File: plot_corrected_spectra.py

package info (click to toggle)
astroml 1.0.2-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 932 kB
  • sloc: python: 5,731; makefile: 3
file content (40 lines) | stat: -rw-r--r-- 1,190 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""
Corrected Spectra
-----------------
The script examples/datasets/compute_sdss_pca.py uses an iterative PCA
technique to reconstruct masked regions of SDSS spectra.  Several of the
resulting spectra are shown below.
"""
# Author: Jake VanderPlas <vanderplas@astro.washington.edu>
# License: BSD
#   The figure is an example from astroML: see http://astroML.github.com
import numpy as np
import matplotlib.pyplot as plt

from astroML.datasets import sdss_corrected_spectra

#------------------------------------------------------------
# Fetch the data
data = sdss_corrected_spectra.fetch_sdss_corrected_spectra()
spectra = sdss_corrected_spectra.reconstruct_spectra(data)
lam = sdss_corrected_spectra.compute_wavelengths(data)

#------------------------------------------------------------
# Plot several spectra
fig = plt.figure(figsize=(8, 8))

fig.subplots_adjust(hspace=0)

for i in range(5):
    ax = fig.add_subplot(511 + i)
    ax.plot(lam, spectra[i], '-k')

    if i < 4:
        ax.xaxis.set_major_formatter(plt.NullFormatter())
    else:
        ax.set_xlabel(r'wavelength $(\AA)$')

    ax.yaxis.set_major_formatter(plt.NullFormatter())
    ax.set_ylabel('flux')

plt.show()