File: construct_table.rst

package info (click to toggle)
astropy 3.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 45,664 kB
  • sloc: ansic: 168,124; python: 147,173; sh: 11,313; lex: 7,215; xml: 1,710; makefile: 463; cpp: 364
file content (1110 lines) | stat: -rw-r--r-- 38,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
.. include:: references.txt

.. _construct_table:

Constructing a table
********************

There is great deal of flexibility in the way that a table can be initially
constructed.  Details on the inputs to the |Table|
constructor are in the `Initialization Details`_ section.  However, the
easiest way to understand how to make a table is by example.

Examples
========

Much of the flexibility lies in the types of data structures
which can be used to initialize the table data.  The examples below show how to
create a table from scratch with no initial data, create a table with a list of
columns, a dictionary of columns, or from `numpy` arrays (either structured or
homogeneous).

Setup
-----
For the following examples you need to import the |Table| and |Column| classes
along with the `numpy` package::

  >>> from astropy.table import Table, Column
  >>> import numpy as np

Creating from scratch
---------------------
A Table can be created without any initial input data or even without any
initial columns.  This is useful for building tables dynamically if the initial
size, columns, or data are not known.

.. Note::
   Adding rows requires making a new copy of the entire
   table each time, so in the case of large tables this may be slow.
   On the other hand, adding columns is reasonably fast.

::

  >>> t = Table()
  >>> t['a'] = [1, 4]
  >>> t['b'] = Column([2.0, 5.0], unit='cm', description='Velocity')
  >>> t['c'] = ['x', 'y']

  >>> t = Table(names=('a', 'b', 'c'), dtype=('f4', 'i4', 'S2'))
  >>> t.add_row((1, 2.0, 'x'))
  >>> t.add_row((4, 5.0, 'y'))

  >>> t = Table(dtype=[('a', 'f4'), ('b', 'i4'), ('c', 'S2')])

Another option for creating a table is using the `~astropy.table.QTable` class.
In this case any `~astropy.units.Quantity` column objects will be stored
natively within the table via the "mixin" column protocol (see `Columns and
Quantities`_ for details)::

  >>> from astropy.table import QTable
  >>> from astropy import units as u
  >>> t = QTable()
  >>> t['velocity'] = [3, 4] * u.m / u.s
  >>> type(t['velocity'])  # doctest: +SKIP
  astropy.units.quantity.Quantity


Comment lines
-------------
Comment lines in an ASCII file can be added via the ``'comments'`` key in the
table's metadata. The following will insert two comment lines in the output
ASCII file unless ``comment=False`` is explicitly set in ``write()``::

  >>> import sys
  >>> from astropy.table import Table
  >>> t = Table(names=('a', 'b', 'c'), dtype=('f4', 'i4', 'S2'))
  >>> t.add_row((1, 2.0, 'x'))
  >>> t.meta['comments'] = ['Here is my explanatory text. This is awesome.',
  ...                       'Second comment line.']
  >>> t.write(sys.stdout, format='ascii')
  # Here is my explanatory text. This is awesome.
  # Second comment line.
  a b c
  1.0 2 x


List of columns
---------------
A typical case is where you have a number of data columns with the same length
defined in different variables.  These might be Python lists or `numpy` arrays
or a mix of the two.  These can be used to create a |Table| by putting the column
data variables into a Python list.  In this case the column names are not
defined by the input data, so they must either be set using the ``names``
keyword or they will be auto-generated as ``col<N>``.

::

  >>> a = np.array([1, 4], dtype=np.int32)
  >>> b = [2.0, 5.0]
  >>> c = ['x', 'y']
  >>> t = Table([a, b, c], names=('a', 'b', 'c'))
  >>> t
  <Table length=2>
    a      b     c
  int32 float64 str1
  ----- ------- ----
      1     2.0    x
      4     5.0    y

**Make a new table using columns from the first table**

Once you have a |Table| then you can make new table by selecting columns
and putting this into a Python list, e.g. ``[ t['c'], t['a'] ]``::

  >>> Table([t['c'], t['a']])
  <Table length=2>
   c     a
  str1 int32
  ---- -----
     x     1
     y     4

**Make a new table using expressions involving columns**

The |Column| object is derived from the standard `numpy` array and can be used
directly in arithmetic expressions.  This allows for a compact way of making a
new table with modified column values::

  >>> Table([t['a']**2, t['b'] + 10])
  <Table length=2>
    a      b
  int32 float64
  ----- -------
      1    12.0
     16    15.0


**Different types of column data**

The list input method for |Table| is very flexible since you can use a mix
of different data types to initialize a table::

  >>> a = (1, 4)
  >>> b = np.array([[2, 3], [5, 6]])  # vector column
  >>> c = Column(['x', 'y'], name='axis')
  >>> arr = (a, b, c)
  >>> Table(arr)  # doctest: +SKIP
  <Table length=2>
   col0 col1 [2] axis
  int64  int64   str1
  ----- -------- ----
      1   2 .. 3    x
      4   5 .. 6    y


Notice that in the third column the existing column name ``'axis'`` is used.


