File: observer.py

package info (click to toggle)
astroplan 0.2-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,204 kB
  • ctags: 790
  • sloc: python: 4,388; makefile: 131
file content (1682 lines) | stat: -rw-r--r-- 64,589 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

# Standard library
import datetime
import warnings

# Third-party
from astropy.coordinates import (EarthLocation, SkyCoord, AltAz, get_sun,
                                 get_moon, Angle, Latitude, Longitude,
                                 UnitSphericalRepresentation)
from astropy.extern.six import string_types
from astropy.utils import isiterable
from astropy.utils.compat.numpy import broadcast_to
import astropy.units as u
from astropy.time import Time
from astropy.utils import isiterable
import numpy as np
import pytz

# Package
from .exceptions import TargetNeverUpWarning, TargetAlwaysUpWarning
from .moon import moon_illumination, moon_phase_angle
from .target import get_skycoord


__all__ = ["Observer", "MAGIC_TIME"]

MAGIC_TIME = Time(-999, format='jd')


def _generate_24hr_grid(t0, start, end, N, for_deriv=False):
    """
    Generate a nearly linearly spaced grid of time durations.

    The midpoints of these grid points will span times from ``t0``+``start``
    to ``t0``+``end``, including the end points, which is useful when taking
    numerical derivatives.

    Parameters
    ----------
    t0 : `~astropy.time.Time`
        Time queried for, grid will be built from or up to this time.

    start : float
        Number of days before/after ``t0`` to start the grid.

    end : float
        Number of days before/after ``t0`` to end the grid.

    N : int
        Number of grid points to generate

    for_deriv : bool
        Generate time series for taking numerical derivative (modify
        bounds)?

    Returns
    -------
    `~astropy.time.Time`
    """

    if for_deriv:
        time_grid = np.concatenate([[start - 1/(N-1)],
                                    np.linspace(start, end, N)[1:-1],
                                    [end + 1/(N-1)]])*u.day
    else:
        time_grid = np.linspace(start, end, N)*u.day

    # broadcast so grid is first index, and remaining shape of t0
    # falls in later indices. e.g. if t0 is shape (10), time_grid
    # will be shape (N, 10). If t0 is shape (5, 2), time_grid is (N, 5, 2)
    while time_grid.ndim <= t0.ndim:
        time_grid = time_grid[:, np.newaxis]
    # we want to avoid 1D grids since we always want to broadcast against targets
    if time_grid.ndim == 1:
        time_grid = time_grid[:, np.newaxis]
    return t0 + time_grid


class Observer(object):

    """
    A container class for information about an observer's location and
    environment.

    Examples
    --------
    We can create an observer at Subaru Observatory in Hawaii two ways. First,
    locations for some observatories are stored in astroplan, and these can be
    accessed by name, like so:

    >>> from astroplan import Observer
    >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii")

    To find out which observatories can be accessed by name, check out
    `~astropy.coordinates.EarthLocation.get_site_names`.

    Next, you can initialize an observer by specifying the location with
    `~astropy.coordinates.EarthLocation`:

    >>> from astropy.coordinates import EarthLocation
    >>> import astropy.units as u
    >>> location = EarthLocation.from_geodetic(-155.4761*u.deg, 19.825*u.deg,
    ...                                        4139*u.m)
    >>> subaru = Observer(location=location, name="Subaru", timezone="US/Hawaii")

    You can also create an observer without an
    `~astropy.coordinates.EarthLocation`:

    >>> from astroplan import Observer
    >>> import astropy.units as u
    >>> subaru = Observer(longitude=-155.4761*u.deg, latitude=19.825*u.deg,
    ...                   elevation=0*u.m, name="Subaru", timezone="US/Hawaii")

    """
    @u.quantity_input(elevation=u.m)
    def __init__(self, location=None, timezone='UTC', name=None, latitude=None,
                 longitude=None, elevation=0*u.m, pressure=None,
                 relative_humidity=None, temperature=None, description=None):
        """
        Parameters
        ----------
        location : `~astropy.coordinates.EarthLocation`
            The location (latitude, longitude, elevation) of the observatory.

        timezone : str or `datetime.tzinfo` (optional)
            The local timezone to assume. If a string, it will be passed
            through ``pytz.timezone()`` to produce the timezone object.

        name : str
            A short name for the telescope, observatory or location.

        latitude : float, str, `~astropy.units.Quantity` (optional)
            The latitude of the observing location. Should be valid input for
            initializing a `~astropy.coordinates.Latitude` object.

        longitude : float, str, `~astropy.units.Quantity` (optional)
            The longitude of the observing location. Should be valid input for
            initializing a `~astropy.coordinates.Longitude` object.

        elevation : `~astropy.units.Quantity` (optional), default = 0 meters
            The elevation of the observing location, with respect to sea
            level. Defaults to sea level.

        pressure : `~astropy.units.Quantity` (optional)
            The ambient pressure. Defaults to zero (i.e. no atmosphere).

        relative_humidity : float (optional)
            The ambient relative humidity.

        temperature : `~astropy.units.Quantity` (optional)
            The ambient temperature.

        description : str (optional)
            A short description of the telescope, observatory or observing
            location.
        """

        self.name = name
        self.pressure = pressure
        self.temperature = temperature
        self.relative_humidity = relative_humidity

        # If lat/long given instead of EarthLocation, convert them
        # to EarthLocation
        if location is None and (latitude is not None and
                                 longitude is not None):
            self.location = EarthLocation.from_geodetic(longitude, latitude,
                                                        elevation)

        elif isinstance(location, EarthLocation):
            self.location = location

        else:
            raise TypeError('Observatory location must be specified with '
                            'either (1) an instance of '
                            'astropy.coordinates.EarthLocation or (2) '
                            'latitude and longitude in degrees as '
                            'accepted by astropy.coordinates.Latitude and '
                            'astropy.coordinates.Latitude.')

