1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
**********************
Fitting Models to Data
**********************
This module provides wrappers, called Fitters, around some Numpy and Scipy
fitting functions. All Fitters can be called as functions. They take an
instance of `~astropy.modeling.FittableModel` as input and modify its
``parameters`` attribute. The idea is to make this extensible and allow
users to easily add other fitters.
Linear fitting is done using Numpy's `numpy.linalg.lstsq` function. There are
currently two non-linear fitters which use `scipy.optimize.leastsq` and
`scipy.optimize.fmin_slsqp`.
The rules for passing input to fitters are:
* Non-linear fitters currently work only with single models (not model sets).
* The linear fitter can fit a single input to multiple model sets creating
multiple fitted models. This may require specifying the ``model_set_axis``
argument just as used when evaluating models; this may be required for the
fitter to know how to broadcast the input data.
* The `~astropy.modeling.fitting.LinearLSQFitter` currently works only with
simple (not compound) models.
* The current fitters work only with models that have a single output
(including bivariate functions such as
`~astropy.modeling.polynomial.Chebyshev2D` but not compound models that map
``x, y -> x', y'``).
Fitting examples
================
- Fitting a polynomial model to multiple data sets simultaneously::
>>> from astropy.modeling import models, fitting
>>> import numpy as np
>>> p1 = models.Polynomial1D(3)
>>> p1.c0 = 1
>>> p1.c1 = 2
>>> print(p1)
Model: Polynomial1D
Inputs: ('x',)
Outputs: ('y',)
Model set size: 1
Degree: 3
Parameters:
c0 c1 c2 c3
--- --- --- ---
1.0 2.0 0.0 0.0
>>> x = np.arange(10)
>>> y = p1(x)
>>> yy = np.array([y, y])
>>> p2 = models.Polynomial1D(3, n_models=2)
>>> pfit = fitting.LinearLSQFitter()
>>> new_model = pfit(p2, x, yy)
>>> print(new_model) # doctest: +SKIP
Model: Polynomial1D
Inputs: 1
Outputs: 1
Model set size: 2
Degree: 3
Parameters:
c0 c1 c2 c3
--- --- ------------------ -----------------
1.0 2.0 -5.86673908219e-16 3.61636197841e-17
1.0 2.0 -5.86673908219e-16 3.61636197841e-17
- Iterative fitting with sigma clipping:
.. plot::
:include-source:
import numpy as np
from astropy.stats import sigma_clip
from astropy.modeling import models, fitting
import scipy.stats as stats
from matplotlib import pyplot as plt
# Generate fake data with outliers
np.random.seed(0)
x = np.linspace(-5., 5., 200)
y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)
c = stats.bernoulli.rvs(0.35, size=x.shape)
y += (np.random.normal(0., 0.2, x.shape) +
c*np.random.normal(3.0, 5.0, x.shape))
g_init = models.Gaussian1D(amplitude=1., mean=0, stddev=1.)
# initialize fitters
fit = fitting.LevMarLSQFitter()
or_fit = fitting.FittingWithOutlierRemoval(fit, sigma_clip,
niter=3, sigma=3.0)
# get fitted model and filtered data
or_fitted_model, mask = or_fit(g_init, x, y)
filtered_data = np.ma.masked_array(y, mask=mask)
fitted_model = fit(g_init, x, y)
# plot data and fitted models
plt.figure(figsize=(8,5))
plt.plot(x, y, 'gx', label="original data")
plt.plot(x, filtered_data, 'r+', label="filtered data")
plt.plot(x, fitted_model(x), 'g-',
label="model fitted w/ original data")
plt.plot(x, or_fitted_model(x), 'r--',
label="model fitted w/ filtered data")
plt.legend(loc=2, numpoints=1)
- Fitting with weights from data uncertainties
.. plot::
:include-source:
import numpy as np
from astropy.stats import sigma_clip
from astropy.modeling import models, fitting
import scipy.stats as stats
from matplotlib import pyplot as plt
# Generate fake data with outliers
np.random.seed(0)
x = np.linspace(-5., 5., 200)
y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)
c = stats.bernoulli.rvs(0.35, size=x.shape)
y += (np.random.normal(0., 0.2, x.shape) +
c*np.random.normal(3.0, 5.0, x.shape))
y_uncs = np.sqrt(np.square(np.full(x.shape, 0.2))
+ c*np.square(np.full(x.shape,5.0)))
g_init = models.Gaussian1D(amplitude=1., mean=0, stddev=1.)