Dict of columns
----------------
A dictionary of column data can be used to initialize a |Table|.

  >>> arr = {'a': np.array([1, 4], dtype=np.int32),
  ...        'b': [2.0, 5.0],
  ...        'c': ['x', 'y']}
  >>>
  >>> Table(arr)  # doctest: +SKIP
  <Table length=2>
    a    c      b
  int32 str1 float64
  ----- ---- -------
      1    x     2.0
      4    y     5.0

**Specify the column order and optionally the data types**
::

  >>> Table(arr, names=('a', 'b', 'c'), dtype=('f8', 'i4', 'S2'))  # doctest: +IGNORE_OUTPUT_3
  <Table length=2>
     a      b    c
  float64 int32 str2
  ------- ----- ----
      1.0     2    x
      4.0     5    y

**Different types of column data**

The input column data can be any data type that can initialize a |Column| object::

  >>> arr = {'a': (1, 4),
  ...        'b': np.array([[2, 3], [5, 6]]),
  ...        'c': Column(['x', 'y'], name='axis')}
  >>> Table(arr, names=('a', 'b', 'c'))  # doctest: +SKIP
  <Table length=2>
    a   b [2]   c
  int64 int64  str1
  ----- ------ ----
      1 2 .. 3    x
      4 5 .. 6    y

Notice that the key ``'c'`` takes precedence over the existing column name
``'axis'`` in the third column.  Also see that the ``'b'`` column is a vector
column where each row element is itself a 2-element array.

**Renaming columns is not possible**
::

  >>> Table(arr, names=('a_new', 'b_new', 'c_new'))
  Traceback (most recent call last):
    ...
  KeyError: 'a_new'


Row data
---------
Row-oriented data can be used to create a table using the ``rows``
keyword argument.

**List of data records as list or tuple**

If you have row-oriented input data such as a list of records, you
need to use the ``rows`` keyword to create a table::

  >>> data_rows = [(1, 2.0, 'x'),
  ...              (4, 5.0, 'y'),
  ...              (5, 8.2, 'z')]
  >>> t = Table(rows=data_rows, names=('a', 'b', 'c'))
  >>> print(t)
   a   b   c
  --- --- ---
    1 2.0   x
    4 5.0   y
    5 8.2   z

The data object passed as the ``rows`` argument can be any form which is
parsable by the ``np.rec.fromrecords()`` function.

**List of dict objects**

You can also initialize a table with row values.  This is constructed as a
list of dict objects.  The keys determine the column names::

  >>> data = [{'a': 5, 'b': 10},
  ...         {'a': 15, 'b': 20}]
  >>> Table(rows=data)  # doctest: +SKIP
  <Table length=2>
    a     b
  int64 int64
  ----- -----
      5    10
     15    20

Every row must have the same set of keys or a ValueError will be thrown::

  >>> t = Table(rows=[{'a': 5, 'b': 10}, {'a': 15, 'b': 30, 'c': 50}])
  Traceback (most recent call last):
    ...
  ValueError: Row 0 has no value for column c

**Single row**

You can also make a new table from a single row of an existing table::

  >>> a = [1, 4]
  >>> b = [2.0, 5.0]
  >>> t = Table([a, b], names=('a', 'b'))
  >>> t2 = Table(rows=t[1])

Remember that a |Row| has effectively a zero length compared to the
newly created |Table| which has a length of one.  This is similar to
the difference between a scalar ``1`` (length 0) and an array like
``np.array([1])`` with length 1.

.. Note::

   In the case of input data as a list of dicts or a single Table row, it is
   allowed to supply the data as the ``data`` argument since these forms
   are always unambiguous.  For example ``Table([{'a': 1}, {'a': 2}])`` is
   accepted.  However, a list of records must always be provided using the
   ``rows`` keyword, otherwise it will be interpreted as a list of columns.

