1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
|
.. include:: references.txt
.. _construct_table:
Constructing a table
********************
There is great deal of flexibility in the way that a table can be initially
constructed. Details on the inputs to the |Table|
constructor are in the `Initialization Details`_ section. However, the
easiest way to understand how to make a table is by example.
Examples
========
Much of the flexibility lies in the types of data structures
which can be used to initialize the table data. The examples below show how to
create a table from scratch with no initial data, create a table with a list of
columns, a dictionary of columns, or from `numpy` arrays (either structured or
homogeneous).
Setup
-----
For the following examples you need to import the |Table| and |Column| classes
along with the `numpy` package::
>>> from astropy.table import Table, Column
>>> import numpy as np
Creating from scratch
---------------------
A Table can be created without any initial input data or even without any
initial columns. This is useful for building tables dynamically if the initial
size, columns, or data are not known.
.. Note::
Adding rows requires making a new copy of the entire
table each time, so in the case of large tables this may be slow.
On the other hand, adding columns is reasonably fast.
::
>>> t = Table()
>>> t['a'] = [1, 4]
>>> t['b'] = Column([2.0, 5.0], unit='cm', description='Velocity')
>>> t['c'] = ['x', 'y']
>>> t = Table(names=('a', 'b', 'c'), dtype=('f4', 'i4', 'S2'))
>>> t.add_row((1, 2.0, 'x'))
>>> t.add_row((4, 5.0, 'y'))
>>> t = Table(dtype=[('a', 'f4'), ('b', 'i4'), ('c', 'S2')])
Another option for creating a table is using the `~astropy.table.QTable` class.
In this case any `~astropy.units.Quantity` column objects will be stored
natively within the table via the "mixin" column protocol (see `Columns and
Quantities`_ for details)::
>>> from astropy.table import QTable
>>> from astropy import units as u
>>> t = QTable()
>>> t['velocity'] = [3, 4] * u.m / u.s
>>> type(t['velocity']) # doctest: +SKIP
astropy.units.quantity.Quantity
Comment lines
-------------
Comment lines in an ASCII file can be added via the ``'comments'`` key in the
table's metadata. The following will insert two comment lines in the output
ASCII file unless ``comment=False`` is explicitly set in ``write()``::
>>> import sys
>>> from astropy.table import Table
>>> t = Table(names=('a', 'b', 'c'), dtype=('f4', 'i4', 'S2'))
>>> t.add_row((1, 2.0, 'x'))
>>> t.meta['comments'] = ['Here is my explanatory text. This is awesome.',
... 'Second comment line.']
>>> t.write(sys.stdout, format='ascii')
# Here is my explanatory text. This is awesome.
# Second comment line.
a b c
1.0 2 x
List of columns
---------------
A typical case is where you have a number of data columns with the same length
defined in different variables. These might be Python lists or `numpy` arrays
or a mix of the two. These can be used to create a |Table| by putting the column
data variables into a Python list. In this case the column names are not
defined by the input data, so they must either be set using the ``names``
keyword or they will be auto-generated as ``col<N>``.
::
>>> a = np.array([1, 4], dtype=np.int32)
>>> b = [2.0, 5.0]
>>> c = ['x', 'y']
>>> t = Table([a, b, c], names=('a', 'b', 'c'))
>>> t
<Table length=2>
a b c
int32 float64 str1
----- ------- ----
1 2.0 x
4 5.0 y
**Make a new table using columns from the first table**
Once you have a |Table| then you can make new table by selecting columns
and putting this into a Python list, e.g. ``[ t['c'], t['a'] ]``::
>>> Table([t['c'], t['a']])
<Table length=2>
c a
str1 int32
---- -----
x 1
y 4
**Make a new table using expressions involving columns**
The |Column| object is derived from the standard `numpy` array and can be used
directly in arithmetic expressions. This allows for a compact way of making a
new table with modified column values::
>>> Table([t['a']**2, t['b'] + 10])
<Table length=2>
a b
int32 float64
----- -------
1 12.0
16 15.0
**Different types of column data**
The list input method for |Table| is very flexible since you can use a mix
of different data types to initialize a table::
>>> a = (1, 4)
>>> b = np.array([[2, 3], [5, 6]]) # vector column
>>> c = Column(['x', 'y'], name='axis')
>>> arr = (a, b, c)
>>> Table(arr) # doctest: +SKIP
<Table length=2>
col0 col1 [2] axis
int64 int64 str1
----- -------- ----
1 2 .. 3 x
4 5 .. 6 y
Notice that in the third column the existing column name ``'axis'`` is used.
