File: summer_triangle.rst

package info (click to toggle)
astroplan 0.10.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,024 kB
  • sloc: python: 4,411; makefile: 126
file content (577 lines) | stat: -rw-r--r-- 19,085 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
.. _summer_triangle_tutorial:

.. todo::

    Add section on moon phases, illumination fraction, etc.

    Replace target construction with easier site name function.

    Update with constraints when available?

    Show users how to create/use Time objects in their own timezone.

*****************************
Observing the Summer Triangle
*****************************

.. note::

    Your calculated rise/set and other times may differ slightly from those in
    this tutorial, on the order of ~1 second.  This is a normal variance in
    precision due to several factors, including varying :ref:`IERS tables <iers>`
    and machine architecture.

Contents
========

* :ref:`summer_triangle-defining_objects`

* :ref:`summer_triangle-observable`

* :ref:`summer_triangle-optimal_observation`

* :ref:`summer_triangle-sky_charts`

.. _summer_triangle-defining_objects:

Defining Objects
================

Say we want to look at the Summer Triangle (Altair, Deneb, and Vega) using the
Subaru Telescope.

First, we define our `~astroplan.Observer` object:

.. code-block:: python

    >>> from astroplan import Observer

    >>> subaru = Observer.at_site('subaru')

Then, we define our `~astroplan.FixedTarget`'s, since the Summer Triangle is
fixed with respect to the celestial sphere (if we ignore the relatively small
proper motion). We will use the `~astroplan.FixedTarget.from_name` class method,
which queries the CDS name resolver for your target's coordinates (giving you
the power of SIMBAD!):

.. code-block:: python

    >>> from astropy.coordinates import SkyCoord
    >>> from astroplan import FixedTarget

    >>> altair = FixedTarget.from_name('Altair')
    >>> vega = FixedTarget.from_name('Vega')


For objects that can't be resolved with `~astroplan.FixedTarget.from_name`, you
can enter coordinates manually:

.. code-block:: python

    >>> coordinates = SkyCoord('20h41m25.9s', '+45d16m49.3s', frame='icrs')
    >>> deneb = FixedTarget(name='Deneb', coord=coordinates)

We also have to define a `~astropy.time.Time` (in UTC) at which we wish to
observe.  Here, we pick 2AM local time, which is noon UTC during the
summer::

    >>> from astropy.time import Time

    >>> time = Time('2015-06-16 12:00:00')

:ref:`Return to Top <summer_triangle_tutorial>`

.. _summer_triangle-observable:

Observable?
===========

Next, it would be handy to know if our targets are visible from Subaru at the
time we settled on.  In other words--are they above the horizon while the Sun
is down?

.. code-block:: python

    >>> subaru.target_is_up(time, altair)
    True

    >>> subaru.target_is_up(time, vega)
    True

    >>> subaru.target_is_up(time, deneb)
    True

...They are!

What if we weren't sure if the Sun is down at this time:

.. code-block:: python

    >>> subaru.is_night(time)
    True

...It is!

However, we may want to find a window of time for tonight during which all
three of our targets are above the horizon *and* the Sun is below the horizon
(let's worry about light pollution from the Moon later).

Let's define the window of time during which all targets are above the horizon.

Note that because of the precision limitations of rise/set calculations
(altitudes at these times won't equal precisely zero, but will be off by a few
arc seconds), we'll manually adjust rise/set times by a few minutes.

.. code-block:: python

    >>> import numpy as np
    >>> import astropy.units as u

    >>> altair_rise = subaru.target_rise_time(time, altair) + 5*u.minute
    >>> altair_set = subaru.target_set_time(time, altair) - 5*u.minute

    >>> vega_rise = subaru.target_rise_time(time, vega) + 5*u.minute
    >>> vega_set = subaru.target_set_time(time, vega) - 5*u.minute

    >>> deneb_rise = subaru.target_rise_time(time, deneb) + 5*u.minute
    >>> deneb_set = subaru.target_set_time(time, deneb) - 5*u.minute

    >>> all_up_start = np.max([altair_rise, vega_rise, deneb_rise])
    >>> all_up_end = np.min([altair_set, vega_set, deneb_set])

Now, let's find sunset and sunrise for tonight (and confirm that they are
indeed those for tonight):

.. code-block:: python

    >>> sunset_tonight = subaru.sun_set_time(time, which='nearest')

    >>> sunset_tonight.iso # doctest: +SKIP
    '2015-06-16 04:59:11.267'

This is '2015-06-15 18:59:11.267' in the Hawaii time zone (that's where Subaru
is).

