File: bitmask.rst

package info (click to toggle)
astropy 3.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 45,664 kB
  • sloc: ansic: 168,124; python: 147,173; sh: 11,313; lex: 7,215; xml: 1,710; makefile: 463; cpp: 364
file content (178 lines) | stat: -rw-r--r-- 7,771 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
.. _bitmask_details:

*********************************************************
Utility functions for handling bit masks and mask arrays.
*********************************************************

It is common to use `bit fields <https://en.wikipedia.org/wiki/Bit_field>`_ - \
e.g., integer variables whose individual bits
represent some attributes - to characterize the state of data. For example,
HST uses arrays of bit fields to characterize data quality (DQ) of HST images,
see, e.g., DQ field values for
`WFPC2 image data <http://documents.stsci.edu/hst/wfpc2/documents/handbooks/dhb/wfpc2_ch34.html#1971480>`_
and `WFC3 image data <http://www.stsci.edu/hst/wfc3/documents/handbooks/currentDHB/Chapter2_data_structure3.html#567105>`_.
As one can see, the meaning assigned to various *bit flags* in for the two
instruments is generally different.

Bit fields can be thought of as tightly packed collections of bit flags. Using
`masking <https://en.wikipedia.org/wiki/Mask_(computing)>`_ we can "inspect"
the status of individual bits.

One common operation performed on bit field arrays is their conversion to
boolean masks, for example by simply assigning boolean `True` (in the boolean
mask) to those elements that correspond to non-zero-valued bit fields
(bit fields with at least one bit set to ``1``) or, oftentimes, by assigning
`True` to elements whose corresponding bit fields have only *specific fields*
set (to ``1``). This more sophisticated analysis of bit fields can be
accomplished using *bit masks* and the aforementioned masking operation.

The `~astropy.nddata.bitmask` module provides two functions that facilitate
conversion of bit field arrays (i.e., DQ arrays) to boolean masks:
`~astropy.nddata.bitmask.bitfield_to_boolean_mask` to convert an input bit
fields array to a boolean mask using an input bit mask (or list of individual
bit flags) and `~astropy.nddata.bitmask.interpret_bit_flags` to create bit mask
from input list of individual bit flags.

Creating boolean masks
**********************


Overview
========

`~astropy.nddata.bitmask.bitfield_to_boolean_mask` by default assumes that
all input bit fields that have at least one bit turned "ON" correspond to
"bad" data (i.e., pixels) and converts them to boolean `True` in the output
boolean mask (otherwise output boolean mask values are set to `False`).

Often, for specific algorithms and situations, some bit flags are OK and
can be ignored. `~astropy.nddata.bitmask.bitfield_to_boolean_mask` accepts
lists of bit flags that *by default must be ignored* in the input bit fields
when creating boolean masks.

Fundamentally, *by default*, `~astropy.nddata.bitmask.bitfield_to_boolean_mask`
performs the following operation:

.. _main_eq:

``(1)    boolean_mask = (bitfield & ~bit_mask) != 0``

(here ``&`` is bitwise ``and`` and ``~`` is the bitwise ``not`` operations).
In the previous formula, ``bit_mask`` is a bit mask created from individual
bit flags that need to be ignored in the bit field.

.. _table1:

.. table:: Table 1: Examples of Boolean Mask Computations \
           (default parameters and 8-bit data type)

    +--------------+--------------+--------------+--------------+------------+
    | Bit Field    |  Bit Mask    | ~(Bit Mask)  | Bit Field &  |Boolean Mask|
    |              |              |              | ~(Bit Mask)  |            |
    +==============+==============+==============+==============+============+
    |11011001 (217)|01010000 (80) |10101111 (175)|10001001 (137)|   True     |
    +--------------+--------------+--------------+--------------+------------+
    |11011001 (217)|10101111 (175)|01010000 (80) |01010000 (80) |   True     |
    +--------------+--------------+--------------+--------------+------------+
    |00001001 (9)  |01001001 (73) |10110110 (182)|00000000 (0)  |   False    |
    +--------------+--------------+--------------+--------------+------------+
    |00001001 (9)  |00000000 (0)  |11111111 (255)|00001001 (9)  |   True     |
    +--------------+--------------+--------------+--------------+------------+
    |00001001 (9)  |11111111 (255)|00000000 (0)  |00000000 (0)  |   False    |
    +--------------+--------------+--------------+--------------+------------+