Dict of columns
----------------
A dictionary of column data can be used to initialize a |Table|.
>>> arr = {'a': np.array([1, 4], dtype=np.int32),
... 'b': [2.0, 5.0],
... 'c': ['x', 'y']}
>>>
>>> Table(arr) # doctest: +SKIP
<Table length=2>
a c b
int32 str1 float64
----- ---- -------
1 x 2.0
4 y 5.0
**Specify the column order and optionally the data types**
::
>>> Table(arr, names=('a', 'b', 'c'), dtype=('f8', 'i4', 'S2')) # doctest: +IGNORE_OUTPUT_3
<Table length=2>
a b c
float64 int32 str2
------- ----- ----
1.0 2 x
4.0 5 y
**Different types of column data**
The input column data can be any data type that can initialize a |Column| object::
>>> arr = {'a': (1, 4),
... 'b': np.array([[2, 3], [5, 6]]),
... 'c': Column(['x', 'y'], name='axis')}
>>> Table(arr, names=('a', 'b', 'c')) # doctest: +SKIP
<Table length=2>
a b [2] c
int64 int64 str1
----- ------ ----
1 2 .. 3 x
4 5 .. 6 y
Notice that the key ``'c'`` takes precedence over the existing column name
``'axis'`` in the third column. Also see that the ``'b'`` column is a vector
column where each row element is itself a 2-element array.
**Renaming columns is not possible**
::
>>> Table(arr, names=('a_new', 'b_new', 'c_new'))
Traceback (most recent call last):
...
KeyError: 'a_new'
Row data
---------
Row-oriented data can be used to create a table using the ``rows``
keyword argument.
**List of data records as list or tuple**
If you have row-oriented input data such as a list of records, you
need to use the ``rows`` keyword to create a table::
>>> data_rows = [(1, 2.0, 'x'),
... (4, 5.0, 'y'),
... (5, 8.2, 'z')]
>>> t = Table(rows=data_rows, names=('a', 'b', 'c'))
>>> print(t)
a b c
--- --- ---
1 2.0 x
4 5.0 y
5 8.2 z
The data object passed as the ``rows`` argument can be any form which is
parsable by the ``np.rec.fromrecords()`` function.
**List of dict objects**
You can also initialize a table with row values. This is constructed as a
list of dict objects. The keys determine the column names::
>>> data = [{'a': 5, 'b': 10},
... {'a': 15, 'b': 20}]
>>> Table(rows=data) # doctest: +SKIP
<Table length=2>
a b
int64 int64
----- -----
5 10
15 20
Every row must have the same set of keys or a ValueError will be thrown::
>>> t = Table(rows=[{'a': 5, 'b': 10}, {'a': 15, 'b': 30, 'c': 50}])
Traceback (most recent call last):
...
ValueError: Row 0 has no value for column c
**Single row**
You can also make a new table from a single row of an existing table::
>>> a = [1, 4]
>>> b = [2.0, 5.0]
>>> t = Table([a, b], names=('a', 'b'))
>>> t2 = Table(rows=t[1])
Remember that a |Row| has effectively a zero length compared to the
newly created |Table| which has a length of one. This is similar to
the difference between a scalar ``1`` (length 0) and an array like
``np.array([1])`` with length 1.
.. Note::
In the case of input data as a list of dicts or a single Table row, it is
allowed to supply the data as the ``data`` argument since these forms
are always unambiguous. For example ``Table([{'a': 1}, {'a': 2}])`` is
accepted. However, a list of records must always be provided using the
``rows`` keyword, otherwise it will be interpreted as a list of columns.
