1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
|
.. include:: ../references.txt
.. _plots:
.. doctest-skip-all
***********************
Plotting with Astroplan
***********************
`astroplan` currently has convenience functions for making three different types
of plots: airmass vs time, parallactic angle vs time and sky charts. This
plotting functionality in `astroplan` requires `Matplotlib`_ (although non-
plotting functionality will work even without `Matplotlib`_ ). The use of
additional plotting packages (like `Seaborn
<http://stanford.edu/~mwaskom/software/seaborn/>`_) is not explicitly prevented,
but may or may not actually work.
All `astroplan` plots return a `~matplotlib.axes.Axes` object (which by
convention is assigned to the name ``ax`` in these tutorials). You can further
manipulate the returned ``ax`` object, including using it as input for more
`astroplan` plotting functions, or you can simply display/print the plot.
Contents
========
* :ref:`plots_time_dependent`
* :ref:`plots_sky_charts`
* :ref:`finder_image`
.. _plots_time_dependent:
Time Dependent Plots
====================
Although all `astroplan` plots are time-dependent in some way, we label those
that have a time-based axis as "time-dependent".
`astroplan` currently has a few different types of "time-dependent" plots,
for example `~astroplan.plots.plot_airmass`, `~astroplan.plots.plot_altitude`
and `~astroplan.plots.plot_parallactic`. These take, at minimum,
`~astroplan.Observer`, `~astroplan.FixedTarget` and `~astropy.time.Time` objects
as input.
.. _plots_airmass:
Airmass vs time plots are made the following way:
.. code-block:: python
>>> from astroplan.plots import plot_airmass
>>> plot_airmass(target, observer, time)
.. _plots_parallactic:
Parallactic angle vs time plots are made the following way:
.. code-block:: python
>>> from astroplan.plots import plot_airmass
>>> plot_parallactic(target, observer, time)
Below are general guidelines for working with time-dependent plots in
`astroplan`. Examples use airmass but apply to parallactic angle as well.
.. seealso::
`astropy.coordinates.AltAz.secz`
`astroplan.Observer.parallactic_angle`
Making a quick plot
-------------------
Any plot function in `astroplan` with a time-based axis will allow you to make
a quick plot over a 24-hour period.
After constructing `~astroplan.Observer` and `~astroplan.FixedTarget`
objects, construct a `~astropy.time.Time` object with a single instance in
time and issue the plotting command.
.. code-block:: python
>>> import matplotlib.pyplot as plt
>>> from astropy.time import Time
>>> from astroplan.plots import plot_airmass
>>> observe_time = Time('2000-06-15 23:30:00')
>>> plot_airmass(target, observer, observe_time)
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_airmass
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('06h45m08.9173s', '-16d42m58.017s', frame='icrs')
target = FixedTarget(name='Sirius', coord=coordinates)
observe_time = Time('2000-06-15 23:30:00')
plot_airmass(target, observer, observe_time)
plt.tight_layout()
plt.show()
As you can see, the 24-hour plot is centered on the *time* input. You can also
use array `~astropy.time.Time` objects for these quick plots--they just
can't contain more than one instance in time.
For example, these are acceptable *time* inputs::
Time(['2000-06-15 23:30:00'])
[Time('2000-06-15 23:30:00')]
You can also add a second y-axis (on the right side) which shows the corresponding
altitude of the targets:
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_airmass
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('06h45m08.9173s', '-16d42m58.017s', frame='icrs')
target = FixedTarget(name='Sirius', coord=coordinates)
observe_time = Time('2000-06-15 23:30:00')
plot_airmass(target, observer, observe_time, altitude_yaxis=True)
plt.tight_layout()
plt.show()
You can make altitude the primary y-axis rather than airmass by using
`~astroplan.plots.plot_altitude`:
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_altitude
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('06h45m08.9173s', '-16d42m58.017s', frame='icrs')
target = FixedTarget(name='Sirius', coord=coordinates)
observe_time = Time('2000-06-15 23:30:00')
plot_altitude(target, observer, observe_time, airmass_yaxis=True)
plt.tight_layout()
plt.show()
.. _plots_time_window:
Specifying a time window
------------------------
If you want to see airmass plotted over a window that is not 24 hours long or
you want to control the precision of the plot, you must specify every time for
which you want to see an airmass plotted. Therefore, an array
`~astropy.time.Time` object is necessary.
