File: constraints.rst

package info (click to toggle)
astroplan 0.10.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,024 kB
  • sloc: python: 4,411; makefile: 126
file content (467 lines) | stat: -rw-r--r-- 20,189 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
.. include:: ../references.txt

.. doctest-skip-all

.. _constraints:

******************************
Defining Observing Constraints
******************************

Contents
========

* :ref:`constraints-built_in_constraints`
* :ref:`constraints-visualize_constraints`
* :ref:`constraints-user_defined_constraints`

.. _constraints-built_in_constraints:

Introduction to Built-In Constraints
====================================

Frequently, we have a long list of targets that we want to observe, and we need
to know which ones are observable given a set of constraints imposed on our
observations by a wide range of limitations. For example, your telescope may
only point over a limited range of altitudes, your targets are only useful
in a range of airmasses, and they must be separated from the moon by some
large angle. The ``constraints`` module is here to help!

Say we're planning to observe from Subaru Observatory in Hawaii on August 1,
2015 from 06:00-12:00 UTC. First, let's set up an `~astroplan.Observer` object::

    from astroplan import Observer, FixedTarget
    from astropy.time import Time
    subaru = Observer.at_site("Subaru")
    time_range = Time(["2015-08-01 06:00", "2015-08-01 12:00"])

We're keeping a list of targets in a text file called ``targets.txt``, which
looks like this::

    # name ra_degrees dec_degrees
    Polaris 37.95456067 89.26410897
    Vega 279.234734787 38.783688956
    Albireo 292.68033548 27.959680072
    Algol 47.042218553 40.955646675
    Rigel 78.634467067 -8.201638365
    Regulus 152.092962438 11.967208776

We'll read in this list of targets using `astropy.table`, and create a list
of `~astroplan.FixedTarget` objects out of them::

    # Read in the table of targets
    from astropy.table import Table
    target_table = Table.read('targets.txt', format='ascii')

    # Create astroplan.FixedTarget objects for each one in the table
    from astropy.coordinates import SkyCoord
    import astropy.units as u
    targets = [FixedTarget(coord=SkyCoord(ra=ra*u.deg, dec=dec*u.deg), name=name)
               for name, ra, dec in target_table]

We will build a bulleted list of our constraints first, then implement them in
code below.

* Our observations with Subaru can only occur between altitudes of ~10-80
  degrees, which we can define using the
  `~astroplan.constraints.AltitudeConstraint` class.

* We place an upper limit on the airmass of each target during observations
  using the `~astroplan.constraints.AirmassConstraint` class.

* Since we're optical observers, we only want to observe targets at night, so
  we'll also call the `~astroplan.constraints.AtNightConstraint` class. We're
  not terribly worried about sky brightness for these bright stars, so we'll
  define "night" times as those between civil twilights by using the class
  method `~astroplan.AtNightConstraint.twilight_civil`:

.. code-block:: python

    from astroplan import (AltitudeConstraint, AirmassConstraint,
                           AtNightConstraint)
    constraints = [AltitudeConstraint(10*u.deg, 80*u.deg),
                   AirmassConstraint(5), AtNightConstraint.twilight_civil()]

This list of constraints can now be applied to our target list to determine:

* whether the targets are observable given the constraints at *any* times in the
  time range, using `~astroplan.is_observable`,

* whether the targets are observable given the constraints at *all* times in the
  time range, using `~astroplan.is_always_observable`

* during what months the targets are *ever* observable given the constraints,
  using `~astroplan.months_observable`::

    from astroplan import is_observable, is_always_observable, months_observable
    # Are targets *ever* observable in the time range?
    ever_observable = is_observable(constraints, subaru, targets, time_range=time_range)

    # Are targets *always* observable in the time range?
    always_observable = is_always_observable(constraints, subaru, targets, time_range=time_range)

    # During what months are the targets ever observable?
    best_months = months_observable(constraints, subaru, targets, time_range)

The `~astroplan.is_observable` and `~astroplan.is_always_observable` functions
will return boolean arrays which tell you whether or not each target is
observable given your constraints. Let's print these results in tabular form:

    >>> from astropy.table import Table
    >>> import numpy as np
    >>> observability_table = Table()
    >>> observability_table['targets'] = [target.name for target in targets]
    >>> observability_table['ever_observable'] = ever_observable
    >>> observability_table['always_observable'] = always_observable
    >>> print(observability_table)
    <Table length=6>
    targets ever_observable always_observable
      str7        bool             bool
    ------- --------------- -----------------
    Polaris            True              True
       Vega            True              True
    Albireo            True             False
      Algol            True             False
      Rigel           False             False
    Regulus           False             False