NumPy structured array
----------------------
The structured array is the standard mechanism in `numpy` for storing
heterogeneous table data. Most scientific I/O packages that read table
files (e.g. `PyFITS
<https://github.com/spacetelescope/pyfits>`_, `vo.table
<http://stsdas.stsci.edu/astrolib/vo/html/intro_table.html>`_, `asciitable
<http://cxc.harvard.edu/contrib/asciitable/>`_) will return the table in an
object that is based on the structured array. A structured array can be
created using::
>>> arr = np.array([(1, 2.0, 'x'),
... (4, 5.0, 'y')],
... dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'S2')])
From ``arr`` it is simple to create the corresponding |Table| object::
>>> Table(arr) # doctest: +IGNORE_OUTPUT_3
<Table length=2>
a b c
int32 float64 str2
----- ------- ----
1 2.0 x
4 5.0 y
Note that in the above example and most the following ones we are creating a
table and immediately asking the interactive Python interpreter to print the
table to see what we made. In real code you might do something like::
>>> table = Table(arr)
>>> print(table)
a b c
--- --- ---
1 2.0 x
4 5.0 y
**New column names**
The column names can be changed from the original values by providing the
``names`` argument::
>>> Table(arr, names=('a_new', 'b_new', 'c_new')) # doctest: +IGNORE_OUTPUT_3
<Table length=2>
a_new b_new c_new
int32 float64 str2
----- ------- -----
1 2.0 x
4 5.0 y
**New data types**
Likewise the data type for each column can by changed with ``dtype``::
>>> Table(arr, dtype=('f4', 'i4', 'S4')) # doctest: +IGNORE_OUTPUT_3
<Table length=2>
a b c
float32 int32 str4
------- ----- ----
1.0 2 x
4.0 5 y
>>> Table(arr, names=('a_new', 'b_new', 'c_new'), dtype=('f4', 'i4', 'S4')) # doctest: +IGNORE_OUTPUT_3
<Table length=2>
a_new b_new c_new
float32 int32 str4
------- ----- -----
1.0 2 x
4.0 5 y
NumPy homogeneous array
-----------------------
A `numpy` 1-d array is treated as a single row table where each element of the
array corresponds to a column::
>>> Table(np.array([1, 2, 3]), names=['a', 'b', 'c'], dtype=('i8', 'i8', 'i8'))
<Table length=1>
a b c
int64 int64 int64
----- ----- -----
1 2 3
A `numpy` 2-d array (where all elements have the same type) can also be
converted into a |Table|. In this case the column names are not specified by
the data and must either be provided by the user or will be automatically
generated as ``col<N>`` where ``<N>`` is the column number.
**Basic example with automatic column names**
::
>>> arr = np.array([[1, 2, 3],
... [4, 5, 6]], dtype=np.int32)
>>> Table(arr)
<Table length=2>
col0 col1 col2
int32 int32 int32
----- ----- -----
1 2 3
4 5 6
**Column names and types specified**
::
>>> Table(arr, names=('a_new', 'b_new', 'c_new'), dtype=('f4', 'i4', 'S4')) # doctest: +IGNORE_OUTPUT_3
<Table length=2>
a_new b_new c_new
float32 int32 str4
------- ----- -----
1.0 2 3
4.0 5 6
**Referencing the original data**
It is possible to reference the original data for an homogeneous array as long
as the data types are not changed::
>>> t = Table(arr, copy=False)
**Python arrays versus `numpy` arrays as input**
There is a slightly subtle issue that is important to understand in the way
that |Table| objects are created. Any data input that looks like a Python list
(including a tuple) is considered to be a list of columns. In contrast an
homogeneous `numpy` array input is interpreted as a list of rows::
>>> arr = [[1, 2, 3],
... [4, 5, 6]]
>>> np_arr = np.array(arr)
>>> print(Table(arr)) # Two columns, three rows
col0 col1
---- ----
1 4
2 5
3 6
>>> print(Table(np_arr)) # Three columns, two rows
col0 col1 col2
---- ---- ----
1 2 3
4 5 6
This dichotomy is needed to support flexible list input while retaining the
natural interpretation of 2-d `numpy` arrays where the first index corresponds
to data "rows" and the second index corresponds to data "columns".