To quickly populate an `~astropy.time.Time` object with many instances of time,
use `Numpy`_ and `~astropy.units`. See example below.
Centering the window at some time
+++++++++++++++++++++++++++++++++
To center your window at some instance in time:
.. code-block:: python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import astropy.units as u
>>> from astropy.time import Time
>>> from astroplan.plots import plot_airmass
>>> observe_time = Time('2000-06-15 23:30:00')
>>> observe_time = observe_time + np.linspace(-5, 5, 55)*u.hour
>>> plot_airmass(target, observer, observe_time)
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_airmass
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('06h45m08.9173s', '-16d42m58.017s', frame='icrs')
target = FixedTarget(name='Sirius', coord=coordinates)
import numpy as np
observe_time = Time('2000-06-15 23:30:00')
observe_time = observe_time + np.linspace(-5, 5, 55)*u.hour
plot_airmass(target, observer, observe_time)
plt.tight_layout()
plt.show()
Specify start and end times
+++++++++++++++++++++++++++
If you know the start and end times of your observation run, you can use a
`~astropy.time.TimeDelta` object to create an array for time input::
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from astropy.time import Time
>>> from astroplan.plots import plot_airmass
>>> start_time = Time('2000-06-15 20:00:00')
>>> end_time = Time('2000-06-16 04:00:00')
>>> delta_t = end_time - start_time
>>> observe_time = start_time + delta_t*np.linspace(0, 1, 75)
>>> plot_airmass(target, observer, observe_time)
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_airmass
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('06h45m08.9173s', '-16d42m58.017s', frame='icrs')
target = FixedTarget(name='Sirius', coord=coordinates)
start_time = Time('2000-06-15 20:00:00')
end_time = Time('2000-06-16 04:00:00')
delta_t = end_time - start_time
observe_time = start_time + delta_t*np.linspace(0, 1, 75)
plot_airmass(target, observer, observe_time)
plt.tight_layout()
plt.show()
Plotting a quantity for multiple targets
----------------------------------------
If you want to plot airmass information for multiple targets, simply reissue
the `~astroplan.plots.plot_airmass` command, using a different
`~astroplan.FixedTarget` object as input this time. Repeat until you have as
many targets on the plot as you wish::
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from astropy.time import Time
>>> from astroplan.plots import plot_airmass
>>> observe_time = Time('2000-06-30 23:30:00') + np.linspace(-7.0, 5.5, 50)*u.hour
>>> plot_airmass(target, observer, observe_time)
>>> plot_airmass(other_target, observer, observe_time)
>>> plot_airmass(third_target, observer, observe_time)
>>> plt.legend(shadow=True, loc=2)
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_airmass
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('06h45m08.9173s', '-16d42m58.017s', frame='icrs')
target = FixedTarget(name='Sirius', coord=coordinates)
coordinates = SkyCoord('02h31m49.09s', '+89d15m50.8s', frame='icrs')
other_target = FixedTarget(name='Polaris', coord=coordinates)
coordinates = SkyCoord('07h45m19.4s', '+28d01m35s', frame='icrs')
third_target = FixedTarget(name='Pollux', coord=coordinates)
observe_time = Time('2000-06-30 23:30:00') + np.linspace(-7.0, 5.5, 50)*u.hour
plot_airmass(target, observer, observe_time)
plot_airmass(other_target, observer, observe_time)
plot_airmass(third_target, observer, observe_time)
plt.legend(shadow=True, loc=2)
plt.tight_layout()
plt.show()
When you're ready to make a different plot, use ``ax.cla()`` to clear the
current `~matplotlib.axes.Axes` object.
