1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst
# cython: language_level=3
"""
The functions here are the core geometry functions.
"""
import numpy as np
cimport numpy as np
cdef extern from "math.h":
double asin(double x)
double sin(double x)
double cos(double x)
double sqrt(double x)
double fabs(double x)
from cpython cimport bool
DTYPE = np.float64
ctypedef np.float64_t DTYPE_t
cimport cython
ctypedef struct point:
double x
double y
ctypedef struct intersections:
point p1
point p2
cdef double floor_sqrt(double x):
"""
In some of the geometrical functions, we have to take the sqrt of a number
and we know that the number should be >= 0. However, in some cases the
value is e.g. -1e-10, but we want to treat it as zero, which is what
this function does.
Note that this does **not** check whether negative values are close or not
to zero, so this should be used only in cases where the value is expected
to be positive on paper.
"""
if x > 0:
return sqrt(x)
else:
return 0
# NOTE: The following two functions use cdef because they are not intended to be
# called from the Python code. Using def makes them callable from outside, but
# also slower. Some functions currently return multiple values, and for those we
# still use 'def' for now.
cdef double distance(double x1, double y1, double x2, double y2):
"""
Distance between two points in two dimensions.
Parameters
----------
x1, y1 : float
The coordinates of the first point
x2, y2 : float
The coordinates of the second point
Returns
-------
d : float
The Euclidean distance between the two points
"""
return sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
cdef double area_arc(double x1, double y1, double x2, double y2, double r):
"""
Area of a circle arc with radius r between points (x1, y1) and (x2, y2).
References
----------
http://mathworld.wolfram.com/CircularSegment.html
"""
cdef double a, theta
a = distance(x1, y1, x2, y2)
theta = 2. * asin(0.5 * a / r)
return 0.5 * r * r * (theta - sin(theta))
cdef double area_triangle(double x1, double y1, double x2, double y2, double x3,
double y3):
"""
Area of a triangle defined by three vertices.
"""
return 0.5 * abs(x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2))
cdef double area_arc_unit(double x1, double y1, double x2, double y2):
"""
Area of a circle arc with radius R between points (x1, y1) and (x2, y2)
References
----------
http://mathworld.wolfram.com/CircularSegment.html
"""
cdef double a, theta
a = distance(x1, y1, x2, y2)
theta = 2. * asin(0.5 * a)
return 0.5 * (theta - sin(theta))
cdef int in_triangle(double x, double y, double x1, double y1, double x2, double y2, double x3, double y3):
"""
Check if a point (x,y) is inside a triangle
"""
cdef int c = 0
c += ((y1 > y) != (y2 > y) and x < (x2 - x1) * (y - y1) / (y2 - y1) + x1)
c += ((y2 > y) != (y3 > y) and x < (x3 - x2) * (y - y2) / (y3 - y2) + x2)
c += ((y3 > y) != (y1 > y) and x < (x1 - x3) * (y - y3) / (y1 - y3) + x3)
return c % 2 == 1
cdef intersections circle_line(double x1, double y1, double x2, double y2):
"""Intersection of a line defined by two points with a unit circle"""
cdef double a, b, delta, dx, dy
cdef double tolerance = 1.e-10
cdef intersections inter
dx = x2 - x1
dy = y2 - y1
if fabs(dx) < tolerance and fabs(dy) < tolerance:
inter.p1.x = 2.
inter.p1.y = 2.
inter.p2.x = 2.
inter.p2.y = 2.
elif fabs(dx) > fabs(dy):
# Find the slope and intercept of the line
a = dy / dx
b = y1 - a * x1
# Find the determinant of the quadratic equation
delta = 1. + a * a - b * b
if delta > 0.: # solutions exist
delta = sqrt(delta)
inter.p1.x = (- a * b - delta) / (1. + a * a)
inter.p1.y = a * inter.p1.x + b
inter.p2.x = (- a * b + delta) / (1. + a * a)
inter.p2.y = a * inter.p2.x + b
else: # no solution, return values > 1
inter.p1.x = 2.
inter.p1.y = 2.
inter.p2.x = 2.
inter.p2.y = 2.
else:
# Find the slope and intercept of the line
a = dx / dy
b = x1 - a * y1
# Find the determinant of the quadratic equation
delta = 1. + a * a - b * b
if delta > 0.: # solutions exist
delta = sqrt(delta)
inter.p1.y = (- a * b - delta) / (1. + a * a)
inter.p1.x = a * inter.p1.y + b
inter.p2.y = (- a * b + delta) / (1. + a * a)
inter.p2.x = a * inter.p2.y + b
else: # no solution, return values > 1
inter.p1.x = 2.
inter.p1.y = 2.
inter.p2.x = 2.
inter.p2.y = 2.
return inter
cdef point circle_segment_single2(double x1, double y1, double x2, double y2):
"""
The intersection of a line with the unit circle. The intersection the
closest to (x2, y2) is chosen.