From existing table
--------------------
A new table can be created by selecting a subset of columns in an existing
table::
>>> t = Table(names=('a', 'b', 'c'))
>>> t['c', 'b', 'a'] # Makes a copy of the data
<Table length=0>
c b a
float64 float64 float64
------- ------- -------
An alternate way to use the ``columns`` attribute (explained in the
`TableColumns`_ section) to initialize a new table. This let's you choose
columns by their numerical index or name and supports slicing syntax::
>>> Table(t.columns[0:2])
<Table length=0>
a b
float64 float64
------- -------
>>> Table([t.columns[0], t.columns['c']])
<Table length=0>
a c
float64 float64
------- -------
To create a copy of an existing table that is empty (has no rows)::
>>> t = Table([[1.0, 2.3], [2.1, 3]], names=['x', 'y'])
>>> t
<Table length=2>
x y
float64 float64
------- -------
1.0 2.1
2.3 3.0
>>> tcopy = t[:0].copy()
>>> tcopy
<Table length=0>
x y
float64 float64
------- -------
Empty array of a known size
---------------------------
If you do know the size your table will be, but don't know the values in
advance, you can create a zeroed numpy array and build the astropy table from
it::
>>> N = 3
>>> dtype = [('a', 'i4'), ('b', 'f8'), ('c', 'bool')]
>>> t = Table(data=np.zeros(N, dtype=dtype))
>>> t
<Table length=3>
a b c
int32 float64 bool
----- ------- -----
0 0.0 False
0 0.0 False
0 0.0 False
For example, you can then fill in this table row-by-row from extracted from another table, or generated on the fly::
>>> for i in range(len(t)):
... t[i] = (i, 2.5*i, i % 2)
>>> t
<Table length=3>
a b c
int32 float64 bool
----- ------- -----
0 0.0 False
1 2.5 True
2 5.0 False
Initialization Details
======================
A table object is created by initializing a |Table| class
object with the following arguments, all of which are optional:
``data`` : numpy ndarray, dict, list, or Table
Data to initialize table.
``names`` : list
Specify column names
``dtype`` : list
Specify column data types
``meta`` : dict-like
Meta-Data associated with the table
``copy`` : boolean
Copy the input data (default=True).
The following subsections provide further detail on the values and options for
each of the keyword arguments that can be used to create a new |Table| object.
data
----
The |Table| object can be initialized with several different forms
for the ``data`` argument.
**numpy ndarray (structured array)**
The base column names are the field names of the ``data`` structured
array. The ``names`` list (optional) can be used to select
particular fields and/or reorder the base names. The ``dtype`` list
(optional) must match the length of ``names`` and is used to
override the existing ``data`` types.
**numpy ndarray (homogeneous)**
If the ``data`` ndarray is 1-dimensional then it is treated as a single row
table where each element of the array corresponds to a column.
If the ``data`` ndarray is at least 2-dimensional then the first
(left-most) index corresponds to row number (table length) and the
second index corresponds to column number (table width). Higher
dimensions get absorbed in the shape of each table cell.
If provided the ``names`` list must match the "width" of the ``data``
argument. The default for ``names`` is to auto-generate column names
in the form "col<N>". If provided the ``dtype`` list overrides the
base column types and must match the length of ``names``.
**dict-like**
The keys of the ``data`` object define the base column names. The
corresponding values can be Column objects, numpy arrays, or list-like
objects. The ``names`` list (optional) can be used to select
particular fields and/or reorder the base names. The ``dtype`` list
(optional) must match the length of ``names`` and is used to override
the existing or default data types.
**list-like**
Each item in the ``data`` list provides a column of data values and
can be a Column object, numpy array, or list-like object. The
``names`` list defines the name of each column. The names will be
auto-generated if not provided (either from the ``names`` argument or
by Column objects). If provided the ``names`` argument must match the
number of items in the ``data`` list. The optional ``dtype`` list
will override the existing or default data types and must match
``names`` in length.
**list-of-dicts**
Similar to Python's builtin ``csv.DictReader``, each item in the
``data`` list provides a row of data values and must be a dict. The
key values in each dict define the column names and each row must
have identical column names. The ``names`` argument may be supplied
to specify column ordering. If it is not provided, the column order will
default to alphabetical. The ``dtype`` list may be specified, and must
correspond to the order of output columns. If any row's keys do no match
the rest of the rows, a ValueError will be thrown.
**table-like object**
If another table-like object has a ``__astropy_table__`` method then
that object can be used to directly create a ``Table`` object. See
the `Table-like objects`_ section for details.
**None**
Initialize a zero-length table. If ``names`` and optionally ``dtype``
are provided then the corresponding columns are created.
names
-----
The ``names`` argument provides a way to specify the table column names or
override the existing ones. By default the column names are either taken
from existing names (for ``ndarray`` or ``Table`` input) or auto-generated
as ``col<N>``. If ``names`` is provided then it must be a list with the
same length as the number of columns. Any list elements with value
``None`` fall back to the default name.