Now we can see which targets are observable! You can also use the
`~astroplan.observability_table` method to do the same calculations and
store the results in a table, all in one step::

    >>> from astroplan import observability_table
    >>> table = observability_table(constraints, subaru, targets, time_range=time_range)
    >>> print(table)
    target name ever observable always observable fraction of time observable
    ----------- --------------- ----------------- ---------------------------
        Polaris            True              True                         1.0
           Vega            True              True                         1.0
        Albireo            True             False              0.833333333333
          Algol            True             False              0.166666666667
          Rigel           False             False                         0.0
        Regulus           False             False                         0.0

Let's sanity-check these results using `~astroplan.plots.plot_sky` to plot
the positions of the targets throughout the time range:

.. plot::

    from astroplan.plots import plot_sky
    from astroplan import Observer, FixedTarget

    import matplotlib.pyplot as plt
    from matplotlib import cm
    from astropy.time import Time
    from astropy.coordinates import SkyCoord
    import astropy.units as u


    # Get grid of times within the time_range limits
    from astroplan import time_grid_from_range
    time_range = Time(["2015-08-01 06:00", "2015-08-01 12:00"])
    time_grid = time_grid_from_range(time_range)

    subaru = Observer.at_site("Subaru")

    target_table_string = """# name ra_degrees dec_degrees
    Polaris 37.95456067 89.26410897
    Vega 279.234734787 38.783688956
    Albireo 292.68033548 27.959680072
    Algol 47.042218553 40.955646675
    Rigel 78.634467067 -8.201638365
    Regulus 152.092962438 11.967208776"""
    # Read in the table of targets
    from astropy.io import ascii
    target_table = ascii.read(target_table_string)
    targets = [FixedTarget(coord=SkyCoord(ra=ra*u.deg, dec=dec*u.deg), name=name)
               for name, ra, dec in target_table]

    plt.figure(figsize=(6,6))
    cmap = cm.Set1             # Cycle through this colormap

    for i, target in enumerate(targets):
        ax = plot_sky(target, subaru, time_grid,
                      style_kwargs=dict(color=cmap(float(i)/len(targets)),
                                        label=target.name))

        legend = ax.legend(loc='lower center')
        legend.get_frame().set_facecolor('w')
        plt.show()

We can see that Vega is in the sweet spot in altitude and azimuth for this
time range and is always observable. Albireo is not always observable given
these criteria because it rises above 80 degrees altitude. Polaris hardly moves
and is therefore always observable, and Algol starts out observable but sets
below the lower altitude limit, and then the airmass limit. Rigel and Regulus
never rise above those limits within the time range.

.. _constraints-visualize_constraints:

Visualizing Constraints
=======================

Suppose an observer is planning to observe low-mass stars in Praesepe in the
optical and infrared from the W.M. Keck Observatory. The observing constraints
require all observations to occur (i) between astronomical twilights; (ii)
while the Moon is separated from Praesepe by at least 45 degrees; and (iii)
while Praesepe is above the lower elevation limit of Keck I, about 33 degrees.
These observing constraints can be specified with the
`~astroplan.AtNightConstraint`, `~astroplan.MoonSeparationConstraint`, and
`~astroplan.AltitudeConstraint` objects, like this:

.. code-block::python

    from astroplan import (FixedTarget, Observer, AltitudeConstraint,
                           AtNightConstraint, MoonSeparationConstraint)
    from astropy.time import Time
    from astroplan.utils import time_grid_from_range
    import astropy.units as u
    import numpy as np
    import matplotlib.pyplot as plt

    # Specify observer at Keck Observatory:
    keck = Observer.at_site('Keck')

    # Use Sesame name resolver to get coordinates for Praesepe:
    target = FixedTarget.from_name("Praesepe")

    # Define observing constraints:
    constraints = [AtNightConstraint.twilight_astronomical(),
                   MoonSeparationConstraint(min=45 * u.deg),
                   AltitudeConstraint(min=33 * u.deg)]

We can evaluate the constraints at one hour intervals in a loop, to create an
observability grid like so:

.. code-block::python

    # Define range of times to observe between
    start_time = Time('2017-01-01 04:00:01')
    end_time = Time('2017-01-01 11:00:01')
    time_resolution = 1 * u.hour

    # Create grid of times from ``start_time`` to ``end_time``
    # with resolution ``time_resolution``
    time_grid = time_grid_from_range([start_time, end_time],
                                     time_resolution=time_resolution)

    observability_grid = np.zeros((len(constraints), len(time_grid)))

    for i, constraint in enumerate(constraints):
        # Evaluate each constraint
        observability_grid[i, :] = constraint(keck, target, times=time_grid)

This kind of grid can be useful for visualizing what's happening under-the-hood
when you use `~astroplan.is_observable` or `~astroplan.is_always_observable`.
Click the link below for the source code to produce the observability grid shown
below. Dark squares represent times when the observing constraint is not
satisfied.