        # Accept various timezone inputs, default to UTC
        if isinstance(timezone, datetime.tzinfo):
            self.timezone = timezone
        elif isinstance(timezone, string_types):
            self.timezone = pytz.timezone(timezone)
        else:
            raise TypeError('timezone keyword should be a string, or an '
                            'instance of datetime.tzinfo')

    def __repr__(self):
        """
        String representation of the `~astroplan.Observer` object.

        Examples
        --------

        >>> from astroplan import Observer
        >>> keck = Observer.at_site("Keck", timezone="US/Hawaii")
        >>> print(keck)                                    # doctest: +FLOAT_CMP
        <Observer: name='Keck',
            location (lon, lat, el)=(-155.478333333 deg, 19.8283333333 deg, 4160.0 m),
            timezone=<DstTzInfo 'US/Hawaii' LMT-1 day, 13:29:00 STD>>
        """
        class_name = self.__class__.__name__
        attr_names = ['name', 'location', 'timezone', 'pressure', 'temperature',
                      'relative_humidity']
        attr_values = [getattr(self, attr) for attr in attr_names]
        attributes_strings = []
        for name, value in zip(attr_names, attr_values):
            if value is not None:
                # Format location for easy readability
                if name == 'location':
                    formatted_loc = ["{} {}".format(i.value, i.unit)
                                     for i in value.to_geodetic()]
                    attributes_strings.append(
                        "{} (lon, lat, el)=({})".format(name,
                                                        ", ".join(formatted_loc)))
                else:
                    if name != 'name':
                        value = repr(value)
                    else:
                        value = "'{}'".format(value)
                    attributes_strings.append("{}={}".format(name, value))
        return "<{}: {}>".format(class_name, ",\n    ".join(attributes_strings))

    @classmethod
    def at_site(cls, site_name, **kwargs):
        """
        Initialize an `~astroplan.observer.Observer` object with a site name.

        Extra keyword arguments are passed to the `~astroplan.Observer`
        constructor (see `~astroplan.Observer` for available keyword
        arguments).

        Parameters
        ----------
        site_name : str
            Observatory name, must be resolvable with
            `~astropy.coordinates.EarthLocation.get_site_names`.

        Returns
        -------
        `~astroplan.observer.Observer`
            Observer object.

        Examples
        --------
        Initialize an observer at Kitt Peak National Observatory:

        >>> from astroplan import Observer
        >>> import astropy.units as u
        >>> kpno_generic = Observer.at_site('kpno')
        >>> kpno_today = Observer.at_site('kpno', pressure=1*u.bar, temperature=0*u.deg_C)
        """
        name = kwargs.pop('name', site_name)
        if 'location' in kwargs:
            raise ValueError("Location kwarg should not be used if "
                             "initializing an Observer with Observer.at_site()")
        return cls(location=EarthLocation.of_site(site_name), name=name, **kwargs)

    def astropy_time_to_datetime(self, astropy_time):
        """
        Convert the `~astropy.time.Time` object ``astropy_time`` to a
        localized `~datetime.datetime` object.

        Timezones localized with `pytz`_.

        .. _pytz: https://pypi.python.org/pypi/pytz/

        Parameters
        ----------
        astropy_time : `~astropy.time.Time`
            Scalar or list-like.

        Returns
        -------
        `~datetime.datetime`
            Localized datetime, where the timezone of the datetime is
            set by the ``timezone`` keyword argument of the
            `~astroplan.Observer` constructor.

        Examples
        --------
        Convert an astropy time to a localized `~datetime.datetime`:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii")
        >>> astropy_time = Time('1999-12-31 06:00:00')
        >>> print(subaru.astropy_time_to_datetime(astropy_time))
        1999-12-30 20:00:00-10:00
        """

        if not astropy_time.isscalar:
            return [self.astropy_time_to_datetime(t) for t in astropy_time]

        # Convert astropy.time.Time to a UTC localized datetime (aware)
        utc_datetime = pytz.utc.localize(astropy_time.utc.datetime)

        # Convert UTC to local timezone
        return self.timezone.normalize(utc_datetime)

    def datetime_to_astropy_time(self, date_time):
        """
        Convert the `~datetime.datetime` object ``date_time`` to a
        `~astropy.time.Time` object.

        Timezones localized with `pytz`_. If the ``date_time`` is naive, the
        implied timezone is the ``timezone`` structure of ``self``.

        Parameters
        ----------
        date_time : `~datetime.datetime` or list-like

        Returns
        -------
        `~astropy.time.Time`
            Astropy time object (no timezone information preserved).