In the case where ``data`` is provided as dict of columns, the ``names``
argument can be supplied to specify the order of columns. The ``names`` list
must then contain each of the keys in the ``data`` dict. If ``names`` is not
supplied then the order of columns in the output table is not determinate.
dtype
-----
The ``dtype`` argument provides a way to specify the table column data
types or override the existing types. By default the types are either
taken from existing types (for ``ndarray`` or ``Table`` input) or
auto-generated by the ``numpy.array()`` routine. If ``dtype`` is provided
then it must be a list with the same length as the number of columns. The
values must be valid ``numpy.dtype`` initializers or ``None``. Any list
elements with value ``None`` fall back to the default type.
In the case where ``data`` is provided as dict of columns, the ``dtype`` argument
must be accompanied by a corresponding ``names`` argument in order to uniquely
specify the column ordering.
meta
----
The ``meta`` argument is simply an object that contains meta-data associated
with the table. It is recommended that this object be a dict or
OrderedDict_, but the only firm requirement is that it can be copied with
the standard library ``copy.deepcopy()`` routine. By default ``meta`` is
an empty OrderedDict_.
copy
----
By default the input ``data`` are copied into a new internal ``np.ndarray``
object in the Table object. In the case where ``data`` is either an
``np.ndarray`` object or an existing ``Table``, it is possible to use a
reference to the existing data by setting ``copy=False``. This has the
advantage of reducing memory use and being faster. However one should take
care because any modifications to the new Table data will also be seen in the
original input data. See the `Copy versus Reference`_ section for more
information.
.. _copy_versus_reference:
Copy versus Reference
=====================
Normally when a new |Table| object is created, the input data are *copied* into
a new internal array object. This ensures that if the new table elements are
modified then the original data will not be affected. However, when creating a
table from a numpy ndarray object (structured or homogeneous), it is possible to
disable copying so that instead a memory reference to the original data is
used. This has the advantage of being faster and using less memory. However,
caution must be exercised because the new table data and original data will be
linked, as shown below::
>>> arr = np.array([(1, 2.0, 'x'),
... (4, 5.0, 'y')],
... dtype=[('a', 'i8'), ('b', 'f8'), ('c', 'S2')])
>>> print(arr['a']) # column "a" of the input array
[1 4]
>>> t = Table(arr, copy=False)
>>> t['a'][1] = 99
>>> print(arr['a']) # arr['a'] got changed when we modified t['a']
[ 1 99]
Note that when referencing the data it is not possible to change the data types
since that operation requires making a copy of the data. In this case an error
occurs::
>>> t = Table(arr, copy=False, dtype=('f4', 'i4', 'S4'))
Traceback (most recent call last):
...
ValueError: Cannot specify dtype when copy=False
Another caveat in using referenced data is that you if add a new row to the
table then the reference to the original data array is lost and instead the
table will now hold a copy of the original values (in addition to the new row).
Column and TableColumns classes
===============================
There are two classes, |Column| and |TableColumns|, that are useful when
constructing new tables.
Column
------
A |Column| object can be created as follows, where in all cases the column
``name`` should be provided as a keyword argument and one can optionally provide
these values:
``data`` : list, ndarray or None
Column data values
``dtype`` : numpy.dtype compatible value
Data type for column
``description`` : str
Full description of column
``unit`` : str
Physical unit
``format`` : str or function
`Format specifier`_ for outputting column values
``meta`` : dict
Meta-data associated with the column
Initialization options
^^^^^^^^^^^^^^^^^^^^^^
The column data values, shape, and data type are specified in one of two ways:
**Provide a ``data`` value but not a ``length`` or ``shape``**
Examples::
col = Column([1, 2], name='a') # shape=(2,)
col = Column([[1, 2], [3, 4]], name='a') # shape=(2, 2)
col = Column([1, 2], name='a', dtype=float)
col = Column(np.array([1, 2]), name='a')
col = Column(['hello', 'world'], name='a')
The ``dtype`` argument can be any value which is an acceptable
fixed-size data-type initializer for the numpy.dtype() method. See
`<https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html>`_.
Examples include:
- Python non-string type (float, int, bool)
- Numpy non-string type (e.g. np.float32, np.int64, np.bool)
- Numpy.dtype array-protocol type strings (e.g. 'i4', 'f8', 'S15')
If no ``dtype`` value is provided then the type is inferred using
``np.array(data)``. When ``data`` is provided then the ``shape``
and ``length`` arguments are ignored.