.. plot::

    from __future__ import (absolute_import, division, print_function,
                            unicode_literals)

    from astroplan import (FixedTarget, Observer, AltitudeConstraint,
                           AtNightConstraint, MoonSeparationConstraint)
    from astropy.time import Time
    from astroplan.utils import time_grid_from_range
    import astropy.units as u
    import numpy as np
    import matplotlib.pyplot as plt

    # Specify observer at Keck Observatory:
    keck = Observer.at_site('Keck')

    # Use Sesame name resolver to get coordinates for Praesepe:
    target = FixedTarget.from_name("Praesepe")

    # Define observing constraints:
    constraints = [AtNightConstraint.twilight_astronomical(),
                   MoonSeparationConstraint(min=45 * u.deg),
                   AltitudeConstraint(min=33 * u.deg)]

    # Define range of times to observe between
    start_time = Time('2017-01-01 04:00:01')
    end_time = Time('2017-01-01 11:00:01')
    time_resolution = 1 * u.hour

    # Create grid of times from ``start_time`` to ``end_time``
    # with resolution ``time_resolution``
    time_grid = time_grid_from_range([start_time, end_time],
                                     time_resolution=time_resolution)

    observability_grid = np.zeros((len(constraints), len(time_grid)))

    for i, constraint in enumerate(constraints):
        # Evaluate each constraint
        observability_grid[i, :] = constraint(keck, target, times=time_grid)

    # Create plot showing observability of the target:

    extent = [-0.5, -0.5+len(time_grid), -0.5, 2.5]

    fig, ax = plt.subplots()
    ax.imshow(observability_grid, extent=extent)

    ax.set_yticks(range(0, 3))
    ax.set_yticklabels([c.__class__.__name__ for c in constraints])

    ax.set_xticks(range(len(time_grid)))
    ax.set_xticklabels([t.datetime.strftime("%H:%M") for t in time_grid])

    ax.set_xticks(np.arange(extent[0], extent[1]), minor=True)
    ax.set_yticks(np.arange(extent[2], extent[3]), minor=True)

    ax.grid(which='minor', color='w', linestyle='-', linewidth=2)
    ax.tick_params(axis='x', which='minor', bottom='off')
    plt.setp(ax.get_xticklabels(), rotation=30, ha='right')

    ax.tick_params(axis='y', which='minor', left='off')
    ax.set_xlabel('Time on {0} UTC'.format(time_grid[0].datetime.date()))
    fig.subplots_adjust(left=0.35, right=0.9, top=0.9, bottom=0.1)
    plt.show()


.. _constraints-user_defined_constraints:

User-Defined Constraints
========================

There are many possible constraints that you could find useful which have
not been implemented (yet) in astroplan. This example will walk you through
creating your own constraint which will be compatible with the tools in the
``constraints`` module.

We will begin by defining an observer at Subaru and reading the text file of
stellar coordinates defined in the example above::

    from astroplan import Observer, FixedTarget
    from astropy.time import Time
    subaru = Observer.at_site("Subaru")
    time_range = Time(["2015-08-01 06:00", "2015-08-01 12:00"])

    # Read in the table of targets
    from astropy.io import ascii
    target_table = ascii.read('targets.txt')

    # Create astroplan.FixedTarget objects for each one in the table
    from astropy.coordinates import SkyCoord
    import astropy.units as u
    targets = [FixedTarget(coord=SkyCoord(ra=ra*u.deg, dec=dec*u.deg), name=name)
               for name, ra, dec in target_table]

In the previous section, you may have noticed that constraints are assembled by
making a list of calls to the initializers for classes like
`~astroplan.AltitudeConstraint` and `~astroplan.AirmassConstraint`. Each of
those constraint classes is subclassed from the abstract
`~astroplan.Constraint` class, and the custom constraint that we're going to
write must be as well.

In this example, let's design our constraint to ensure that all targets must
be within some angular separation from Vega – we'll call it
``VegaSeparationConstraint``. Two methods, ``__init__`` and
``compute_constraint`` must be written for our constraint to work:

* The ``__init__`` method will accept the minimum and maximum acceptable separations
  a target could have from Vega.