.. _plots_style:
Changing style options
----------------------
The default line for time-dependent plots is solid and the default label
(should you choose to display a legend) is the name contained in the
`~astroplan.Target` object. You can change the *linestyle*, *color*,
*label* and other plotting properties by setting the *style_kwargs* option.
.. code-block:: python
>>> import matplotlib.pyplot as plt
>>> from astroplan.plots import plot_airmass
>>> sirius_styles = {'linestyle': '--', 'color': 'r'}
>>> pollux_styles = {'color': 'g'}
>>> plot_airmass(target, observer, observe_time, style_kwargs=sirius_styles)
>>> plot_airmass(other_target, observer, observe_time, style_kwargs=pollux_styles)
>>> plt.legend(shadow=True, loc=2)
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_airmass
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('06h45m08.9173s', '-16d42m58.017s', frame='icrs')
target = FixedTarget(name='Sirius', coord=coordinates)
coordinates = SkyCoord('07h45m19.4s', '+28d01m35s', frame='icrs')
other_target = FixedTarget(name='Pollux', coord=coordinates)
observe_time = Time('2000-06-30 23:30:00') + np.linspace(-10, 10, 50)*u.hour
sirius_styles = {'linestyle': '--', 'color': 'r'}
pollux_styles = {'color': 'g'}
plot_airmass(target, observer, observe_time, style_kwargs=sirius_styles)
plot_airmass(other_target, observer, observe_time, style_kwargs=pollux_styles)
plt.legend(shadow=True, loc=2)
plt.tight_layout()
plt.show()
See the `Matplotlib`_ documentation for information on plotting styles in line
plots.
Dark Theme Plots
++++++++++++++++
By default, `astroplan` uses the `Astropy <https://astropy.org>`__ style sheet for `Matplotlib`_ to
generate plots with more pleasing settings than provided for by the matplotlib
defaults. When using `astroplan` at night, you may prefer to make plots with
dark backgrounds, rather than the default white background, to preserve your
night vision. To do so, you may use the `astroplan` dark style sheet to
produce dark-themed plots by using the *style_sheet* keyword argument in
any plotting function:
.. code-block:: python
>>> from astroplan.plots import dark_style_sheet, plot_airmass
>>> plot_airmass(target, observatory, time, style_sheet=dark_style_sheet)
.. plot::
from astropy.time import Time
from astropy.coordinates import SkyCoord
import astropy.units as u
from astroplan.plots import plot_airmass, dark_style_sheet
from astroplan import Observer, FixedTarget
import numpy as np
import matplotlib.pyplot as plt
vega = FixedTarget(coord=SkyCoord(ra=279.23473479*u.deg, dec=38.78368896*u.deg))
apo = Observer.at_site('APO')
plot_airmass(vega, apo, Time('2005-01-02 19:00') + np.linspace(-5, 5, 20)*u.hour,
style_sheet=dark_style_sheet)
plt.tight_layout()
plt.show()
Additional Options
++++++++++++++++++
You can also shade the background according to the darkness of the sky (light
shading for 0 degree twilight, darker shading for -18 degree twilight) with
the ``brightness_shading`` keyword, and display additional y-axis ticks on the
right side of the axis with the altitudes in degrees using the
``altitude_yaxis`` keyword:
.. code-block:: python
>>> import matplotlib.pyplot as plt
>>> from astropy.time import Time
>>> from astroplan import FixedTarget, Observer
>>> from astroplan.plots import plot_airmass
>>> time = Time('2018-01-02 19:00')
>>> target = FixedTarget.from_name('HD 189733')
>>> apo = Observer.at_site('APO')
>>> plot_airmass(target, apo, time, brightness_shading=True, altitude_yaxis=True)
.. plot::
from astroplan.plots import plot_airmass
import matplotlib.pyplot as plt
from astropy.time import Time
from astroplan import FixedTarget, Observer
time = Time('2018-01-02 19:00')
target = FixedTarget.from_name('HD 189733')
apo = Observer.at_site('APO')
plot_airmass(target, apo, time, brightness_shading=True, altitude_yaxis=True)
plt.tight_layout()
plt.show()
:ref:`Return to Top <plots>`
.. _plots_sky_charts:
Sky Charts
==========
Many users planning an observation run will want to see the positions of targets
with respect to their local horizon, as well as the positions of familiar stars
or other objects to act as guides.