**Provide ``length`` and optionally ``shape``, but not ``data``**
Examples::
col = Column(name='a', length=5)
col = Column(name='a', dtype=int, length=10, shape=(3,4))
The default ``dtype`` is ``np.float64``. The ``shape`` argument is the array shape of a
single cell in the column. The default ``shape`` is () which means a single value in
each element.
.. note::
After setting the type for a column, that type cannot be changed.
If data values of a different type are assigned to the column then they
will be cast to the existing column type.
.. _table_format_string:
Format specifier
^^^^^^^^^^^^^^^^
The format specifier controls the output of column values when a table or column
is printed or written to an ASCII table. In the simplest case, it is a string
that can be passed to python's built-in `format
<https://docs.python.org/3/library/functions.html#format>`_ function. For more
complicated formatting, one can also give "old-style" or "new-style"
format strings, or even a function:
**Plain format specification**
This type of string specifies directly how the value should be formatted,
using a `format specification mini-language
<https://docs.python.org/3/library/string.html#formatspec>`_ that is
quite similar to C.
``".4f"`` will give four digits after the decimal in float format, or
``"6d"`` will give integers in 6-character fields.
**Old-style format string**
This corresponds to syntax like ``"%.4f" % value`` as documented in
`String formatting operations <https://docs.python.org/3/library/stdtypes.html#string-formatting-operations>`_.
``"%.4f"`` to print four digits after the decimal in float format, or
``"%6d"`` to print an integer in a 6-character wide field.
**New-style format string**
This corresponds to syntax like ``"{:.4f}".format(value)`` as documented in
`format string syntax
<https://docs.python.org/3/library/string.html#format-string-syntax>`_.
``"{:.4f}"`` to print four digits after the decimal in float format, or
``"{:6d}"`` to print an integer in a 6-character wide field.
Note that in either format string case any Python string that formats exactly
one value is valid, so ``{:.4f} angstroms`` or ``Value: %12.2f`` would both
work.
**Function**
The greatest flexibility can be achieved by setting a formatting function. This
function must accept a single argument (the value) and return a string. In the
following example this is used to make a LaTeX ready output::
>>> t = Table([[1,2],[1.234e9,2.34e-12]], names = ('a','b'))
>>> def latex_exp(value):
... val = '{0:8.2}'.format(value)
... mant, exp = val.split('e')
... # remove leading zeros
... exp = exp[0] + exp[1:].lstrip('0')
... return '$ {0} \\times 10^{{ {1} }}$' .format(mant, exp)
>>> t['b'].format = latex_exp
>>> t['a'].format = '.4f'
>>> import sys
>>> t.write(sys.stdout, format='latex')
\begin{table}
\begin{tabular}{cc}
a & b \\
1.0000 & $ 1.2 \times 10^{ +9 }$ \\
2.0000 & $ 2.3 \times 10^{ -12 }$ \\
\end{tabular}
\end{table}
TableColumns
------------
Each |Table| object has an attribute ``columns`` which is an ordered dictionary
that stores all of the |Column| objects in the table (see also the `Column`_
section). Technically the ``columns`` attribute is a |TableColumns| object,
which is an enhanced ordered dictionary that provides easier ways to select
multiple columns. There are a few key points to remember:
- A |Table| can be initialized from a |TableColumns| object (copy is always True).
- Selecting multiple columns from a |TableColumns| object returns another
|TableColumns| object.
- Select one column from a |TableColumns| object returns a |Column|.
So now look at the ways to select columns from a |TableColumns| object:
**Select columns by name**
::
>>> t = Table(names=('a', 'b', 'c', 'd'))
>>> t.columns['d', 'c', 'b']
<TableColumns names=('d','c','b')>
**Select columns by index slicing**
::
>>> t.columns[0:2] # Select first two columns
<TableColumns names=('a','b')>
>>> t.columns[::-1] # Reverse column order
<TableColumns names=('d','c','b','a')>
**Select column by index or name**
::
>>> t.columns[1] # Choose columns by index
<Column name='b' dtype='float64' length=0>
>>> t.columns['b'] # Choose column by name
<Column name='b' dtype='float64' length=0>
.. _subclassing_table:
Subclassing Table
=================
For some applications it can be useful to subclass the |Table| class in order
to introduce specialized behavior. In addition to subclassing |Table| it is
frequently desirable to change the behavior of the internal class objects which
are contained or created by a Table. This includes rows, columns, formatting,
and the columns container. In order to do this the subclass needs to declare
what class to use (if it is different from the built-in version). This is done by
specifying one or more of the class attributes ``Row``, ``Column``,
``MaskedColumn``, ``TableColumns``, or ``TableFormatter``.