"""
cdef double dx1, dy1, dx2, dy2
cdef intersections inter
cdef point pt1, pt2, pt
inter = circle_line(x1, y1, x2, y2)
pt1 = inter.p1
pt2 = inter.p2
# Can be optimized, but just checking for correctness right now
dx1 = fabs(pt1.x - x2)
dy1 = fabs(pt1.y - y2)
dx2 = fabs(pt2.x - x2)
dy2 = fabs(pt2.y - y2)
if dx1 > dy1: # compare based on x-axis
if dx1 > dx2:
pt = pt2
else:
pt = pt1
else:
if dy1 > dy2:
pt = pt2
else:
pt = pt1
return pt
cdef intersections circle_segment(double x1, double y1, double x2, double y2):
"""
Intersection(s) of a segment with the unit circle. Discard any
solution not on the segment.
"""
cdef intersections inter, inter_new
cdef point pt1, pt2
inter = circle_line(x1, y1, x2, y2)
pt1 = inter.p1
pt2 = inter.p2
if (pt1.x > x1 and pt1.x > x2) or (pt1.x < x1 and pt1.x < x2) or (pt1.y > y1 and pt1.y > y2) or (pt1.y < y1 and pt1.y < y2):
pt1.x, pt1.y = 2., 2.
if (pt2.x > x1 and pt2.x > x2) or (pt2.x < x1 and pt2.x < x2) or (pt2.y > y1 and pt2.y > y2) or (pt2.y < y1 and pt2.y < y2):
pt2.x, pt2.y = 2., 2.
if pt1.x > 1. and pt2.x < 2.:
inter_new.p1 = pt1
inter_new.p2 = pt2
else:
inter_new.p1 = pt2
inter_new.p2 = pt1
return inter_new
cdef double overlap_area_triangle_unit_circle(double x1, double y1, double x2, double y2, double x3, double y3):
"""
Given a triangle defined by three points (x1, y1), (x2, y2), and
(x3, y3), find the area of overlap with the unit circle.
"""
cdef double d1, d2, d3
cdef bool in1, in2, in3
cdef bool on1, on2, on3
cdef double area
cdef double PI = np.pi
cdef intersections inter
cdef point pt1, pt2, pt3, pt4, pt5, pt6, pt_tmp
# Find distance of all vertices to circle center
d1 = x1 * x1 + y1 * y1
d2 = x2 * x2 + y2 * y2
d3 = x3 * x3 + y3 * y3
# Order vertices by distance from origin
if d1 < d2:
if d2 < d3:
pass
elif d1 < d3:
x2, y2, d2, x3, y3, d3 = x3, y3, d3, x2, y2, d2
else:
x1, y1, d1, x2, y2, d2, x3, y3, d3 = x3, y3, d3, x1, y1, d1, x2, y2, d2
else:
if d1 < d3:
x1, y1, d1, x2, y2, d2 = x2, y2, d2, x1, y1, d1
elif d2 < d3:
x1, y1, d1, x2, y2, d2, x3, y3, d3 = x2, y2, d2, x3, y3, d3, x1, y1, d1
else:
x1, y1, d1, x2, y2, d2, x3, y3, d3 = x3, y3, d3, x2, y2, d2, x1, y1, d1
if d1 > d2 or d2 > d3 or d1 > d3:
raise Exception("ERROR: vertices did not sort correctly")
# Determine number of vertices inside circle
in1 = d1 < 1
in2 = d2 < 1
in3 = d3 < 1
# Determine which vertices are on the circle
on1 = fabs(d1 - 1) < 1.e-10
on2 = fabs(d2 - 1) < 1.e-10
on3 = fabs(d3 - 1) < 1.e-10
if on3 or in3: # triangle is completely in circle
area = area_triangle(x1, y1, x2, y2, x3, y3)
elif in2 or on2:
# If vertex 1 or 2 are on the edge of the circle, then we use the dot
# product to vertex 3 to determine whether an intersection takes place.
intersect13 = not on1 or x1 * (x3 - x1) + y1 * (y3 - y1) < 0.