* We'll also define a method ``compute_constraints`` which takes three
  arguments: a `~astropy.time.Time` or array of times to test,
  an `~astroplan.Observer` object, and some targets (a `~astropy.coordinates.SkyCoord`
  object representing a single target or a list of targets).
  ``compute_constraints`` will return an array of booleans that describe whether
  or not each target meets the constraints.  The super class `~astroplan.Constraint` has a
  ``__call__`` method which will run your custom class's ``compute_constraints`` method
  when you check if a target is observable using `~astroplan.is_observable`
  or `~astroplan.is_always_observable`. This ``__call__`` method also checks the
  arguments, converting single `~astroplan.FixedTarget` or lists of `~astroplan.FixedTarget`
  objects into an `~astropy.coordinates.SkyCoord` object. The ``__call__`` method ensures the
  returned array of booleans is the correct shape, so ``compute_constraints`` should not
  normally be called directly - use the ``__call__`` method instead.

* We also want to provide the option of having the constraint output
  a non-boolean score. Where being closer to the minimum separation
  returns a higher score than being closer to the maximum separation.

Here's our ``VegaSeparationConstraint`` implementation::

    from astroplan import Constraint, is_observable, min_best_rescale
    from astropy.coordinates import Angle
    import astropy.units as u

    class VegaSeparationConstraint(Constraint):
        """
        Constraint the separation from Vega
        """
        def __init__(self, min=None, max=None, boolean_constraint=True):
            """
            min : `~astropy.units.Quantity` or `None` (optional)
                Minimum acceptable separation between Vega and target. `None`
                indicates no limit.
            max : `~astropy.units.Quantity` or `None` (optional)
                Minimum acceptable separation between Vega and target. `None`
                indicates no limit.
            """
            self.min = min if min is not None else 0*u.deg
            self.max = max if max is not None else 180*u.deg
            self.boolean_constraint = boolean_constraint

        def compute_constraint(self, times, observer, targets):

            vega = SkyCoord(ra=279.23473479*u.deg, dec=38.78368896*u.deg)

            # Calculate separation between target and vega
            # Targets are automatically converted to SkyCoord objects
            # by __call__ before compute_constraint is called.
            vega_separation = vega.separation(targets)

            if self.boolean_constraint:
                mask = ((self.min < vega_separation) & (vega_separation < self.max))
                return mask

            # if we want to return a non-boolean score
            else:
                # rescale the vega_separation values so that they become
                # scores between zero and one
                rescale = min_best_rescale(vega_separation, self.min,
                                           self.max, less_than_min=0)
                return rescale


Then as in the earlier example, we can call our constraint::

    >>> constraints = [VegaSeparationConstraint(min=5*u.deg, max=30*u.deg)]
    >>> observability = is_observable(constraints, subaru, targets,
    ...                               time_range=time_range)
    >>> print(observability)
    [False False  True False False False]

The resulting list of booleans indicates that the only target separated by
5 and 30 degrees from Vega is Albireo. Following this pattern, you can design
arbitrarily complex criteria for constraints.

By default, calling a constraint will try to broadcast the time and target arrays
against each other, and raise a `ValueError` if this is not possible. To see the
(target x time) array for the constraint, there is an optional ``grid_times_targets``
argument. Here we find the (target x time) array for the non-boolean score::

    >>> constraint = VegaSeparationConstraint(min=5*u.deg, max=30*u.deg,
    ...                                       boolean_constraint=False)
    >>> print(constraint(subaru, targets, time_range=time_range,
    ...                  grid_times_targets=True))
    [[ 0.          0.          0.          0.          0.          0.          0.
       0.          0.          0.          0.          0.        ]
     [ 0.          0.          0.          0.          0.          0.          0.
       0.          0.          0.          0.          0.        ]
     [ 0.57748686  0.57748686  0.57748686  0.57748686  0.57748686  0.57748686
       0.57748686  0.57748686  0.57748686  0.57748686  0.57748686  0.57748686]
     [ 0.          0.          0.          0.          0.          0.          0.
       0.          0.          0.          0.          0.        ]
     [ 0.          0.          0.          0.          0.          0.          0.
       0.          0.          0.          0.          0.        ]
     [ 0.          0.          0.          0.          0.          0.          0.
       0.          0.          0.          0.          0.        ]]

The score of .5775 for Albireo indicates that it is slightly closer to
the 5 degree minimum than to the 30 degree maximum.