        Examples
        --------
        Convert a localized `~datetime.datetime` to a `~astropy.time.Time`
        object. Non-localized datetimes are assumed to be UTC.
        <Time object: scale='utc' format='datetime' value=1999-12-31 06:00:00>

        >>> from astroplan import Observer
        >>> import datetime
        >>> import pytz
        >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii")
        >>> hi_date_time = datetime.datetime(2005, 6, 21, 20, 0, 0, 0)
        >>> subaru.datetime_to_astropy_time(hi_date_time)
        <Time object: scale='utc' format='datetime' value=2005-06-22 06:00:00>
        >>> utc_date_time = datetime.datetime(2005, 6, 22, 6, 0, 0, 0,
        ...                                   tzinfo=pytz.timezone("UTC"))
        >>> subaru.datetime_to_astropy_time(utc_date_time)
        <Time object: scale='utc' format='datetime' value=2005-06-22 06:00:00>
        """

        if hasattr(date_time, '__iter__'):
            return Time([self.datetime_to_astropy_time(t) for t in date_time])

        # For timezone-naive datetimes, assign local timezone
        if date_time.tzinfo is None:
            date_time = self.timezone.localize(date_time)

        return Time(date_time, location=self.location)

    def _is_broadcastable(self, shp1, shp2):
        """Test if two shape tuples are broadcastable"""
        if shp1 == shp2:
            return True
        for a, b in zip(shp1[::-1], shp2[::-1]):
            if a == 1 or b == 1 or a == b:
                pass
            else:
                return False
        return True

    def _preprocess_inputs(self, time, target=None, grid=True):
        """
        Preprocess time and target inputs

        This routine takes the inputs for time and target and attempts to
        return a single `~astropy.time.Time` and `~astropy.coordinates.SkyCoord`
        for each argument, which may be non-scalar if necessary.

        time : `~astropy.time.Time` or other (see below)
            The time(s) to use in the calculation. It can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time` object)

        target : `~astroplan.FixedTarget`, `~astropy.coordinates.SkyCoord`, or list
            The target(s) to use in the calculation.

        grid: bool
            If True, and the time and target objects cannot be broadcast,
            the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Useful for grid searches for rise/set times etc.
        """
        # make sure we have a non-scalar time
        if not isinstance(time, Time):
            time = Time(time)

        if target is None:
            return time, None

        # convert any kind of target argument to non-scalar SkyCoord
        target = get_skycoord(target)

        if grid:
            # now we broadcast the targets array so that the first index
            # iterates over targets, any other indices over times
            if not target.isscalar:
                if time.isscalar:
                    target = target[:, np.newaxis]
                while target.ndim <= time.ndim:
                    target = target[:, np.newaxis]
        if not self._is_broadcastable(target.shape, time.shape):
            raise ValueError(
                'Time and Target arguments cannot be broadcast against each other with shapes {} and {}'.format(
                    time.shape, target.shape
                ))
        return time, target

    def altaz(self, time, target=None, obswl=None, grid=True):
        """
        Get an `~astropy.coordinates.AltAz` frame or coordinate.

        If ``target`` is None, generates an altitude/azimuth frame. Otherwise,
        calculates the transformation to that frame for the requested ``target``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            The time at which the observation is taking place. Will be used as
            the ``obstime`` attribute in the resulting frame or coordinate. This
            will be passed in as the first argument to the `~astropy.time.Time`
            initializer, so it can be anything that `~astropy.time.Time` will
            accept (including a `~astropy.time.Time` object)

        target : `~astroplan.FixedTarget`, `~astropy.coordinates.SkyCoord`, or list; defaults to `None` (optional)
            Celestial object(s) of interest. If ``target`` is `None`, return the
            `~astropy.coordinates.AltAz` frame without coordinates.

        obswl : `~astropy.units.Quantity` (optional)
            Wavelength of the observation used in the calculation.

        grid: bool
            If True, and the time and target objects cannot be broadcast,
            the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Useful for grid searches for rise/set times etc.

        Returns
        -------
        `~astropy.coordinates.AltAz`
            If ``target`` is `None`, returns `~astropy.coordinates.AltAz` frame.
            If ``target`` is not `None`, returns the ``target`` transformed to
            the `~astropy.coordinates.AltAz` frame.

        Examples
        --------
        Create an instance of the `~astropy.coordinates.AltAz` frame for an
        observer at Apache Point Observatory at a particular time:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> from astropy.coordinates import SkyCoord
        >>> apo = Observer.at_site("APO")
        >>> time = Time('2001-02-03 04:05:06')
        >>> target = SkyCoord(0*u.deg, 0*u.deg)
        >>> altaz_frame = apo.altaz(time)

        Now transform the target's coordinates to the alt/az frame:

        >>> target_altaz = target.transform_to(altaz_frame) # doctest: +SKIP

        Alternatively, construct an alt/az frame and transform the target to
        that frame all in one step:

        >>> target_altaz = apo.altaz(time, target) # doctest: +SKIP
        """
        if target is not None:
            time, target = self._preprocess_inputs(time, target, grid)

        altaz_frame = AltAz(location=self.location, obstime=time,
                            pressure=self.pressure, obswl=obswl,
                            temperature=self.temperature,
                            relative_humidity=self.relative_humidity)
        if target is None:
            # Return just the frame
            return altaz_frame
        else:
            return target.transform_to(altaz_frame)

    def parallactic_angle(self, time, target):
        """
        Calculate the parallactic angle.