.. code-block:: python

    >>> sunrise_tonight = subaru.sun_rise_time(time, which='nearest')

    >>> sunrise_tonight.iso # doctest: +SKIP
    '2015-06-16 15:47:35.822'

This is '2015-06-16 05:47:35.822' Hawaii time.

Sunset and sunrise check out, so now we define the limits of our observation
window:

.. code-block:: python

    >>> start = np.max([sunset_tonight, all_up_start])
    >>> start.iso # doctest: +SKIP
    '2015-06-16 06:28:40.126'

    >>> end = np.min([sunrise_tonight, all_up_end])
    >>> end.iso # doctest: +SKIP
    '2015-06-16 15:47:35.822'

So, our targets will be visible (as we've defined it above) from
'2015-06-15 20:28:40.126' to '2015-06-16 05:47:35.822' Hawaii time.  Depending
on our observation goals, this window of time may be good enough for preliminary
planning, or we may want to optimize our observational conditions.  If the
latter is the case, go on to the Optimal Observation Time section (immediately
below).

:ref:`Return to Top <summer_triangle_tutorial>`

.. _summer_triangle-optimal_observation:

Optimal Observation Time
========================

There are a few things we can look at to find the best time to observe our
targets on a given night.

Airmass
-------

To get a general idea of our targets' airmass on the night of observation, we
can plot it over the course of the night (for more on plotting see :doc:`plots`):

.. code-block:: python

    >>> from astroplan.plots import plot_airmass # doctest: +SKIP
    >>> import matplotlib.pyplot as plt # doctest: +SKIP

    >>> plot_airmass(altair, subaru, time) # doctest: +SKIP
    >>> plot_airmass(vega, subaru, time) # doctest: +SKIP
    >>> plot_airmass(deneb, subaru, time)  # doctest: +SKIP

    >>> plt.legend(loc=1, bbox_to_anchor=(1, 1)) # doctest: +SKIP
    >>> plt.show() # doctest: +SKIP

.. plot::

    import astropy.units as u
    from astropy.coordinates import EarthLocation, SkyCoord
    import matplotlib.pyplot as plt
    from pytz import timezone

    from astroplan import Observer, FixedTarget
    from astroplan.plots import plot_airmass

    longitude = '-155d28m48.900s'
    latitude = '+19d49m42.600s'
    elevation = 4163 * u.m
    location = EarthLocation.from_geodetic(longitude, latitude, elevation)

    subaru = Observer(name='Subaru Telescope',
                      location=location,
                      timezone=timezone('US/Hawaii'),
                      description="Subaru Telescope on Maunakea, Hawaii")

    coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
    altair = FixedTarget(name='Altair', coord=coordinates)

    coordinates = SkyCoord('18h36m56.5s', '+38d47m06.6s', frame='icrs')
    vega = FixedTarget(name='Vega', coord=coordinates)

    coordinates = SkyCoord('20h41m25.9s', '+45d16m49.3s', frame='icrs')
    deneb = FixedTarget(name='Deneb', coord=coordinates)

    from astropy.time import Time

    time = Time('2015-06-16 12:00:00')

    plot_airmass(altair, subaru, time)
    plot_airmass(vega, subaru, time)
    plot_airmass(deneb, subaru, time)

    # Note that you don't need this code block to produce the plot.
    # It reduces the plot size for the documentation.
    ax = plt.gca()
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height * 0.8])

    plt.legend(loc=1, bbox_to_anchor=(1.35, 1))
    plt.tight_layout()
    plt.show()

We want a minimum airmass when observing, and it looks like sometime between
9:00 and 15:00 UTC (or 23:00 on the 15th to 5:00 on the 16th, US/Hawaii) would
be the best time to observe all three targets.