NumPy structured array
----------------------
The structured array is the standard mechanism in `numpy` for storing
heterogeneous table data.  Most scientific I/O packages that read table
files (e.g.  `PyFITS
<https://github.com/spacetelescope/pyfits>`_, `vo.table
<http://stsdas.stsci.edu/astrolib/vo/html/intro_table.html>`_, `asciitable
<http://cxc.harvard.edu/contrib/asciitable/>`_) will return the table in an
object that is based on the structured array.  A structured array can be
created using::

  >>> arr = np.array([(1, 2.0, 'x'),
  ...                 (4, 5.0, 'y')],
  ...                dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'S2')])

From ``arr`` it is simple to create the corresponding |Table| object::

  >>> Table(arr)  # doctest: +IGNORE_OUTPUT_3
  <Table length=2>
    a      b     c
  int32 float64 str2
  ----- ------- ----
      1     2.0    x
      4     5.0    y

Note that in the above example and most the following ones we are creating a
table and immediately asking the interactive Python interpreter to print the
table to see what we made.  In real code you might do something like::

  >>> table = Table(arr)
  >>> print(table)
   a   b   c
  --- --- ---
    1 2.0   x
    4 5.0   y

**New column names**

The column names can be changed from the original values by providing the
``names`` argument::

  >>> Table(arr, names=('a_new', 'b_new', 'c_new'))  # doctest: +IGNORE_OUTPUT_3
  <Table length=2>
  a_new  b_new  c_new
  int32 float64  str2
  ----- ------- -----
      1     2.0     x
      4     5.0     y


**New data types**

Likewise the data type for each column can by changed with ``dtype``::

  >>> Table(arr, dtype=('f4', 'i4', 'S4'))  # doctest: +IGNORE_OUTPUT_3
  <Table length=2>
     a      b    c
  float32 int32 str4
  ------- ----- ----
      1.0     2    x
      4.0     5    y

  >>> Table(arr, names=('a_new', 'b_new', 'c_new'), dtype=('f4', 'i4', 'S4'))  # doctest: +IGNORE_OUTPUT_3
  <Table length=2>
   a_new  b_new c_new
  float32 int32  str4
  ------- ----- -----
      1.0     2     x
      4.0     5     y


NumPy homogeneous array
-----------------------
A `numpy` 1-d array is treated as a single row table where each element of the
array corresponds to a column::

  >>> Table(np.array([1, 2, 3]), names=['a', 'b', 'c'], dtype=('i8', 'i8', 'i8'))
  <Table length=1>
    a     b     c
  int64 int64 int64
  ----- ----- -----
      1     2     3

A `numpy` 2-d array (where all elements have the same type) can also be
converted into a |Table|.  In this case the column names are not specified by
the data and must either be provided by the user or will be automatically
generated as ``col<N>`` where ``<N>`` is the column number.

**Basic example with automatic column names**
::

  >>> arr = np.array([[1, 2, 3],
  ...                 [4, 5, 6]], dtype=np.int32)
  >>> Table(arr)
  <Table length=2>
   col0  col1  col2
  int32 int32 int32
  ----- ----- -----
      1     2     3
      4     5     6

**Column names and types specified**
::

  >>> Table(arr, names=('a_new', 'b_new', 'c_new'), dtype=('f4', 'i4', 'S4'))  # doctest: +IGNORE_OUTPUT_3
  <Table length=2>
   a_new  b_new c_new
  float32 int32  str4
  ------- ----- -----
      1.0     2     3
      4.0     5     6

**Referencing the original data**

It is possible to reference the original data for an homogeneous array as long
as the data types are not changed::

  >>> t = Table(arr, copy=False)

**Python arrays versus `numpy` arrays as input**

There is a slightly subtle issue that is important to understand in the way
that |Table| objects are created.  Any data input that looks like a Python list
(including a tuple) is considered to be a list of columns.  In contrast an
homogeneous `numpy` array input is interpreted as a list of rows::

  >>> arr = [[1, 2, 3],
  ...        [4, 5, 6]]
  >>> np_arr = np.array(arr)

  >>> print(Table(arr))    # Two columns, three rows
  col0 col1
  ---- ----
     1    4
     2    5
     3    6

  >>> print(Table(np_arr))  # Three columns, two rows
  col0 col1 col2
  ---- ---- ----
     1    2    3
     4    5    6

This dichotomy is needed to support flexible list input while retaining the
natural interpretation of 2-d `numpy` arrays where the first index corresponds
to data "rows" and the second index corresponds to data "columns".