        Parameters
        ----------
        time : `~astropy.time.Time`
            Observation time.

        target : `~astroplan.FixedTarget` or `~astropy.coordinates.SkyCoord` or list
            Target celestial object(s).

        Returns
        -------
        `~astropy.coordinates.Angle`
            Parallactic angle.

        Notes
        -----
        The parallactic angle is the angle between the great circle that
        intersects a celestial object and the zenith, and the object's hour
        circle [1]_.

        .. [1] https://en.wikipedia.org/wiki/Parallactic_angle

        """
        time, coordinate = self._preprocess_inputs(time, target)

        # Eqn (14.1) of Meeus' Astronomical Algorithms
        LST = time.sidereal_time('mean', longitude=self.location.longitude)
        H = (LST - coordinate.ra).radian
        q = np.arctan(np.sin(H) /
                      (np.tan(self.location.latitude.radian) *
                       np.cos(coordinate.dec.radian) -
                       np.sin(coordinate.dec.radian)*np.cos(H)))*u.rad

        return Angle(q)

    # Sun-related methods.
    @u.quantity_input(horizon=u.deg)
    def _horiz_cross(self, t, alt, rise_set, horizon=0*u.degree):
        """
        Find time ``t`` when values in array ``a`` go from
        negative to positive or positive to negative (exclude endpoints)

        ``return_limits`` will return nearest times to zero-crossing.

        Parameters
        ----------
        t : `~astropy.time.Time`
            Grid of N times, any shape. Search grid along first axis, e.g (N, ...)
        alt : `~astropy.units.Quantity`
            Grid of altitudes
            Depending on broadcasting we either have ndim >=3 and
            M targets along first axis, e.g (M, N, ...), or
            ndim = 2 and targets/times in last axis
        rise_set : {"rising",  "setting"}
            Calculate either rising or setting across the horizon
        horizon : float
            Number of degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        Returns the lower and upper limits on the time and altitudes
        of the horizon crossing. The altitude limits have shape (M, ...) and the
        time limits have shape (...). These arrays aresuitable for interpolation
        to find the horizon crossing time.
        """
        # handle different cases by enforcing standard shapes on
        # the altitude grid
        finesse_time_indexes = False
        if alt.ndim == 1:
            raise ValueError('Must supply more at least a 2D grid of altitudes')
        elif alt.ndim == 2:
            # TODO: this test for ndim=2 doesn't work. if times is e.g (2,5)
            # then alt will have ndim=3, but shape (100, 2, 5) so grid
            # is in first index...
            ntargets = alt.shape[1]
            ngrid = alt.shape[0]
            unit = alt.unit
            alt = broadcast_to(alt, (ntargets, ngrid, ntargets)).T
            alt = alt*unit
            extra_dimension_added = True
            if t.shape[1] == 1:
                finesse_time_indexes = True
        else:
            extra_dimension_added = False
        output_shape = (alt.shape[0],) + alt.shape[2:]

        if rise_set == 'rising':
            # Find index where altitude goes from below to above horizon
            condition = (alt[:, :-1, ...] < horizon) * (alt[:, 1:, ...] > horizon)
        elif rise_set == 'setting':
            # Find index where altitude goes from above to below horizon
            condition = (alt[:, :-1, ...] > horizon) * (alt[:, 1:, ...] < horizon)

        noncrossing_indices = np.sum(condition, axis=1, dtype=np.intp) < 1
        alt_lims1 = u.Quantity(np.zeros(output_shape), unit=u.deg)
        alt_lims2 = u.Quantity(np.zeros(output_shape), unit=u.deg)
        jd_lims1 = np.zeros(output_shape)
        jd_lims2 = np.zeros(output_shape)
        if np.any(noncrossing_indices):
            for target_index in set(np.where(noncrossing_indices)[0]):
                warnmsg = ('Target with index {} does not cross horizon={} within '
                           '24 hours'.format(target_index, horizon))
                if (alt[target_index, ...] > horizon).all():
                    warnings.warn(warnmsg, TargetAlwaysUpWarning)
                else:
                    warnings.warn(warnmsg, TargetNeverUpWarning)

            alt_lims1[np.nonzero(noncrossing_indices)] = np.nan
            alt_lims2[np.nonzero(noncrossing_indices)] = np.nan
            jd_lims1[np.nonzero(noncrossing_indices)] = np.nan
            jd_lims2[np.nonzero(noncrossing_indices)] = np.nan

        before_indices = np.array(np.nonzero(condition))
        # we want to add an vector like (0, 1, ...) to get after indices
        array_to_add = np.zeros(before_indices.shape[0])[:, np.newaxis].astype(int)
        array_to_add[1] = 1
        after_indices = before_indices + array_to_add

        al1 = alt[tuple(before_indices)]
        al2 = alt[tuple(after_indices)]
        # slice the time in the same way, but delete the object index
        before_time_index_tuple = np.delete(before_indices, 0, 0)
        after_time_index_tuple = np.delete(after_indices, 0, 0)
        if finesse_time_indexes:
            before_time_index_tuple[1:] = 0
            after_time_index_tuple[1:] = 0
        tl1 = t[tuple(before_time_index_tuple)]
        tl2 = t[tuple(after_time_index_tuple)]

        alt_lims1[tuple(np.delete(before_indices, 1, 0))] = al1
        alt_lims2[tuple(np.delete(before_indices, 1, 0))] = al2
        jd_lims1[tuple(np.delete(before_indices, 1, 0))] = tl1.utc.jd
        jd_lims2[tuple(np.delete(before_indices, 1, 0))] = tl2.utc.jd

        if extra_dimension_added:
            return (alt_lims1.diagonal(), alt_lims2.diagonal(),
                    jd_lims1.diagonal(), jd_lims2.diagonal())
        else:
            return alt_lims1, alt_lims2, jd_lims1, jd_lims2