However, if we want to define a more specific time window based on airmass, we
can calculate this quantity directly. To get airmass measurements, we need to
use the ``AltAz`` frame:

.. code-block:: python

    >>> subaru.altaz(time, altair).secz # doctest: +SKIP
    <Quantity 1.0302347952130682>

    >>> subaru.altaz(time, vega).secz # doctest: +SKIP
    <Quantity 1.0690421636016616>

    >>> subaru.altaz(time, deneb).secz # doctest: +SKIP
    <Quantity 1.167753811648361>

Behind the scenes here, ``subaru.altaz(time, altair)`` is actually creating
an `~astropy.coordinates.AltAz` object in the ``AltAz`` frame, so if you
know how to work with `~astropy.coordinates` objects, you can do lots more
than just computing airmass.

Parallactic Angle
-----------------

To get a general idea of our targets' parallactic angle on the night of
observation, we can make another plot (again, see :doc:`plots` for more on
customizing plots and the like):

.. code-block:: python

    >>> import matplotlib.pyplot as plt # doctest: +SKIP
    >>> from astroplan.plots import plot_parallactic # doctest: +SKIP

    >>> plot_parallactic(altair, subaru, time) # doctest: +SKIP
    >>> plot_parallactic(vega, subaru, time) # doctest: +SKIP
    >>> plot_parallactic(deneb, subaru, time) # doctest: +SKIP

    >>> plt.legend(loc=2) # doctest: +SKIP
    >>> plt.show() # doctest: +SKIP

.. plot::

    import astropy.units as u
    from astropy.coordinates import EarthLocation
    from pytz import timezone
    from astroplan import Observer

    longitude = '-155d28m48.900s'
    latitude = '+19d49m42.600s'
    elevation = 4163 * u.m
    location = EarthLocation.from_geodetic(longitude, latitude, elevation)

    subaru = Observer(name='Subaru Telescope',
                   location=location,
                   timezone=timezone('US/Hawaii'),
                   description="Subaru Telescope on Maunakea, Hawaii")

    from astropy.coordinates import SkyCoord
    from astroplan import FixedTarget

    coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
    altair = FixedTarget(name='Altair', coord=coordinates)

    coordinates = SkyCoord('18h36m56.5s', '+38d47m06.6s', frame='icrs')
    vega = FixedTarget(name='Vega', coord=coordinates)

    coordinates = SkyCoord('20h41m25.9s', '+45d16m49.3s', frame='icrs')
    deneb = FixedTarget(name='Deneb', coord=coordinates)

    from astropy.time import Time

    time = Time('2015-06-16 12:00:00')

    from astroplan.plots import plot_parallactic
    import matplotlib.pyplot as plt

    plot_parallactic(altair, subaru, time)
    plot_parallactic(vega, subaru, time)
    plot_parallactic(deneb, subaru, time)

    plt.legend(loc=2)
    plt.tight_layout()
    plt.show()

We can also calculate the parallactic angle directly:

.. code-block:: python

    >>> subaru.parallactic_angle(time, altair) # doctest: +SKIP
    <Angle -0.6404957821112053 rad>

    >>> subaru.parallactic_angle(time, vega) # doctest: +SKIP
    <Angle -0.46542183982024 rad>

    >>> subaru.parallactic_angle(time, deneb) # doctest: +SKIP
    <Angle 0.7297067855978494 rad>

The `~astropy.coordinates.Angle` objects resulting from the calls to
``parallactic_angle()`` are subclasses of the `~astropy.units.Quantity`
class, so they can do everything a `~astropy.units.Quantity` can do -
basically they work like numbers with attached units, and keep track of
units so you don't have to.