From existing table
--------------------
A new table can be created by selecting a subset of columns in an existing
table::

  >>> t = Table(names=('a', 'b', 'c'))
  >>> t['c', 'b', 'a']  # Makes a copy of the data
  <Table length=0>
     c       b       a
  float64 float64 float64
  ------- ------- -------

An alternate way to use the ``columns`` attribute (explained in the
`TableColumns`_ section) to initialize a new table.  This let's you choose
columns by their numerical index or name and supports slicing syntax::

  >>> Table(t.columns[0:2])
  <Table length=0>
     a       b
  float64 float64
  ------- -------

  >>> Table([t.columns[0], t.columns['c']])
  <Table length=0>
     a       c
  float64 float64
  ------- -------

To create a copy of an existing table that is empty (has no rows)::

 >>> t = Table([[1.0, 2.3], [2.1, 3]], names=['x', 'y'])
 >>> t
 <Table length=2>
    x       y
 float64 float64
 ------- -------
     1.0     2.1
     2.3     3.0

 >>> tcopy = t[:0].copy()
 >>> tcopy
 <Table length=0>
    x       y
 float64 float64
 ------- -------

Empty array of a known size
---------------------------

If you do know the size your table will be, but don't know the values in
advance, you can create a zeroed numpy array and build the astropy table from
it::

  >>> N = 3
  >>> dtype = [('a', 'i4'), ('b', 'f8'), ('c', 'bool')]
  >>> t = Table(data=np.zeros(N, dtype=dtype))
  >>> t
  <Table length=3>
    a      b      c
  int32 float64  bool
  ----- ------- -----
      0     0.0 False
      0     0.0 False
      0     0.0 False

For example, you can then fill in this table row-by-row from extracted from another table, or generated on the fly::

  >>> for i in range(len(t)):
  ...     t[i] = (i, 2.5*i, i % 2)
  >>> t
  <Table length=3>
    a      b      c
  int32 float64  bool
  ----- ------- -----
      0     0.0 False
      1     2.5  True
      2     5.0 False

Initialization Details
======================

A table object is created by initializing a |Table| class
object with the following arguments, all of which are optional:

``data`` : numpy ndarray, dict, list, or Table
    Data to initialize table.
``names`` : list
    Specify column names
``dtype`` : list
    Specify column data types
``meta`` : dict-like
    Meta-Data associated with the table
``copy`` : boolean
    Copy the input data (default=True).

The following subsections provide further detail on the values and options for
each of the keyword arguments that can be used to create a new |Table| object.

data
----

The |Table| object can be initialized with several different forms
for the ``data`` argument.

**numpy ndarray (structured array)**
    The base column names are the field names of the ``data`` structured
    array.  The ``names`` list (optional) can be used to select
    particular fields and/or reorder the base names.  The ``dtype`` list
    (optional) must match the length of ``names`` and is used to
    override the existing ``data`` types.

**numpy ndarray (homogeneous)**
    If the ``data`` ndarray is 1-dimensional then it is treated as a single row
    table where each element of the array corresponds to a column.

    If the ``data`` ndarray is at least 2-dimensional then the first
    (left-most) index corresponds to row number (table length) and the
    second index corresponds to column number (table width).  Higher
    dimensions get absorbed in the shape of each table cell.

    If provided the ``names`` list must match the "width" of the ``data``
    argument.  The default for ``names`` is to auto-generate column names
    in the form "col<N>".  If provided the ``dtype`` list overrides the
    base column types and must match the length of ``names``.

**dict-like**
    The keys of the ``data`` object define the base column names.  The
    corresponding values can be Column objects, numpy arrays, or list-like
    objects.  The ``names`` list (optional) can be used to select
    particular fields and/or reorder the base names.  The ``dtype`` list
    (optional) must match the length of ``names`` and is used to override
    the existing or default data types.

**list-like**
    Each item in the ``data`` list provides a column of data values and
    can be a Column object, numpy array, or list-like object.  The
    ``names`` list defines the name of each column.  The names will be
    auto-generated if not provided (either from the ``names`` argument or
    by Column objects).  If provided the ``names`` argument must match the
    number of items in the ``data`` list.  The optional ``dtype`` list
    will override the existing or default data types and must match
    ``names`` in length.

**list-of-dicts**
    Similar to Python's builtin ``csv.DictReader``, each item in the
    ``data`` list provides a row of data values and must be a dict.  The
    key values in each dict define the column names and each row must
    have identical column names.  The ``names`` argument may be supplied
    to specify column ordering.  If it is not provided, the column order will
    default to alphabetical.  The ``dtype`` list may be specified, and must
    correspond to the order of output columns.  If any row's keys do no match
    the rest of the rows, a ValueError will be thrown.

**table-like object**
    If another table-like object has a ``__astropy_table__`` method then
    that object can be used to directly create a ``Table`` object.  See
    the `Table-like objects`_ section for details.