    @u.quantity_input(horizon=u.deg)
    def _two_point_interp(self, jd_before, jd_after,
                          alt_before, alt_after, horizon=0*u.deg):
        """
        Do linear interpolation between two ``altitudes`` at
        two ``times`` to determine the time where the altitude
        goes through zero.

        Parameters
        ----------
        jd_before : `float`
            JD(UTC) before crossing event

        jd_after : `float`
            JD(UTC) after crossing event

        alt_before : `~astropy.units.Quantity`
            altitude before crossing event

        alt_after : `~astropy.units.Quantity`
            altitude after crossing event

        horizon : `~astropy.units.Quantity`
            Solve for the time when the altitude is equal to
            reference_alt.

        Returns
        -------
        t : `~astropy.time.Time`
            Time when target crosses the horizon

        """
        slope = (alt_after-alt_before)/((jd_after - jd_before)*u.d)
        crossing_jd = (jd_after*u.d - ((alt_after - horizon)/slope))
        crossing_jd[np.isnan(crossing_jd)] = u.d*MAGIC_TIME.jd
        return np.squeeze(Time(crossing_jd, format='jd'))

    def _altitude_trig(self, LST, target):
        """
        Calculate the altitude of ``target`` at local sidereal times ``LST``.

        This method provides a factor of ~3 speed up over calling `altaz`, and
        inherently does *not* take the atmosphere into account.

        Parameters
        ----------
        LST : `~astropy.time.Time`
            Local sidereal times (array)

        target : {`~astropy.coordinates.SkyCoord`, `FixedTarget`} or similar
            Target celestial object's coordinates.

        Returns
        -------
        alt : `~astropy.unit.Quantity`
            Array of altitudes
        """
        LST, target = self._preprocess_inputs(LST, target)
        alt = np.arcsin(np.sin(self.location.latitude.radian) *
                        np.sin(target.dec) +
                        np.cos(self.location.latitude.radian) *
                        np.cos(target.dec) *
                        np.cos(LST.radian - target.ra.radian))
        return alt

    def _calc_riseset(self, time, target, prev_next, rise_set, horizon, N=150):
        """
        Time at next rise/set of ``target``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`
            Position of target or multiple positions of that target
            at multiple times (if target moves, like the Sun)

        prev_next : str - either 'previous' or 'next'
            Test next rise/set or previous rise/set

        rise_set : str - either 'rising' or 'setting'
            Compute prev/next rise or prev/next set

        horizon : `~astropy.units.Quantity`
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        N : int
            Number of altitudes to compute when searching for
            rise or set.

        Returns
        -------
        ret1 : `~astropy.time.Time`
            Time of rise/set
        """
        if not isinstance(time, Time):
            time = Time(time)

        if prev_next == 'next':
            times = _generate_24hr_grid(time, 0, 1, N)
        else:
            times = _generate_24hr_grid(time, -1, 0, N)

        altaz = self.altaz(times, target, grid=True)
        altitudes = altaz.alt

        al1, al2, jd1, jd2 = self._horiz_cross(times, altitudes, rise_set,
                                               horizon)
        return self._two_point_interp(jd1, jd2, al1, al2,
                                      horizon=horizon)

    def _calc_transit(self, time, target, prev_next, antitransit=False, N=150):
        """
        Time at next transit of the meridian of `target`.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`
            Position of target or multiple positions of that target
            at multiple times (if target moves, like the Sun)

        prev_next : str - either 'previous' or 'next'
            Test next rise/set or previous rise/set

        antitransit : bool
            Toggle compute antitransit (below horizon, equivalent to midnight
            for the Sun)

        N : int
            Number of altitudes to compute when searching for
            rise or set.

        Returns
        -------
        ret1 : `~astropy.time.Time`
            Time of transit/antitransit
        """
        # TODO FIX BROADCASTING HERE
        if not isinstance(time, Time):
            time = Time(time)

        if prev_next == 'next':
            times = _generate_24hr_grid(time, 0, 1, N, for_deriv=True)
        else:
            times = _generate_24hr_grid(time, -1, 0, N, for_deriv=True)