# initialize fitters
fit = fitting.LevMarLSQFitter()
# fit the data w/o weights
fitted_model = fit(g_init, x, y)
# fit the data using the uncertainties as weights
fitted_model_weights = fit(g_init, x, y, weights=1.0/y_uncs)
# plot data and fitted models
plt.figure(figsize=(8,5))
plt.errorbar(x, y, yerr=y_uncs, fmt='kx', label="data")
plt.plot(x, fitted_model(x), 'g-', linewidth=4.0,
label="model fitted w/o weights")
plt.plot(x, fitted_model_weights(x), 'r--', linewidth=4.0,
label="model fitted w/ weights")
plt.legend(loc=2, numpoints=1)
Fitters support constrained fitting.
- All fitters support fixed (frozen) parameters through the ``fixed`` argument
to models or setting the `~astropy.modeling.Parameter.fixed`
attribute directly on a parameter.
For linear fitters, freezing a polynomial coefficient means that the
corresponding term will be subtracted from the data before fitting a
polynomial without that term to the result. For example, fixing ``c0`` in a
polynomial model will fit a polynomial with the zero-th order term missing
to the data minus that constant. However, the fixed coefficient value is
restored when evaluating the model, to fit the original data values::
>>> x = np.arange(1, 10, .1)
>>> p1 = models.Polynomial1D(2, c0=[1, 1], c1=[2, 2], c2=[3, 3],
... n_models=2)
>>> p1 # doctest: +FLOAT_CMP
<Polynomial1D(2, c0=[1., 1.], c1=[2., 2.], c2=[3., 3.], n_models=2)>
>>> y = p1(x, model_set_axis=False)
>>> p1.c0.fixed = True
>>> pfit = fitting.LinearLSQFitter()
>>> new_model = pfit(p1, x, y)
>>> print(new_model) # doctest: +SKIP
Model: Polynomial1D
Inputs: ('x',)
Outputs: ('y',)
Model set size: 2
Degree: 2
Parameters:
c0 c1 c2
--- --- ---
1.0 2.0 3.0
1.0 2.0 3.0
- A parameter can be `~astropy.modeling.Parameter.tied` (linked to
another parameter). This can be done in two ways::
>>> def tiedfunc(g1):
... mean = 3 * g1.stddev
... return mean
>>> g1 = models.Gaussian1D(amplitude=10., mean=3, stddev=.5,
... tied={'mean': tiedfunc})
or::
>>> g1 = models.Gaussian1D(amplitude=10., mean=3, stddev=.5)
>>> g1.mean.tied = tiedfunc
Bounded fitting is supported through the ``bounds`` arguments to models or by
setting `~astropy.modeling.Parameter.min` and `~astropy.modeling.Parameter.max`
attributes on a parameter. Bounds for the
`~astropy.modeling.fitting.LevMarLSQFitter` are always exactly satisfied--if
the value of the parameter is outside the fitting interval, it will be reset to
the value at the bounds. The `~astropy.modeling.fitting.SLSQPLSQFitter` handles
bounds internally.
- Different fitters support different types of constraints::
>>> fitting.LinearLSQFitter.supported_constraints
['fixed']
>>> fitting.LevMarLSQFitter.supported_constraints
['fixed', 'tied', 'bounds']
>>> fitting.SLSQPLSQFitter.supported_constraints
['bounds', 'eqcons', 'ineqcons', 'fixed', 'tied']
Note that there are two "constraints" (``prior`` and ``posterior``) that are
not currently used by any of the built-in fitters. They are provided to allow
possible user code that might implement Bayesian fitters (e.g.,
https://gist.github.com/rkiman/5c5e6f80b455851084d112af2f8ed04f).
Plugin Fitters
==============
Fitters defined outside of astropy's core can be inserted into the
`astropy.modeling.fitting` namespace through the use of entry points.
Entry points are references to importable objects. A tutorial on
defining entry points can be found in `setuptools' documentation
<http://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins>`_.
Plugin fitters are required to extend from the `~astropy.modeling.fitting.Fitter`
base class. For the fitter to be discovered and inserted into
`astropy.modeling.fitting` the entry points must be inserted into
the `astropy.modeling` entry point group
.. doctest-skip::
setup(
# ...
entry_points = {'astropy.modeling': 'PluginFitterName = fitter_module:PlugFitterClass'}
)
This would allow users to import the ``PlugFitterName`` through `astropy.modeling.fitting` by
.. doctest-skip::
from astropy.modeling.fitting import PlugFitterName
One project which uses this functionality is `Saba <https://saba.readthedocs.io/>`_,
which insert its `SherpaFitter <http://saba.readthedocs.io/en/stable/api.html#saba.SherpaFitter>`_
class and thus allows astropy users to use `Sherpa's <http://cxc.cfa.harvard.edu/contrib/sherpa/>`_
fitting routine.
|