**None**
    Initialize a zero-length table.  If ``names`` and optionally ``dtype``
    are provided then the corresponding columns are created.

names
-----

The ``names`` argument provides a way to specify the table column names or
override the existing ones.  By default the column names are either taken
from existing names (for ``ndarray`` or ``Table`` input) or auto-generated
as ``col<N>``.  If ``names`` is provided then it must be a list with the
same length as the number of columns.  Any list elements with value
``None`` fall back to the default name.

In the case where ``data`` is provided as dict of columns, the ``names``
argument can be supplied to specify the order of columns.  The ``names`` list
must then contain each of the keys in the ``data`` dict.  If ``names`` is not
supplied then the order of columns in the output table is not determinate.

dtype
-----

The ``dtype`` argument provides a way to specify the table column data
types or override the existing types.  By default the types are either
taken from existing types (for ``ndarray`` or ``Table`` input) or
auto-generated by the ``numpy.array()`` routine.  If ``dtype`` is provided
then it must be a list with the same length as the number of columns.  The
values must be valid ``numpy.dtype`` initializers or ``None``.  Any list
elements with value ``None`` fall back to the default type.

In the case where ``data`` is provided as dict of columns, the ``dtype`` argument
must be accompanied by a corresponding ``names`` argument in order to uniquely
specify the column ordering.

meta
----

The ``meta`` argument is simply an object that contains meta-data associated
with the table.  It is recommended that this object be a dict or
OrderedDict_, but the only firm requirement is that it can be copied with
the standard library ``copy.deepcopy()`` routine.  By default ``meta`` is
an empty OrderedDict_.

copy
----

By default the input ``data`` are copied into a new internal ``np.ndarray``
object in the Table object.  In the case where ``data`` is either an
``np.ndarray`` object or an existing ``Table``, it is possible to use a
reference to the existing data by setting ``copy=False``.  This has the
advantage of reducing memory use and being faster.  However one should take
care because any modifications to the new Table data will also be seen in the
original input data.  See the `Copy versus Reference`_ section for more
information.


.. _copy_versus_reference:

Copy versus Reference
=====================

Normally when a new |Table| object is created, the input data are *copied* into
a new internal array object.  This ensures that if the new table elements are
modified then the original data will not be affected.  However, when creating a
table from a numpy ndarray object (structured or homogeneous), it is possible to
disable copying so that instead a memory reference to the original data is
used.  This has the advantage of being faster and using less memory.  However,
caution must be exercised because the new table data and original data will be
linked, as shown below::

  >>> arr = np.array([(1, 2.0, 'x'),
  ...                 (4, 5.0, 'y')],
  ...                dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'S2')])
  >>> print(arr['a'])  # column "a" of the input array
  [1 4]
  >>> t = Table(arr, copy=False)
  >>> t['a'][1] = 99
  >>> print(arr['a'])  # arr['a'] got changed when we modified t['a']
  [ 1 99]

Note that when referencing the data it is not possible to change the data types
since that operation requires making a copy of the data.  In this case an error
occurs::

  >>> t = Table(arr, copy=False, dtype=('f4', 'i4', 'S4'))
  Traceback (most recent call last):
    ...
  ValueError: Cannot specify dtype when copy=False

Another caveat in using referenced data is that you if add a new row to the
table then the reference to the original data array is lost and instead the
table will now hold a copy of the original values (in addition to the new row).

Column and TableColumns classes
===============================

There are two classes, |Column| and |TableColumns|, that are useful when
constructing new tables.

Column
------

A |Column| object can be created as follows, where in all cases the column
``name`` should be provided as a keyword argument and one can optionally provide
these values:

``data`` : list, ndarray or None
    Column data values
``dtype`` : numpy.dtype compatible value
    Data type for column
``description`` : str
    Full description of column
``unit`` : str
    Physical unit
``format`` : str or function
    `Format specifier`_ for outputting column values
``meta`` : dict
    Meta-data associated with the column

Initialization options
^^^^^^^^^^^^^^^^^^^^^^

The column data values, shape, and data type are specified in one of two ways:

**Provide a ``data`` value but not a ``length`` or ``shape``**

  Examples::

    col = Column([1, 2], name='a')  # shape=(2,)
    col = Column([[1, 2], [3, 4]], name='a')  # shape=(2, 2)
    col = Column([1, 2], name='a', dtype=float)
    col = Column(np.array([1, 2]), name='a')
    col = Column(['hello', 'world'], name='a')

  The ``dtype`` argument can be any value which is an acceptable
  fixed-size data-type initializer for the numpy.dtype() method.  See
  `<https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html>`_.
  Examples include:

  - Python non-string type (float, int, bool)
  - Numpy non-string type (e.g. np.float32, np.int64, np.bool)
  - Numpy.dtype array-protocol type strings (e.g. 'i4', 'f8', 'S15')

  If no ``dtype`` value is provided then the type is inferred using
  ``np.array(data)``.  When ``data`` is provided then the ``shape``
  and ``length`` arguments are ignored.