        # The derivative of the altitude with respect to time is increasing
        # from negative to positive values at the anti-transit of the meridian
        if antitransit:
            rise_set = 'rising'
        else:
            rise_set = 'setting'

        altaz = self.altaz(times, target, grid=True)
        altitudes = altaz.alt
        if altitudes.ndim > 2:
            # shape is (M, N, ...) where M is targets and N is grid
            d_altitudes = altitudes.diff(axis=1)
        else:
            # shape is (N, M) where M is targets and N is grid
            d_altitudes = altitudes.diff(axis=0)

        dt = Time((times.jd[1:] + times.jd[:-1])/2, format='jd')

        horizon = 0*u.degree  # Find when derivative passes through zero
        al1, al2, jd1, jd2 = self._horiz_cross(dt, d_altitudes,
                                               rise_set, horizon)
        return self._two_point_interp(jd1, jd2, al1, al2,
                                      horizon=horizon)

    def _determine_which_event(self, function, args_dict):
        """
        Run through the next/previous/nearest permutations of the solutions
        to `function(time, ...)`, and return the previous/next/nearest one
        specified by the args stored in args_dict.
        """
        time = args_dict.pop('time', None)
        target = args_dict.pop('target', None)
        which = args_dict.pop('which', None)
        horizon = args_dict.pop('horizon', None)
        rise_set = args_dict.pop('rise_set', None)
        antitransit = args_dict.pop('antitransit', None)

        # Assemble arguments for function, depending on the function.
        if function == self._calc_riseset:
            args = lambda w: (time, target, w, rise_set, horizon)
        elif function == self._calc_transit:
            args = lambda w: (time, target, w, antitransit)
        else:
            raise ValueError('Function {} not supported in '
                             '_determine_which_event.'.format(function))

        if not isinstance(time, Time):
            time = Time(time)

        if which == 'next' or which == 'nearest':
            next_event = function(*args('next'))
            if which == 'next':
                return next_event

        if which == 'previous' or which == 'nearest':
            previous_event = function(*args('previous'))
            if which == 'previous':
                return previous_event

        if which == 'nearest':
            mask = abs(time - previous_event) < abs(time - next_event)
            return Time(np.where(mask, previous_event.utc.jd,
                        next_event.utc.jd), format='jd')


        raise ValueError('"which" kwarg must be "next", "previous" or '
                         '"nearest".')

    @u.quantity_input(horizon=u.deg)
    def target_rise_time(self, time, target, which='nearest', horizon=0*u.degree):
        """
        Calculate rise time.

        Compute time of the next/previous/nearest rise of the ``target``
        object, where "rise" is defined as the time when the ``target``
        transitions from altitudes below the ``horizon`` to above the
        ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : coordinate object (i.e. `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`) or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        `~astropy.time.Time`
            Rise time of target

        Examples
        --------
        Calculate the rise time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_rise_time = keck.target_rise_time(time, target, which="next")
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_rise_time)) # doctest: +FLOAT_CMP
        ISO: 2001-02-04 00:51:23.330, JD: 2451944.53569
        """
        return self._determine_which_event(self._calc_riseset,
                                           dict(time=time, target=target,
                                                which=which, rise_set='rising',
                                                horizon=horizon))

    @u.quantity_input(horizon=u.deg)
    def target_set_time(self, time, target, which='nearest', horizon=0*u.degree):
        """
        Calculate set time.

        Compute time of the next/previous/nearest set of ``target``, where
        "set" is defined as when the ``target`` transitions from altitudes
        above ``horizon`` to below ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : coordinate object (i.e. `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`) or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunset relative to the present ``time`` would you
            like to calculate

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        `~astropy.time.Time`
            Set time of target.

        Examples
        --------
        Calculate the set time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_set_time = keck.target_set_time(time, target, which="next")
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_set_time)) # doctest: +FLOAT_CMP
        ISO: 2001-02-03 12:29:34.768, JD: 2451944.02054
        """
        return self._determine_which_event(self._calc_riseset,
                                           dict(time=time, target=target,
                                                which=which, rise_set='setting',
                                                horizon=horizon))

    def target_meridian_transit_time(self, time, target, which='nearest'):
        """
        Calculate time at the transit of the meridian.

        Compute time of the next/previous/nearest transit of the ``target``
        object.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : coordinate object (i.e. `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`) or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Transit time of target

        Examples
        --------
        Calculate the meridian transit time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_transit_time = keck.target_meridian_transit_time(time, target,
        ...                                                        which="next")
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_transit_time)) # doctest: +FLOAT_CMP
        ISO: 2001-02-03 06:42:26.863, JD: 2451943.77948
        """
        return self._determine_which_event(self._calc_transit,
                                           dict(time=time, target=target,
                                                which=which,
                                                rise_set='setting'))

    def target_meridian_antitransit_time(self, time, target, which='nearest'):
        """
        Calculate time at the antitransit of the meridian.

        Compute time of the next/previous/nearest antitransit of the ``target``
        object.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        target : coordinate object (i.e. `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`) or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Antitransit time of target

        Examples
        --------
        Calculate the meridian anti-transit time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_antitransit_time = keck.target_meridian_antitransit_time(time, target,
        ...                                                                which="next")
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_antitransit_time)) # doctest: +FLOAT_CMP
        ISO: 2001-02-03 18:40:29.761, JD: 2451944.27812

        """
        return self._determine_which_event(self._calc_transit,
                                           dict(time=time, target=target,
                                                which=which, antitransit=True,
                                                rise_set='setting'))

    @u.quantity_input(horizon=u.deg)
    def sun_rise_time(self, time, which='nearest', horizon=0*u.degree):
        """
        Time of sunrise.

        Compute time of the next/previous/nearest sunrise, where
        sunrise is defined as when the Sun transitions from altitudes
        below ``horizon`` to above ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate.