`~astroplan.plots.plot_sky` allows you to plot the positions of targets at a
single instance or over some window of time. You make this plot the
following way:
.. code-block:: python
>>> from astroplan.plots import plot_sky
>>> plot_sky(target, observer, time)
.. note::
`~astroplan.plots.plot_sky` currently produces polar plots in
altitude/azimuth coordinates only. Plots are centered on the observer's
zenith.
.. seealso::
`astroplan.Observer.altaz`
Making a plot for one instance in time
--------------------------------------
After constructing your `~astroplan.Observer` and `~astroplan.FixedTarget`
objects, construct a time input using an array of length 1.
That is, either an `~astropy.time.Time` object with an array containing one
time value (e.g., ``Time(['2000-1-1'])``) or an array containing one scalar
`~astropy.time.Time` object (e.g., ``[Time('2000-1-1')]``).
Let's say that you created `~astroplan.FixedTarget` objects for Polaris,
Altair, Vega and Deneb. To plot a map of the sky:
.. code-block:: python
>>> import matplotlib.pyplot as plt
>>> from astropy.time import Time
>>> from astroplan.plots import plot_sky
>>> observe_time = Time(['2000-03-15 15:30:00'])
>>> polaris_style = {color': 'k'}
>>> vega_style = {'color': 'g'}
>>> deneb_style = {'color': 'r'}
>>> plot_sky(polaris, observer, observe_time, style_kwargs=polaris_style)
>>> plot_sky(altair, observer, observe_time)
>>> plot_sky(vega, observer, observe_time, style_kwargs=vega_style)
>>> plot_sky(deneb, observer, observe_time, style_kwargs=deneb_style)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
>>> plt.show()
.. note::
Since `~astroplan.plots.plot_sky` uses `~matplotlib.pyplot.scatter`
(which gives the same color to different plots made on the same set of
axes), you have to specify the color for each target via a style
dictionary if you don't want all targets to have the same color.
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_sky
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('02h31m49.09s', '+89d15m50.8s', frame='icrs')
polaris = FixedTarget(name='Polaris', coord=coordinates)
polaris_style = {'color': 'k'}
coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
altair = FixedTarget(name='Altair', coord=coordinates)
coordinates = SkyCoord('18h36m56.5s', '+38d47m06.6s', frame='icrs')
vega = FixedTarget(name='Vega', coord=coordinates)
vega_style = {'color': 'g'}
coordinates = SkyCoord('20h41m25.9s', '+45d16m49.3s', frame='icrs')
deneb = FixedTarget(name='Deneb', coord=coordinates)
deneb_style = {'color': 'r'}
# Note that this is not a scalar.
observe_time = Time(['2000-03-15 15:30:00'])
plot_sky(polaris, observer, observe_time, style_kwargs=polaris_style)
plot_sky(altair, observer, observe_time)
plot_sky(vega, observer, observe_time, style_kwargs=vega_style)
plot_sky(deneb, observer, observe_time, style_kwargs=deneb_style)
# Note that you don't need this code block to produce the plot.
# It reduces the plot size for the documentation.
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])
plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
plt.tight_layout()
plt.show()
Showing movement over time
--------------------------
If you want to see how your targets move over time, you need to explicitly
specify every instance in time.