For more on the many things you can do with these, take a look at the
`Astropy <https://astropy.org>`__ documentation or tutorials.  For now the most useful thing is to
know is that ``angle.degree``, ``angle.hourangle``, and ``angle.radian``
give you back Python floats (or `numpy` arrays) for the angle in degrees,
hours, or radians.

The Moon
--------

If you need to take the Moon into account when observing, you may want to know
when it rises, sets, what phase it's in, etc. Let's first find out if the Moon
is out during the time we defined earlier:

.. code-block:: python

    >>> subaru.moon_rise_time(time) # doctest: +SKIP
    <Time object: scale='utc' format='jd' value=2457190.1696768994>

    >>> subaru.moon_set_time(time) # doctest: +SKIP
    <Time object: scale='utc' format='jd' value=2457189.684134357>

We could also look at the Moon's alt/az coordinates:

.. code-block:: python

    >>> subaru.moon_altaz(time).alt # doctest: +SKIP
    <Latitude -45.08860929634166 deg>

    >>> subaru.moon_altaz(time).az # doctest: +SKIP
    <Longitude 34.605498354422686 deg>

It looks like the Moon is well below the horizon at the time we picked before,
but we should check to see if it will be out during the window of time our
targets will be visible (again--as defined at the beginning of this tutorial):

.. code-block:: python

    >>> visible_time = start + (end - start)*np.linspace(0, 1, 20)

    >>> subaru.moon_altaz(visible_time).alt # doctest: +SKIP
    <Latitude [-25.21127325,-30.68088873,-35.82145644,-40.53415037,
               -44.68898859,-48.12296182,-50.64971858,-52.08946099,
               -52.31849772,-51.31548444,-49.17038499,-46.04862654,
               -42.13887599,-37.61479774,-32.61875342,-27.26048709,
               -21.62215227,-15.76463668, -9.73313141, -2.19408792] deg>


Looks like the Moon will be below the horizon during the entire time.

:ref:`Return to Top <summer_triangle_tutorial>`

.. _summer_triangle-sky_charts:

Sky Charts
==========

Now that we've determined the best times to observe our targets on the night in
question, let's take a look at the positions of our objects in the sky.

We can use `~astroplan.plots.plot_sky` as a sanity check on our target's
positions or even just to better visualize our observation run.

Let's take the ``start`` and ``end`` of the time window we determined
:ref:`earlier <summer_triangle-observable>` (using the most basic definition
of "visible" targets, above the horizon when the sun is down), and see where our
targets lay in the sky:

.. code-block:: python

    >>> from astroplan.plots import plot_sky
    >>> import matplotlib.pyplot as plt  # doctest: +SKIP

    >>> altair_style = {'color': 'r'}
    >>> deneb_style = {'color': 'g'}

    >>> plot_sky(altair, subaru, start, style_kwargs=altair_style)  # doctest: +SKIP
    >>> plot_sky(vega, subaru, start)  # doctest: +SKIP
    >>> plot_sky(deneb, subaru, start, style_kwargs=deneb_style)  # doctest: +SKIP

    >>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))  # doctest: +SKIP
    >>> plt.show()  # doctest: +SKIP

    >>> plot_sky(altair, subaru, end, style_kwargs=altair_style)  # doctest: +SKIP
    >>> plot_sky(vega, subaru, end)  # doctest: +SKIP
    >>> plot_sky(deneb, subaru, end, style_kwargs=deneb_style)  # doctest: +SKIP

    >>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))  # doctest: +SKIP
    >>> plt.show()  # doctest: +SKIP