Specifying bit flags
====================

`~astropy.nddata.bitmask.bitfield_to_boolean_mask` accepts either an integer
bit mask or lists of bit flags. Lists of bit flags will be combined into a
bit mask and can be provided either as a Python list of
**integer bit flag values** or as a comma-separated (or ``+``-separated)
list of integer bit flag values. Consider the bit mask from the first example
in `Table 1 <table1_>`_. In this case ``ignore_flags`` can be set either to:

    - an integer value bit mask 80, or
    - a Python list indicating individual non-zero
      *bit flag values:* ``[16, 64]``, or
    - a string of comma-separated *bit flag values*: ``'16,64'``, or
    - a string of ``+``-separated *bit flag values*: ``'16+64'``

For example,

    >>> from astropy.nddata import bitmask
    >>> import numpy as np
    >>> bitmask.bitfield_to_boolean_mask(217, ignore_flags=80)
    array(True...)
    >>> bitmask.bitfield_to_boolean_mask(217, ignore_flags='16,64')
    array(True...)
    >>> bitmask.bitfield_to_boolean_mask(217, ignore_flags=[16, 64])
    array(True...)
    >>> bitmask.bitfield_to_boolean_mask(9, ignore_flags=[1, 8, 64])
    array(False...)
    >>> bitmask.bitfield_to_boolean_mask([9, 10, 73, 217], ignore_flags='1,8,64')
    array([False,  True, False,  True]...)

It is also possible to specify the type of the output mask:

    >>> bitmask.bitfield_to_boolean_mask([9, 10, 73, 217], ignore_flags='1,8,64', dtype=np.uint8)
    array([0, 1, 0, 1], dtype=uint8)


Modifying the Formula for Creating Boolean Masks
================================================

`~astropy.nddata.bitmask.bitfield_to_boolean_mask` provides several parameters
that can be used to modify the formula used to create boolean masks.


Inverting Bit Mask
------------------

Sometimes it is more convenient to be able to specify those bit
flags that *must be considered* when creating the boolean mask and all other
flags should be ignored. In `~astropy.nddata.bitmask.bitfield_to_boolean_mask`
this can be accomplished by setting parameter ``flip_bits`` to `True`.
This effectively modifies `equation (1) <main_eq_>`_ to:

.. _modif_eq2:

``(2)    boolean_mask = (bitfield & bit_mask) != 0``

So, instead of

    >>> bitmask.bitfield_to_boolean_mask([9, 10, 73, 217], ignore_flags=[1, 8, 64])
    array([False,  True, False,  True]...)

one can obtain the same result as

    >>> bitmask.bitfield_to_boolean_mask(
    ...     [9, 10, 73, 217], ignore_flags=[2, 4, 16, 32, 128], flip_bits=True
    ... )
    array([False,  True, False,  True]...)

Note however, when ``ignore_flags`` is a comma-separated list of bit flag
values, ``flip_bits`` cannot be set to neither `True` or `False`. Instead,
to flip bits of the bit mask formed from a string list of comma-separated
bit flag values, one can prepend a single ``~`` to the list:

    >>> bitmask.bitfield_to_boolean_mask([9, 10, 73, 217], ignore_flags='~2+4+16+32+128')
    array([False,  True, False,  True]...)


Inverting Boolean Mask
----------------------

Other times, it may be more convenient to obtain an inverted mask in which
flagged data are converted to `False` instead of `True`:

.. _modif_eq3:

``(3)    boolean_mask = (bitfield & ~bit_mask) == 0``

This can be accomplished by changing ``good_mask_value`` parameter from
its default value (`False`) to `True`. For example,

    >>> bitmask.bitfield_to_boolean_mask([9, 10, 73, 217], ignore_flags=[1, 8, 64],
    ...                                  good_mask_value=True)
    array([ True, False,  True, False]...)