**Provide ``length`` and optionally ``shape``, but not ``data``**

  Examples::

    col = Column(name='a', length=5)
    col = Column(name='a', dtype=int, length=10, shape=(3,4))

  The default ``dtype`` is ``np.float64``.  The ``shape`` argument is the array shape of a
  single cell in the column.  The default ``shape`` is () which means a single value in
  each element.

.. note::

   After setting the type for a column, that type cannot be changed.
   If data values of a different type are assigned to the column then they
   will be cast to the existing column type.

.. _table_format_string:

Format specifier
^^^^^^^^^^^^^^^^

The format specifier controls the output of column values when a table or column
is printed or written to an ASCII table.  In the simplest case, it is a string
that can be passed to python's built-in `format
<https://docs.python.org/3/library/functions.html#format>`_ function.  For more
complicated formatting, one can also give "old-style" or "new-style"
format strings, or even a function:

**Plain format specification**

This type of string specifies directly how the value should be formatted,
using a `format specification mini-language
<https://docs.python.org/3/library/string.html#formatspec>`_ that is
quite similar to C.

   ``".4f"`` will give four digits after the decimal in float format, or

   ``"6d"`` will give integers in 6-character fields.

**Old-style format string**

This corresponds to syntax like ``"%.4f" % value`` as documented in
`String formatting operations <https://docs.python.org/3/library/stdtypes.html#string-formatting-operations>`_.

   ``"%.4f"`` to print four digits after the decimal in float format, or

   ``"%6d"`` to print an integer in a 6-character wide field.

**New-style format string**

This corresponds to syntax like ``"{:.4f}".format(value)`` as documented in
`format string syntax
<https://docs.python.org/3/library/string.html#format-string-syntax>`_.

   ``"{:.4f}"`` to print four digits after the decimal in float format, or

   ``"{:6d}"`` to print an integer in a 6-character wide field.

Note that in either format string case any Python string that formats exactly
one value is valid, so ``{:.4f} angstroms`` or ``Value: %12.2f`` would both
work.

**Function**

The greatest flexibility can be achieved by setting a formatting function. This
function must accept a single argument (the value) and return a string. In the
following example this is used to make a LaTeX ready output::

    >>> t = Table([[1,2],[1.234e9,2.34e-12]], names = ('a','b'))
    >>> def latex_exp(value):
    ...     val = '{0:8.2}'.format(value)
    ...     mant, exp = val.split('e')
    ...     # remove leading zeros
    ...     exp = exp[0] + exp[1:].lstrip('0')
    ...     return '$ {0} \\times 10^{{ {1} }}$' .format(mant, exp)
    >>> t['b'].format = latex_exp
    >>> t['a'].format = '.4f'
    >>> import sys
    >>> t.write(sys.stdout, format='latex')
    \begin{table}
    \begin{tabular}{cc}
    a & b \\
    1.0000 & $  1.2 \times 10^{ +9 }$ \\
    2.0000 & $  2.3 \times 10^{ -12 }$ \\
    \end{tabular}
    \end{table}


TableColumns
------------

Each |Table| object has an attribute ``columns`` which is an ordered dictionary
that stores all of the |Column| objects in the table (see also the `Column`_
section).  Technically the ``columns`` attribute is a |TableColumns| object,
which is an enhanced ordered dictionary that provides easier ways to select
multiple columns.  There are a few key points to remember:

- A |Table| can be initialized from a |TableColumns| object (copy is always True).
- Selecting multiple columns from a |TableColumns| object returns another
  |TableColumns| object.
- Select one column from a |TableColumns| object returns a |Column|.

So now look at the ways to select columns from a |TableColumns| object:

**Select columns by name**
::

  >>> t = Table(names=('a', 'b', 'c', 'd'))

  >>> t.columns['d', 'c', 'b']
  <TableColumns names=('d','c','b')>

**Select columns by index slicing**
::

  >>> t.columns[0:2]  # Select first two columns
  <TableColumns names=('a','b')>

  >>> t.columns[::-1]  # Reverse column order
  <TableColumns names=('d','c','b','a')>

**Select column by index or name**
::

  >>> t.columns[1]  # Choose columns by index
  <Column name='b' dtype='float64' length=0>

  >>> t.columns['b']  # Choose column by name
  <Column name='b' dtype='float64' length=0>

.. _subclassing_table:

Subclassing Table
=================

For some applications it can be useful to subclass the |Table| class in order
to introduce specialized behavior.  In addition to subclassing |Table| it is
frequently desirable to change the behavior of the internal class objects which
are contained or created by a Table.  This includes rows, columns, formatting,
and the columns container.  In order to do this the subclass needs to declare
what class to use (if it is different from the built-in version).  This is done by
specifying one or more of the class attributes ``Row``, ``Column``,
``MaskedColumn``, ``TableColumns``, or ``TableFormatter``.