Say I want to know how Altair moves in the sky over a 9-hour period:
.. code-block:: python
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import astropy.units as u
>>> from astroplan.plots import plot_sky
>>> observe_time = Time('2000-03-15 17:00:00')
>>> observe_time = observe_time + np.linspace(-4, 5, 10)*u.hour
>>> plot_sky(altair, observer, observe_time)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_sky
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
altair = FixedTarget(name='Altair', coord=coordinates)
import numpy as np
observe_time = Time('2000-03-15 17:00:00')
observe_time = observe_time + np.linspace(-4, 5, 10)*u.hour
plot_sky(altair, observer, observe_time)
# Note that you don't need this code block to produce the plot.
# It reduces the plot size for the documentation.
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])
plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
plt.tight_layout()
plt.show()
For more examples on how to populate time objects, see `~astropy.time.Time`
documentation, or :ref:`plots_time_window`.
.. note::
Note that in the case of an object being under the horizon (or having
negative altitude) at any of the times in your *time* input,
`~astroplan.plots.plot_sky` will warn you. Your object(s) will not show
up on the plot for those particular times, but any positions above the
horizon will still be plotted as normal.
Customizing your sky plot
-------------------------
`astroplan` plots use `Matplotlib`_ defaults, so you can customize your plots in
much the same way you tweak any `Matplotlib`_ plot.
Setting style options
+++++++++++++++++++++
The default marker for `~astroplan.plots.plot_sky` is a circle and the
default label (should you choose to display a legend) is the name contained
in the `~astroplan.Target` object. You can change the *marker*, *color*,
*label* and other plotting properties by setting the *style_kwargs* option,
in the same way shown for the :ref:`time-dependent plots <plots_style>`.
One situation in which this is particularly useful is the plotting of guide
positions, such as a few familiar stars or any body used in calibrating your
telescope. You can also use this feature to set apart different types of targets
(e.g., high-priority, candidates for observing run, etc.).
See the `Matplotlib`_ documentation for information on plotting styles in
scatter plots.
Changing coordinate defaults
++++++++++++++++++++++++++++
As seen in the above examples, the default position of North is at the top of
the plot, and South at the bottom, with azimuth increasing counter-clockwise
(CCW), putting East to the left, and West to the right.
You can't change the position of North or South (either in the actual plotting
of the data, or the labels), but you can "flip" East/West by changing the
direction in which azimuth increases via the *north_to_east_ccw* option:
.. code-block:: python
>>> import matplotlib.pyplot as plt
>>> from astroplan.plots import plot_sky
>>> guide_style = {'marker': '*'}
>>> plot_sky(polaris, observer, observe_time, snorth_to_east_ccw=False, style_kwargs=guide_style)
>>> plot_sky(altair, observer, observe_time, north_to_east_ccw=False)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_sky
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('02h31m49.09s', '+89d15m50.8s', frame='icrs')
polaris = FixedTarget(name='Polaris', coord=coordinates)
coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
altair = FixedTarget(name='Altair', coord=coordinates)
import numpy as np
observe_time = Time('2000-03-15 17:00:00') + np.linspace(-4, 5, 10)*u.hour
guide_style = {'marker': '*'}
plot_sky(polaris, observer, observe_time, north_to_east_ccw=False,
style_kwargs=guide_style)
plot_sky(altair, observer, observe_time, north_to_east_ccw=False)
# Note that you don't need this code block to produce the plot.
# It reduces the plot size for the documentation.
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])
plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
plt.tight_layout()
plt.show()
Some observatories may need to offset or rotate the azimuth labels due to their
particular telescope setup.
To do this, set *az_label_offset* equal to the number of degrees by which you
wish to rotate the labels. By default, *az_label_offset* is set to 0 degrees.
A positive offset is in the same direction as azimuth increase (see the
*north_to_east_ccw* option):
.. code-block:: python
>>> import matplotlib.pyplot as plt
>>> from astroplan.plots import plot_sky
>>> guide_style = {'marker': '*'}
>>> plot_sky(polaris, observer, observe_time, style_kwargs=guide_style, az_label_offset=180.0*u.deg)
>>> plot_sky(altair, observer, observe_time, az_label_offset=180.0*u.deg)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_sky
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('02h31m49.09s', '+89d15m50.8s', frame='icrs')
polaris = FixedTarget(name='Polaris', coord=coordinates)
coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
altair = FixedTarget(name='Altair', coord=coordinates)
import numpy as np
observe_time = Time('2000-03-15 17:00:00') + np.linspace(-4, 5, 10)*u.hour
guide_style = {'marker': '*'}
plot_sky(polaris, observer, observe_time, style_kwargs=guide_style,
az_label_offset=180.0*u.deg)
plot_sky(altair, observer, observe_time, az_label_offset=180.0*u.deg)