The following trivial example overrides all of these with do-nothing
subclasses, but in practice you would override only the necessary subcomponents::
>>> from astropy.table import Table, Row, Column, MaskedColumn, TableColumns, TableFormatter
>>> class MyRow(Row): pass
>>> class MyColumn(Column): pass
>>> class MyMaskedColumn(MaskedColumn): pass
>>> class MyTableColumns(TableColumns): pass
>>> class MyTableFormatter(TableFormatter): pass
>>> class MyTable(Table):
... """
... Custom subclass of astropy.table.Table
... """
... Row = MyRow # Use MyRow to create a row object
... Column = MyColumn # Column
... MaskedColumn = MyMaskedColumn # Masked Column
... TableColumns = MyTableColumns # Ordered dict holding Column objects
... TableFormatter = MyTableFormatter # Controls table output
Example
-------
As a more practical example, suppose you have a table of data with a certain set of fixed
columns, but you also want to carry an arbitrary dictionary of keyword=value
parameters for each row and then access those values using the same item access
syntax as if they were columns. It is assumed here that the extra parameters
are contained in a numpy object-dtype column named ``params``::
>>> from astropy.table import Table, Row
>>> class ParamsRow(Row):
... """
... Row class that allows access to an arbitrary dict of parameters
... stored as a dict object in the ``params`` column.
... """
... def __getitem__(self, item):
... if item not in self.colnames:
... return super().__getitem__('params')[item]
... else:
... return super().__getitem__(item)
...
... def keys(self):
... out = [name for name in self.colnames if name != 'params']
... params = [key.lower() for key in sorted(self['params'])]
... return out + params
...
... def values(self):
... return [self[key] for key in self.keys()]
Now we put this into action with a trivial |Table| subclass::
>>> class ParamsTable(Table):
... Row = ParamsRow
First make a table and add a couple of rows::
>>> t = ParamsTable(names=['a', 'b', 'params'], dtype=['i', 'f', 'O'])
>>> t.add_row((1, 2.0, {'x': 1.5, 'y': 2.5}))
>>> t.add_row((2, 3.0, {'z': 'hello', 'id': 123123}))
>>> print(t) # doctest: +SKIP
a b params
--- --- ----------------------------
1 2.0 {'y': 2.5, 'x': 1.5}
2 3.0 {'z': 'hello', 'id': 123123}
Now see what we have from our specialized ``ParamsRow`` object::
>>> t[0]['y']
2.5
>>> t[1]['id']
123123
>>> t[1].keys()
['a', 'b', 'id', 'z']
>>> t[1].values()
[2, 3.0, 123123, 'hello']
To make this example really useful you might want to override
``Table.__getitem__`` in order to allow table-level access to the parameter
fields. This might look something like::
class ParamsTable(table.Table):
Row = ParamsRow
def __getitem__(self, item):
if isinstance(item, str):
if item in self.colnames:
return self.columns[item]
else:
# If item is not a column name then create a new MaskedArray
# corresponding to self['params'][item] for each row. This
# might not exist in some rows so mark as masked (missing) in
# those cases.
mask = np.zeros(len(self), dtype=np.bool)
item = item.upper()
values = [params.get(item) for params in self['params']]
for ii, value in enumerate(values):
if value is None:
mask[ii] = True
values[ii] = ''
return self.MaskedColumn(name=item, data=values, mask=mask)