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        `~astropy.time.Time`
            Time of sunrise

        Examples
        --------
        Calculate the time of the previous sunrise at Apache Point Observatory:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time('2001-02-03 04:05:06')
        >>> sun_rise = apo.sun_rise_time(time, which="previous")
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(sun_rise)) # doctest: +SKIP
        ISO: 2001-02-02 14:02:50.554, JD: 2451943.08531
        """
        return self.target_rise_time(time, get_sun(time), which, horizon)

    @u.quantity_input(horizon=u.deg)
    def sun_set_time(self, time, which='nearest', horizon=0*u.degree):
        """
        Time of sunset.

        Compute time of the next/previous/nearest sunset, where
        sunset is defined as when the Sun transitions from altitudes
        below ``horizon`` to above ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which sunset relative to the present ``time`` would you
            like to calculate

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        `~astropy.time.Time`
            Time of sunset

        Examples
        --------
        Calculate the time of the next sunset at Apache Point Observatory:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time('2001-02-03 04:05:06')
        >>> sun_set = apo.sun_set_time(time, which="next")
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(sun_set)) # doctest: +SKIP
        ISO: 2001-02-04 00:35:42.102, JD: 2451944.52479
        """
        return self.target_set_time(time, get_sun(time), which, horizon)

    def noon(self, time, which='nearest'):
        """
        Time at solar noon.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which noon relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Time at solar noon
        """
        return self.target_meridian_transit_time(time, get_sun(time), which)

    def midnight(self, time, which='nearest'):
        """
        Time at solar midnight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which noon relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Time at solar midnight
        """
        return self.target_meridian_antitransit_time(time, get_sun(time), which)

    # Twilight convenience functions

    def twilight_evening_astronomical(self, time, which='nearest'):
        """
        Time at evening astronomical (-18 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_set_time(time, which, horizon=-18*u.degree)

    def twilight_evening_nautical(self, time, which='nearest'):
        """
        Time at evening nautical (-12 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_set_time(time, which, horizon=-12*u.degree)

    def twilight_evening_civil(self, time, which='nearest'):
        """
        Time at evening civil (-6 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_set_time(time, which, horizon=-6*u.degree)

    def twilight_morning_astronomical(self, time, which='nearest'):
        """
        Time at morning astronomical (-18 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_rise_time(time, which, horizon=-18*u.degree)

    def twilight_morning_nautical(self, time, which='nearest'):
        """
        Time at morning nautical (-12 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_rise_time(time, which, horizon=-12*u.degree)

    def twilight_morning_civil(self, time, which='nearest'):
        """
        Time at morning civil (-6 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of sunset
        """
        return self.sun_rise_time(time, which, horizon=-6*u.degree)

    # Moon-related methods.

    def moon_rise_time(self, time, **kwargs):
        """
        Returns the local moonrise time.

        The default moonrise returned is the next one to occur.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)

        Keywords: str, optional
            previous
            next
        """
        raise NotImplementedError()

    def moon_set_time(self, time, **kwargs):
        """
        Returns the local moonset time.

        The default moonset returned is the next one to occur.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        Keywords: str, optional
            previous
            next
        """
        raise NotImplementedError()

    def moon_illumination(self, time):
        """
        Calculate the illuminated fraction of the moon.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        Returns
        -------
        float
            Fraction of lunar surface illuminated

        Examples
        --------
        How much of the lunar surface is illuminated at 2015-08-29 18:35 UTC,
        which we happen to know is the time of a full moon?

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> apo.moon_illumination(time) # doctest: +SKIP
        array([ 0.99972487])
        """
        if not isinstance(time, Time):
            time = Time(time)

        return moon_illumination(time)

    def moon_phase(self, time=None):
        """
        Calculate lunar orbital phase.

        For example, phase=2*pi is "new", phase=0 is "full".

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        Returns
        -------
        moon_phase_angle : float
            Orbital phase angle of the moon where 2*pi corresponds to new moon,
            zero corresponds to full moon.

        Examples
        --------
        Calculate the phase of the moon at 2015-08-29 18:35 UTC. Near zero
        radians corresponds to a nearly full moon.

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site('APO')
        >>> time = Time('2015-08-29 18:35')
        >>> apo.moon_phase(time) # doctest: +SKIP
        <Quantity [ 0.03317537] rad>
        """
        if time is not None and not isinstance(time, Time):
            time = Time(time)

        return moon_phase_angle(time)

    def moon_altaz(self, time, ephemeris=None):
        """
        Returns the position of the moon in alt/az.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        ephemeris : str, optional
            Ephemeris to use.  If not given, use the one set with
            ``astropy.coordinates.solar_system_ephemeris.set`` (which is
            set to 'builtin' by default).


        Returns
        -------
        altaz : `~astropy.coordinates.SkyCoord`
            Position of the moon transformed to altitude and azimuth

        Examples
        --------
        Calculate the altitude and azimuth of the moon at Apache Point
        Observatory:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> altaz_moon = apo.moon_altaz(time) # doctest: +SKIP
        >>> print("alt: {0.alt}, az: {0.az}".format(altaz_moon)) # doctest: +SKIP
        alt: -63.72706397691421 deg, az: 345.3640380598265 deg
        """
        if not isinstance(time, Time):
            time = Time(time)

        moon = get_moon(time, location=self.location, ephemeris=ephemeris)
        return self.altaz(time, moon, grid=False)

    @u.quantity_input(horizon=u.deg)
    def target_is_up(self, time, target, horizon=0*u.degree, return_altaz=False):
        """
        Is ``target`` above ``horizon`` at this ``time``?