# Note that you don't need this code block to produce the plot.
# It reduces the plot size for the documentation.
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])
plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
plt.tight_layout()
plt.show()
.. note::
The *az_label_offset* option does not rotate the actual positions on the
plot, but simply the theta grid labels (which are drawn regardless of
gridline presence). Since labels are drawn with every call to
`~astroplan.plots.plot_sky`, we recommend you use the same
*az_label_offset* argument for every target on the same plot.
It is not advised that most users change this option, as it may **appear**
that your alt/az data does not coincide with the definition of altazimuth
(local horizon) coordinate system.
You can turn off the grid lines by setting the *grid* option to *False*:
.. code-block:: python
>>> import matplotlib.pyplot as plt
>>> from astroplan.plots import plot_sky
>>> guide_style = {'marker': '*'}
>>> plot_sky(polaris, observer, observe_time, style_kwargs=guide_style, grid=False)
>>> plot_sky(altair, observer, observe_time, grid=False)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_sky
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('02h31m49.09s', '+89d15m50.8s', frame='icrs')
polaris = FixedTarget(name='Polaris', coord=coordinates)
coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
altair = FixedTarget(name='Altair', coord=coordinates)
import numpy as np
observe_time = Time('2000-03-15 17:00:00') + np.linspace(-4, 5, 10)*u.hour
guide_style = {'marker': '*'}
plot_sky(polaris, observer, observe_time, style_kwargs=guide_style,
grid=False)
plot_sky(altair, observer, observe_time, grid=False)
# Note that you don't need this code block to produce the plot.
# It reduces the plot size for the documentation.
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])
plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
plt.tight_layout()
plt.show()
.. note::
Since grids are redrawn with every call to `~astroplan.plots.plot_sky`,
you must set ``grid=False`` for every target in the same plot.
Other tweaks
++++++++++++
You can easily change other plot attributes by acting on the returned
`matplotlib.axes.Axes` object or via `matplotlib.pyplot` calls (e.g.,
``plt.figure``, ``plt.rc``, etc.).
For instance, you can increase the size of your plot and its font:
.. code-block:: python
>>> # Set the figure size/font before you issue the plotting command.
>>> plt.figure(figsize=(8,6))
>>> plt.rc('font', size=14)
>>> plot_sky(polaris, observer, observe_time)
>>> plot_sky(altair, observer, observe_time)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
>>> plt.show()
>>> # Change font size back to default once done plotting.
>>> plt.rc('font', size=12)
:ref:`Return to Top <plots>`
Miscellaneous
+++++++++++++
The easiest way to reuse the `~matplotlib.axes.Axes` object that is the base of
your plots is to just let `astroplan`'s plotting functions take care of it in
the background. You do, however, have the option of explicitly passing in a
named axis, assuming that you have created the appropriate type for the
particular plot you want.
We can explicitly give a name to the `~matplotlib.axes.Axes` object returned
by `~astroplan.plots.plot_sky` when plotting Polaris and reuse it to plot
Altair:
.. code-block:: python
>>> my_ax = plot_sky(polaris, observer, observe_time, style_kwargs=guide_style)
>>> plot_sky(altair, observer, observe_time, my_ax)
We can also create a `~matplotlib.axes.Axes` object entirely outside of
`~astroplan.plots.plot_sky`, then pass it in:
.. code-block:: python
>>> my_ax = plt.gcf().add_subplot(projection='polar')
>>> plot_sky(polaris, observer, observe_time, my_ax)
Passing in named `matplotlib.axes.Axes` objects comes in handy when you want to
make multiple plots:
.. code-block:: python
>>> from astroplan.plots import plot_sky
>>> import matplotlib.pyplot as plt
>>> my_ax = plot_sky(polaris, observer, observe_time, style_kwargs=polaris_style)
>>> plot_sky(altair, observer, observe_time, my_ax, style_kwargs=altair_style)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.3, 0.5))
>>> # Note that this plt.show (or another action, such as saving a figure) is critical in maintaining two separate plots.