.. plot::


    from astropy.coordinates import EarthLocation, SkyCoord
    from astropy.time import Time
    import astropy.units as u
    import matplotlib.pyplot as plt
    from pytz import timezone

    from astroplan import Observer, FixedTarget
    from astroplan.plots import plot_sky

    longitude = '-155d28m48.900s'
    latitude = '+19d49m42.600s'
    elevation = 4163 * u.m
    location = EarthLocation.from_geodetic(longitude, latitude, elevation)

    subaru = Observer(name='Subaru Telescope',
                      location=location,
                      timezone=timezone('US/Hawaii'),
                      description="Subaru Telescope on Maunakea, Hawaii")

    coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
    altair = FixedTarget(name='Altair', coord=coordinates)

    coordinates = SkyCoord('18h36m56.5s', '+38d47m06.6s', frame='icrs')
    vega = FixedTarget(name='Vega', coord=coordinates)

    coordinates = SkyCoord('20h41m25.9s', '+45d16m49.3s', frame='icrs')
    deneb = FixedTarget(name='Deneb', coord=coordinates)

    start = Time('2015-06-16 06:28:40.126')
    end = Time('2015-06-16 15:47:35.822')

    altair_style = {'color': 'r'}
    deneb_style = {'color': 'g'}

    plot_sky(altair, subaru, start, style_kwargs=altair_style)
    plot_sky(vega, subaru, start)
    plot_sky(deneb, subaru, start, style_kwargs=deneb_style)

    # Note that you don't need this code block to produce the plot.
    # It reduces the plot size for the documentation.
    ax = plt.gca()
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])

    plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
    plt.tight_layout()
    plt.show()

    plot_sky(altair, subaru, end, style_kwargs=altair_style)
    plot_sky(vega, subaru, end)
    plot_sky(deneb, subaru, end, style_kwargs=deneb_style)

    # Note that you don't need this code block to produce the plot.
    # It reduces the plot size for the documentation.
    ax = plt.gca()
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.75, box.height * 0.75])

    plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))
    plt.tight_layout()
    plt.show()

We can also show how our targets move over time during the night in question::

    >>> time_window = start + (end - start) * np.linspace(0, 1, 10)

    >>> plot_sky(altair, subaru, time_window, style_kwargs=altair_style)  # doctest: +SKIP
    >>> plot_sky(vega, subaru, time_window)  # doctest: +SKIP
    >>> plot_sky(deneb, subaru, time_window, style_kwargs=deneb_style)  # doctest: +SKIP

    >>> plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))  # doctest: +SKIP
    >>> plt.show()  # doctest: +SKIP

.. plot::

    import numpy as np
    from astropy.coordinates import EarthLocation, SkyCoord
    from astropy.time import Time
    import astropy.units as u
    import matplotlib.pyplot as plt
    from pytz import timezone

    from astroplan import Observer, FixedTarget
    from astroplan.plots import plot_sky

    longitude = '-155d28m48.900s'
    latitude = '+19d49m42.600s'
    elevation = 4163 * u.m
    location = EarthLocation.from_geodetic(longitude, latitude, elevation)

    subaru = Observer(name='Subaru Telescope',
                      location=location,
                      timezone=timezone('US/Hawaii'),
                      description="Subaru Telescope on Maunakea, Hawaii")

    coordinates = SkyCoord('19h50m47.6s', '+08d52m12.0s', frame='icrs')
    altair = FixedTarget(name='Altair', coord=coordinates)

    coordinates = SkyCoord('18h36m56.5s', '+38d47m06.6s', frame='icrs')
    vega = FixedTarget(name='Vega', coord=coordinates)

    coordinates = SkyCoord('20h41m25.9s', '+45d16m49.3s', frame='icrs')
    deneb = FixedTarget(name='Deneb', coord=coordinates)

    start = Time('2015-06-16 06:28:40.126')
    end = Time('2015-06-16 15:47:35.822')

    time_window = start + (end - start) * np.linspace(0, 1, 10)

    altair_style = {'color': 'r'}
    deneb_style = {'color': 'g'}

    plot_sky(altair, subaru, time_window, style_kwargs=altair_style)
    plot_sky(vega, subaru, time_window)
    plot_sky(deneb, subaru, time_window, style_kwargs=deneb_style)

    plt.legend(loc='center left', bbox_to_anchor=(1.25, 0.5))

    plt.tight_layout()

    plt.show()