intersect23 = not on2 or x2 * (x3 - x2) + y2 * (y3 - y2) < 0.
if intersect13 and intersect23 and not on2:
pt1 = circle_segment_single2(x1, y1, x3, y3)
pt2 = circle_segment_single2(x2, y2, x3, y3)
area = area_triangle(x1, y1, x2, y2, pt1.x, pt1.y) \
+ area_triangle(x2, y2, pt1.x, pt1.y, pt2.x, pt2.y) \
+ area_arc_unit(pt1.x, pt1.y, pt2.x, pt2.y)
elif intersect13:
pt1 = circle_segment_single2(x1, y1, x3, y3)
area = area_triangle(x1, y1, x2, y2, pt1.x, pt1.y) \
+ area_arc_unit(x2, y2, pt1.x, pt1.y)
elif intersect23:
pt2 = circle_segment_single2(x2, y2, x3, y3)
area = area_triangle(x1, y1, x2, y2, pt2.x, pt2.y) \
+ area_arc_unit(x1, y1, pt2.x, pt2.y)
else:
area = area_arc_unit(x1, y1, x2, y2)
elif on1:
# The triangle is outside the circle
area = 0.0
elif in1:
# Check for intersections of far side with circle
inter = circle_segment(x2, y2, x3, y3)
pt1 = inter.p1
pt2 = inter.p2
pt3 = circle_segment_single2(x1, y1, x2, y2)
pt4 = circle_segment_single2(x1, y1, x3, y3)
if pt1.x > 1.: # indicates no intersection
# Code taken from `sep.h`.
# TODO: use `sep` and get rid of this Cython code.
if (((0.-pt3.y) * (pt4.x-pt3.x) > (pt4.y-pt3.y) * (0.-pt3.x)) !=
((y1-pt3.y) * (pt4.x-pt3.x) > (pt4.y-pt3.y) * (x1-pt3.x))):
area = area_triangle(x1, y1, pt3.x, pt3.y, pt4.x, pt4.y) \
+ (PI - area_arc_unit(pt3.x, pt3.y, pt4.x, pt4.y))
else:
area = area_triangle(x1, y1, pt3.x, pt3.y, pt4.x, pt4.y) \
+ area_arc_unit(pt3.x, pt3.y, pt4.x, pt4.y)
else:
if (pt2.x - x2)**2 + (pt2.y - y2)**2 < (pt1.x - x2)**2 + (pt1.y - y2)**2:
pt1, pt2 = pt2, pt1
area = area_triangle(x1, y1, pt3.x, pt3.y, pt1.x, pt1.y) \
+ area_triangle(x1, y1, pt1.x, pt1.y, pt2.x, pt2.y) \
+ area_triangle(x1, y1, pt2.x, pt2.y, pt4.x, pt4.y) \
+ area_arc_unit(pt1.x, pt1.y, pt3.x, pt3.y) \
+ area_arc_unit(pt2.x, pt2.y, pt4.x, pt4.y)
else:
inter = circle_segment(x1, y1, x2, y2)
pt1 = inter.p1
pt2 = inter.p2
inter = circle_segment(x2, y2, x3, y3)
pt3 = inter.p1
pt4 = inter.p2
inter = circle_segment(x3, y3, x1, y1)
pt5 = inter.p1
pt6 = inter.p2
if pt1.x <= 1.:
xp, yp = 0.5 * (pt1.x + pt2.x), 0.5 * (pt1.y + pt2.y)
area = overlap_area_triangle_unit_circle(x1, y1, x3, y3, xp, yp) \
+ overlap_area_triangle_unit_circle(x2, y2, x3, y3, xp, yp)
elif pt3.x <= 1.:
xp, yp = 0.5 * (pt3.x + pt4.x), 0.5 * (pt3.y + pt4.y)
area = overlap_area_triangle_unit_circle(x3, y3, x1, y1, xp, yp) \
+ overlap_area_triangle_unit_circle(x2, y2, x1, y1, xp, yp)
elif pt5.x <= 1.:
xp, yp = 0.5 * (pt5.x + pt6.x), 0.5 * (pt5.y + pt6.y)
area = overlap_area_triangle_unit_circle(x1, y1, x2, y2, xp, yp) \
+ overlap_area_triangle_unit_circle(x3, y3, x2, y2, xp, yp)
else: # no intersections
if in_triangle(0., 0., x1, y1, x2, y2, x3, y3):
return PI
else:
return 0.
return area
|