The following trivial example overrides all of these with do-nothing
subclasses, but in practice you would override only the necessary subcomponents::

  >>> from astropy.table import Table, Row, Column, MaskedColumn, TableColumns, TableFormatter

  >>> class MyRow(Row): pass
  >>> class MyColumn(Column): pass
  >>> class MyMaskedColumn(MaskedColumn): pass
  >>> class MyTableColumns(TableColumns): pass
  >>> class MyTableFormatter(TableFormatter): pass

  >>> class MyTable(Table):
  ...     """
  ...     Custom subclass of astropy.table.Table
  ...     """
  ...     Row = MyRow  # Use MyRow to create a row object
  ...     Column = MyColumn  # Column
  ...     MaskedColumn = MyMaskedColumn  # Masked Column
  ...     TableColumns = MyTableColumns  # Ordered dict holding Column objects
  ...     TableFormatter = MyTableFormatter  # Controls table output


Example
-------

As a more practical example, suppose you have a table of data with a certain set of fixed
columns, but you also want to carry an arbitrary dictionary of keyword=value
parameters for each row and then access those values using the same item access
syntax as if they were columns.  It is assumed here that the extra parameters
are contained in a numpy object-dtype column named ``params``::

  >>> from astropy.table import Table, Row
  >>> class ParamsRow(Row):
  ...    """
  ...    Row class that allows access to an arbitrary dict of parameters
  ...    stored as a dict object in the ``params`` column.
  ...    """
  ...    def __getitem__(self, item):
  ...        if item not in self.colnames:
  ...            return super().__getitem__('params')[item]
  ...        else:
  ...            return super().__getitem__(item)
  ...
  ...    def keys(self):
  ...        out = [name for name in self.colnames if name != 'params']
  ...        params = [key.lower() for key in sorted(self['params'])]
  ...        return out + params
  ...
  ...    def values(self):
  ...        return [self[key] for key in self.keys()]

Now we put this into action with a trivial |Table| subclass::

  >>> class ParamsTable(Table):
  ...     Row = ParamsRow

First make a table and add a couple of rows::

  >>> t = ParamsTable(names=['a', 'b', 'params'], dtype=['i', 'f', 'O'])
  >>> t.add_row((1, 2.0, {'x': 1.5, 'y': 2.5}))
  >>> t.add_row((2, 3.0, {'z': 'hello', 'id': 123123}))
  >>> print(t)  # doctest: +SKIP
   a   b             params
  --- --- ----------------------------
    1 2.0         {'y': 2.5, 'x': 1.5}
    2 3.0 {'z': 'hello', 'id': 123123}

Now see what we have from our specialized ``ParamsRow`` object::

  >>> t[0]['y']
  2.5
  >>> t[1]['id']
  123123
  >>> t[1].keys()
  ['a', 'b', 'id', 'z']
  >>> t[1].values()
  [2, 3.0, 123123, 'hello']

To make this example really useful you might want to override
``Table.__getitem__`` in order to allow table-level access to the parameter
fields.  This might look something like::

  class ParamsTable(table.Table):
      Row = ParamsRow

      def __getitem__(self, item):
          if isinstance(item, str):
              if item in self.colnames:
                  return self.columns[item]
              else:
                  # If item is not a column name then create a new MaskedArray
                  # corresponding to self['params'][item] for each row.  This
                  # might not exist in some rows so mark as masked (missing) in
                  # those cases.
                  mask = np.zeros(len(self), dtype=np.bool)
                  item = item.upper()
                  values = [params.get(item) for params in self['params']]
                  for ii, value in enumerate(values):
                      if value is None:
                          mask[ii] = True
                          values[ii] = ''
                  return self.MaskedColumn(name=item, data=values, mask=mask)

          # ... and then the rest of the original __getitem__ ...

Columns and Quantities
----------------------

Astropy `~astropy.units.Quantity` objects can be handled within tables in two
complementary ways.  The first method stores the `~astropy.units.Quantity`
object natively within the table via the "mixin" column protocol.  See the
sections on :ref:`mixin_columns` and :ref:`quantity_and_qtable` for details,
but in brief the key difference is using the `~astropy.table.QTable` class to
indicate that a `~astropy.units.Quantity` should be stored natively within the
table::