>>> plt.show()
>>> other_ax = plot_sky(vega, observer, observe_time, style_kwargs=vega_style)
>>> plot_sky(deneb, observer, observe_time, other_ax, style_kwargs=deneb_style)
>>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
>>> plt.show()
.. plot::
import matplotlib.pyplot as plt
import astropy.units as u
from astropy.coordinates import EarthLocation, SkyCoord
from pytz import timezone
from astropy.time import Time
from astroplan import Observer
from astroplan import FixedTarget
from astroplan.plots import plot_sky
# Set up Observer, Target and observation time objects.
longitude = '-155d28m48.900s'
latitude = '+19d49m42.600s'
elevation = 4163 * u.m
location = EarthLocation.from_geodetic(longitude, latitude, elevation)
observer = Observer(name='Subaru Telescope',
location=location,
pressure=0.615 * u.bar,
relative_humidity=0.11,
temperature=0 * u.deg_C,
timezone=timezone('US/Hawaii'),
description="Subaru Telescope on Maunakea, Hawaii")
coordinates = SkyCoord('02h31m49.09s', '+89d15m50.8s', frame='icrs')
polaris = FixedTarget(name='Polaris', coord=coordinates)
coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
altair = FixedTarget(name='Altair', coord=coordinates)
altair_style = {'color': 'b'}
coordinates = SkyCoord('18h36m56.5s', '+38d47m06.6s', frame='icrs')
vega = FixedTarget(name='Vega', coord=coordinates)
vega_style = {'color': 'g'}
coordinates = SkyCoord('20h41m25.9s', '+45d16m49.3s', frame='icrs')
deneb = FixedTarget(name='Deneb', coord=coordinates)
deneb_style = {'color': 'r'}
observe_time = Time(['2000-03-15 15:30:00'])
my_ax = plot_sky(polaris, observer, observe_time)
plot_sky(altair, observer, observe_time, my_ax, style_kwargs=altair_style)
# Note that you don't need this code block to produce the plot.
# It reduces the plot size for the documentation.
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])
plt.legend(loc='center left', bbox_to_anchor=(1.3, 0.5))
# Note that this plt.show (or another action, such as saving a figure) is
# critical in maintaining two separate plots.
plt.tight_layout()
plt.show()
other_ax = plot_sky(vega, observer, observe_time, style_kwargs=vega_style)
plot_sky(deneb, observer, observe_time, other_ax, style_kwargs=deneb_style)
# Note that you don't need this code block to produce the plot.
# It reduces the plot size for the documentation.
ax = plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])
plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
plt.tight_layout()
plt.show()
:ref:`Return to Top <plots>`
.. _finder_image:
Finder Chart/Image
==================
`astroplan` includes a function for generating quick finder images from
Python, `~astroplan.plots.plot_finder_image`, by querying for images from
sky surveys centered on a `~astroplan.FixedTarget`. This function depends on
`astroquery`_ (in addition to `Matplotlib`_). In this example, we'll quickly
make a finder image centered on The Crab Nebula (M1):
.. code-block:: python
>>> from astroplan.plots import plot_finder_image
>>> from astroplan import FixedTarget
>>> import matplotlib.pyplot as plt
>>> messier1 = FixedTarget.from_name("M1")
>>> ax, hdu = plot_finder_image(messier1)
>>> plt.show()
.. plot::
from astroplan import FixedTarget
from astroplan.plots import plot_finder_image
import matplotlib.pyplot as plt
messier1 = FixedTarget.from_name("M1")
ax, hdu = plot_finder_image(messier1)
plt.tight_layout()
plt.show()
:ref:`Return to Top <plots>`
|