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : coordinate object (i.e. `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`) or list
            Target celestial object(s)

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        return_altaz : bool (optional)
            Also return the '~astropy.coordinates.AltAz' coordinate.

        Returns
        -------
        observable : boolean or np.ndarray(bool)
            True if ``target`` is above ``horizon`` at ``time``, else False.

        Examples
        --------
        Are Aldebaran and Vega above the horizon at Apache Point Observatory
        at 2015-08-29 18:35 UTC?

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> aldebaran = FixedTarget.from_name("Aldebaran")
        >>> vega = FixedTarget.from_name("Vega")
        >>> apo.target_is_up(time, aldebaran)
        True
        >>> apo.target_is_up(time, [aldebaran, vega])
        [True, False]
        """
        if not isinstance(time, Time):
            time = Time(time)

        altaz = self.altaz(time, target)
        observable = altaz.alt > horizon
        if altaz.isscalar:
            observable = bool(observable)
        else:
            # TODO: simply return observable if we move to
            # a fully broadcasted API
            observable = [value for value in observable.flat]

        if not return_altaz:
            return observable
        else:
            return observable, altaz

    @u.quantity_input(horizon=u.deg)
    def is_night(self, time, horizon=0*u.deg, obswl=None):
        """
        Is the Sun below ``horizon`` at ``time``?

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating day/night (i.e.,
            -6 deg horizon = civil twilight, etc.)

        obswl : `~astropy.units.Quantity` (optional)
            Wavelength of the observation used in the calculation

        Returns
        -------
        sun_below_horizon : bool or np.ndarray(bool)
            `True` if sun is below ``horizon`` at ``time``, else `False`.

        Examples
        --------
        Is it "nighttime" (i.e. is the Sun below ``horizon``) at Apache Point
        Observatory at 2015-08-29 18:35 UTC?

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> apo.is_night(time) # doctest: +SKIP
        False
        """
        if not isinstance(time, Time):
            time = Time(time)

        solar_altitude = self.altaz(time, target=get_sun(time), obswl=obswl).alt
        if solar_altitude.isscalar:
            return bool(solar_altitude < horizon)
        else:
            # TODO: simply return solar_altitude < horizon if we move to
            # a fully broadcasted API
            return [val for val in (solar_altitude < horizon).flat]

    def local_sidereal_time(self, time, kind='apparent', model=None):
        """
        Convert ``time`` to local sidereal time for observer.

        This is a thin wrapper around the `~astropy.time.Time.sidereal_time`
        method.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        kind : {'mean', 'apparent'} (optional)
            Passed to the ``kind`` argument of
            `~astropy.time.Time.sidereal_time`

        model : str or `None`; optional
            The precession/nutation model to assume - see
            `~astropy.time.Time.sidereal_time` for more details.

        Returns
        -------
        `~astropy.coordinates.Longitude`
            Local sidereal time.
        """
        if not isinstance(time, Time):
            time = Time(time)

        return time.sidereal_time(kind, longitude=self.location.longitude,
                                  model=model)

    def target_hour_angle(self, time, target):
        """
        Calculate the local hour angle of ``target`` at ``time``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : coordinate object (i.e. `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`) or list
            Target celestial object(s)

        Returns
        -------
        hour_angle : `~astropy.coordinates.Angle`
            The hour angle(s) of the target(s) at ``time``
        """
        time, target = self._preprocess_inputs(time, target)
        return Longitude(self.local_sidereal_time(time) - target.ra)

    @u.quantity_input(horizon=u.degree)
    def tonight(self, time=None, horizon=0 * u.degree, obswl=None):
        """
        Return a time range corresponding to the nearest night

        This will return a range of `~astropy.time.Time` corresponding to the
        beginning and ending of the night. If in the middle of a given night,
        return times from `~astropy.time.Time.now` until the nearest
        `~astroplan.Observer.sun_rise_time`

        Parameters
        ----------
        time : `~astropy.time.Time` (optional), default = `~astropy.time.Time.now`
            The start time for tonight, which is allowed to be arbitrary. See description
            above for behavior
        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use for calculating rise/set times
            (e.g., -6 deg horizon = civil twilight, etc.)
        obswl : `~astropy.units.Quantity` (optional)
            Wavelength of the observation used in the calculation

        Returns
        -------
        times : `~astropy.time.Time`
            A tuple of times corresponding to the start and end of current night
        """
        current_time = Time.now() if time is None else time
        night_mask = self.is_night(current_time, horizon=horizon, obswl=obswl)
        sun_set_time = self.sun_set_time(current_time, which='next', horizon=horizon)
        # workaround for NPY <= 1.8, otherwise np.where works even in scalar case
        if current_time.isscalar:
            start_time = current_time if night_mask else sun_set_time
        else:
            start_time = np.where(night_mask, current_time, sun_set_time)
            # np.where gives us a list of start Times - convert to Time object
            if not isinstance(start_time, Time):
                start_time = Time(start_time)
        end_time = self.sun_rise_time(start_time, which='next', horizon=horizon)

        return start_time, end_time