  >>> from astropy.table import QTable
  >>> from astropy import units as u
  >>> t = QTable()
  >>> t['velocity'] = [3, 4] * u.m / u.s
  >>> type(t['velocity'])  # doctest: +SKIP
  astropy.units.quantity.Quantity

For new code that is quantity-aware we recommend using `~astropy.table.QTable`,
but this may not be possible in all situations (particularly when interfacing
with legacy code that does not handle quantities) and there are
:ref:`details_and_caveats` that apply.  In this case use the
`~astropy.table.Table` class, which will convert a `~astropy.units.Quantity` to
a `~astropy.table.Column` object with a ``unit`` attribute::

  >>> from astropy.table import Table
  >>> t = Table()
  >>> t['velocity'] = [3, 4] * u.m / u.s
  >>> type(t['velocity'])  # doctest: +SKIP
  astropy.table.column.Column
  >>> t['velocity'].unit
  Unit("m / s")

To learn more about using standard `~astropy.table.Column` objects with defined
units, see the :ref:`columns_with_units` section.


Table-like objects
==================

In order to improve interoperability between different table classes, an
astropy |Table| object can be created directly from any other table-like
object that provides an ``__astropy_table__`` method.  In this case the
``__astropy_table__`` method will be called as follows::

  >>> data = SomeOtherTableClass({'a': [1, 2], 'b': [3, 4]})  # doctest: +SKIP
  >>> t = QTable(data, copy=False, strict_copy=True)  # doctest: +SKIP

Internally the following call will be made to ask the ``data`` object
to return a representation of itself as an astropy |Table|, respecting
the ``copy`` preference of the original call to ``QTable()``::

  data.__astropy_table__(cls, copy, **kwargs)

Here ``cls`` is the |Table| class or subclass that is being instantiated
(|QTable| in this example), ``copy`` indicates whether a copy of the values in
``data`` should be provided, and ``**kwargs`` are any extra keyword arguments
which are not valid |Table| init keyword arguments.  In the example above,
``strict_copy=True`` would end up in ``**kwargs`` and get passed to
``__astropy_table__()``.

If ``copy`` is ``True`` then the ``__astropy_table__`` method must ensure that
a copy of the original data is returned.  If ``copy`` is ``False`` then a
reference to the table data should returned if possible.  If it is not possible
(e.g. the original data are in a Python list or must be otherwise transformed in
memory) then ``__astropy_table__`` method is free to either return a copy or
else raise an exception.  This choice depends on the preference of the
implementation.  The implementation might choose to allow an additional keyword
argument (e.g. ``strict_copy`` which gets passed via ``**kwargs``) to control the
behavior in this case.

As a simple example, imagine a dict-based table class.  (Note that |Table|
already can be initialized from a dict-like object, so this is a bit contrived
but does illustrate the principles involved.)  Please pay attention to the
method signature::

  def __astropy_table__(self, cls, copy, **kwargs):

Your class implementation of this must use the ``**kwargs`` technique for
catching keyword arguments at the end.  This is to ensure future compatibility
in case additional keywords are added to the internal ``table =
data.__astropy_table__(cls, copy)`` call.  Including ``**kwargs`` will prevent
breakage in this case.  ::

  class DictTable(dict):
      """
      Trivial "table" class that just uses a dict to hold columns.
      This does not actually implement anything useful that makes
      this a table.

      The non-standard ``strict_copy=False`` keyword arg here will be passed
      via the **kwargs of Table __init__().
      """

      def __astropy_table__(self, cls, copy, strict_copy=False, **kwargs):
          """
          Return an astropy Table of type ``cls``.

          Parameters
          ----------
          cls : type
               Astropy ``Table`` class or subclass
          copy : bool
               Copy input data (True) or return a reference (False)
          strict_copy : bool, optional
               Raise an exception if copy is False but reference is not
               possible
          **kwargs : dict, optional
               Additional keyword args (ignored currently)
          """
          if kwargs:
              warnings.warn('unexpected keyword args {}'.format(kwargs))

          cols = list(self.values())
          names = list(self.keys())

          # If returning a reference to existing data (copy=False) and
          # strict_copy=True, make sure that each column is a numpy ndarray.
          # If a column is a Python list or tuple then it must be copied for
          # representation in an astropy Table.

          if not copy and strict_copy:
              for name, col in zip(names, cols):
                  if not isinstance(col, np.ndarray):
                      raise ValueError('cannot have copy=False because column {} is '
                                       'not an ndarray'.format(name))

          return cls(cols, names=names, copy=copy)