = np.log(np.array([linalg.det(V[i])
for i in range(V.shape[0])]))
logdet = logdet.reshape(Vshape[:-2])
xVI = np.sum(x_mu.reshape(x_mu.shape + (1,)) * Vinv, -2)
xVIx = np.sum(xVI * x_mu, -1)
else:
raise ValueError("unrecognized method %s" % method)
return -0.5 * ndim * np.log(2 * np.pi) - 0.5 * (logdet + xVIx)
@deprecated('1.0', alternative='sklearn.utils.check_random_state',
warning_type=AstroMLDeprecationWarning)
def check_random_state(seed):
return sk_check_random_state(seed)
def split_samples(X, y, fractions=[0.75, 0.25], random_state=None):
"""Split samples into training, test, and cross-validation sets
Parameters
----------
X, y : array_like
leading dimension n_samples
fraction : array_like
length n_splits. If the fractions do not add to 1, they will be
re-normalized.
random_state : None, int, or RandomState object
random seed, or random number generator
"""
X = np.asarray(X)
y = np.asarray(y)
if X.shape[0] != y.shape[0]:
raise ValueError("X and y should have the same leading dimension")
n_samples = X.shape[0]
fractions = np.asarray(fractions).ravel().cumsum()
fractions /= fractions[-1]
fractions *= n_samples
N = np.concatenate([[0], fractions.astype(int)])
N[-1] = n_samples # in case of roundoff errors
random_state = sk_check_random_state(random_state)
indices = np.arange(len(y))
random_state.shuffle(indices)
X_divisions = tuple(X[indices[N[i]:N[i + 1]]]
for i in range(len(fractions)))
y_divisions = tuple(y[indices[N[i]:N[i + 1]]]
for i in range(len(fractions)))
return X_divisions, y_divisions
def completeness_contamination(predicted, true):
"""Compute the completeness and contamination values
Parameters
----------
predicted_value, true_value : array_like
integer arrays of predicted and true values. This assumes that
'false' values are given by 0, and 'true' values are nonzero.
Returns
-------
completeness, contamination : float or array_like
the completeness and contamination of the results. shape is
np.broadcast(predicted, true).shape[:-1]
"""
predicted = np.asarray(predicted)
true = np.asarray(true)
outshape = np.broadcast(predicted, true).shape[:-1]
predicted = np.atleast_2d(predicted)
true = np.atleast_2d(true)
matches = (predicted == true)
tp = np.sum(matches & (true != 0), -1)
fp = np.sum(~matches & (true == 0), -1)
fn = np.sum(~matches & (true != 0), -1)
tot = (tp + fn)
tot[tot == 0] = 1
completeness = tp * 1. / tot
tot = (tp + fp)
tot[tot == 0] = 1
contamination = fp * 1. / tot
completeness[np.isnan(completeness)] = 0
contamination[np.isnan(contamination)] = 0
return completeness.reshape(outshape), contamination.reshape(outshape)
def convert_2D_cov(*args):
"""Convert a 2D covariance from matrix form to principal form, and back
if one parameter is passed, it is a covariance matrix, and the principal
axes and rotation (sigma1, sigma2, alpha) are returned.
if three parameters are passed, they are assumed to be (sigma1, sigma2,
alpha) and the covariance is returned
"""
if len(args) == 1:
C = np.asarray(args[0])
if C.shape != (2, 2):
raise ValueError("Input not understood")
sigma_x2 = C[0, 0]
sigma_y2 = C[1, 1]
sigma_xy = C[0, 1]
alpha = 0.5 * np.arctan2(2 * sigma_xy,
(sigma_x2 - sigma_y2))
tmp1 = 0.5 * (sigma_x2 + sigma_y2)
tmp2 = np.sqrt(0.25 * (sigma_x2 - sigma_y2) ** 2 + sigma_xy ** 2)
sigma1 = np.sqrt(tmp1 + tmp2)
sigma2 = np.sqrt(tmp1 - tmp2)
return (sigma1, sigma2, alpha)
elif len(args) == 3:
sigma1, sigma2, alpha = args
s = np.sin(alpha)
c = np.cos(alpha)
sigma_x2 = (sigma1 * c) ** 2 + (sigma2 * s) ** 2
sigma_y2 = (sigma1 * s) ** 2 + (sigma2 * c) ** 2
sigma_xy = (sigma1 ** 2 - sigma2 ** 2) * s * c
return np.array([[sigma_x2, sigma_xy],
[sigma_xy, sigma_y2]])
else:
raise ValueError("Input not understood")
|