# ... and then the rest of the original __getitem__ ...
Columns and Quantities
----------------------
Astropy `~astropy.units.Quantity` objects can be handled within tables in two
complementary ways. The first method stores the `~astropy.units.Quantity`
object natively within the table via the "mixin" column protocol. See the
sections on :ref:`mixin_columns` and :ref:`quantity_and_qtable` for details,
but in brief the key difference is using the `~astropy.table.QTable` class to
indicate that a `~astropy.units.Quantity` should be stored natively within the
table::
>>> from astropy.table import QTable
>>> from astropy import units as u
>>> t = QTable()
>>> t['velocity'] = [3, 4] * u.m / u.s
>>> type(t['velocity']) # doctest: +SKIP
astropy.units.quantity.Quantity
For new code that is quantity-aware we recommend using `~astropy.table.QTable`,
but this may not be possible in all situations (particularly when interfacing
with legacy code that does not handle quantities) and there are
:ref:`details_and_caveats` that apply. In this case use the
`~astropy.table.Table` class, which will convert a `~astropy.units.Quantity` to
a `~astropy.table.Column` object with a ``unit`` attribute::
>>> from astropy.table import Table
>>> t = Table()
>>> t['velocity'] = [3, 4] * u.m / u.s
>>> type(t['velocity']) # doctest: +SKIP
astropy.table.column.Column
>>> t['velocity'].unit
Unit("m / s")
To learn more about using standard `~astropy.table.Column` objects with defined
units, see the :ref:`columns_with_units` section.
Table-like objects
==================
In order to improve interoperability between different table classes, an
astropy |Table| object can be created directly from any other table-like
object that provides an ``__astropy_table__`` method. In this case the
``__astropy_table__`` method will be called as follows::
>>> data = SomeOtherTableClass({'a': [1, 2], 'b': [3, 4]}) # doctest: +SKIP
>>> t = QTable(data, copy=False, strict_copy=True) # doctest: +SKIP
Internally the following call will be made to ask the ``data`` object
to return a representation of itself as an astropy |Table|, respecting
the ``copy`` preference of the original call to ``QTable()``::
data.__astropy_table__(cls, copy, **kwargs)
Here ``cls`` is the |Table| class or subclass that is being instantiated
(|QTable| in this example), ``copy`` indicates whether a copy of the values in
``data`` should be provided, and ``**kwargs`` are any extra keyword arguments
which are not valid |Table| init keyword arguments. In the example above,
``strict_copy=True`` would end up in ``**kwargs`` and get passed to
``__astropy_table__()``.
If ``copy`` is ``True`` then the ``__astropy_table__`` method must ensure that
a copy of the original data is returned. If ``copy`` is ``False`` then a
reference to the table data should returned if possible. If it is not possible
(e.g. the original data are in a Python list or must be otherwise transformed in
memory) then ``__astropy_table__`` method is free to either return a copy or
else raise an exception. This choice depends on the preference of the
implementation. The implementation might choose to allow an additional keyword
argument (e.g. ``strict_copy`` which gets passed via ``**kwargs``) to control the
behavior in this case.
As a simple example, imagine a dict-based table class. (Note that |Table|
already can be initialized from a dict-like object, so this is a bit contrived
but does illustrate the principles involved.) Please pay attention to the
method signature::
def __astropy_table__(self, cls, copy, **kwargs):
Your class implementation of this must use the ``**kwargs`` technique for
catching keyword arguments at the end. This is to ensure future compatibility
in case additional keywords are added to the internal ``table =
data.__astropy_table__(cls, copy)`` call. Including ``**kwargs`` will prevent
breakage in this case. ::
class DictTable(dict):
"""
Trivial "table" class that just uses a dict to hold columns.
This does not actually implement anything useful that makes
this a table.
The non-standard ``strict_copy=False`` keyword arg here will be passed
via the **kwargs of Table __init__().
"""
def __astropy_table__(self, cls, copy, strict_copy=False, **kwargs):
"""
Return an astropy Table of type ``cls``.
Parameters
----------
cls : type
Astropy ``Table`` class or subclass
copy : bool
Copy input data (True) or return a reference (False)
strict_copy : bool, optional
Raise an exception if copy is False but reference is not
possible
**kwargs : dict, optional
Additional keyword args (ignored currently)
"""
if kwargs:
warnings.warn('unexpected keyword args {}'.format(kwargs))
cols = list(self.values())
names = list(self.keys())
# If returning a reference to existing data (copy=False) and
# strict_copy=True, make sure that each column is a numpy ndarray.
# If a column is a Python list or tuple then it must be copied for
# representation in an astropy Table.
if not copy and strict_copy:
for name, col in zip(names, cols):
if not isinstance(col, np.ndarray):
raise ValueError('cannot have copy=False because column {} is '
'not an ndarray'.format(name))
return cls(cols, names=names, copy=copy)
|