1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
# -*- coding: utf-8 -*-
# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
from datetime import datetime
from astropy.time import Time
from astropy import units as u
__all__ = ['time_support']
__doctest_requires__ = {'time_support': ['matplotlib']}
UNSUPPORTED_FORMATS = ('datetime', 'datetime64')
YMDHMS_FORMATS = ('fits', 'iso', 'isot', 'yday')
STR_FORMATS = YMDHMS_FORMATS + ('byear_str', 'jyear_str')
def time_support(*, scale=None, format=None, simplify=True):
"""
Enable support for plotting `astropy.time.Time` instances in
matplotlib.
May be (optionally) used with a ``with`` statement.
>>> import matplotlib.pyplot as plt
>>> from astropy import units as u
>>> from astropy import visualization
>>> with visualization.time_support(): # doctest: +IGNORE_OUTPUT
... plt.figure()
... plt.plot(Time(['2016-03-22T12:30:31', '2016-03-22T12:30:38', '2016-03-22T12:34:40']))
... plt.draw()
Parameters
----------
scale : str, optional
The time scale to use for the times on the axis. If not specified,
the scale of the first Time object passed to Matplotlib is used.
format : str, optional
The time format to use for the times on the axis. If not specified,
the format of the first Time object passed to Matplotlib is used.
simplify : bool, optional
If possible, simplify labels, e.g. by removing 00:00:00.000 times from
ISO strings if all labels fall on that time.
"""
import matplotlib.units as units
from matplotlib.ticker import MaxNLocator, ScalarFormatter
from astropy.visualization.wcsaxes.utils import select_step_hour, select_step_scalar
class AstropyTimeLocator(MaxNLocator):
# Note: we default to AutoLocator since many time formats
# can just use this.
def __init__(self, converter, *args, **kwargs):
kwargs['nbins'] = 4
super().__init__(*args, **kwargs)
self._converter = converter
def tick_values(self, vmin, vmax):
# Where we put the ticks depends on the format we are using
if self._converter.format in YMDHMS_FORMATS:
# If we are here, we need to check what the range of values
# is and decide how to find tick locations accordingly
vrange = vmax - vmin
if (self._converter.format != 'yday' and vrange > 31) or vrange > 366: # greater than a month
# We need to be careful here since not all years and months have
# the same length
# Start off by converting the values from the range to
# datetime objects, so that we can easily extract the year and
# month.
tmin = Time(vmin, scale=self._converter.scale, format='mjd').datetime
tmax = Time(vmax, scale=self._converter.scale, format='mjd').datetime
# Find the range of years
ymin = tmin.year
ymax = tmax.year
if ymax > ymin + 1: # greater than a year
# Find the step we want to use
ystep = int(select_step_scalar(max(1, (ymax - ymin) / 3)))
ymin = ystep * (ymin // ystep)
# Generate the years for these steps
times = []
for year in range(ymin, ymax + 1, ystep):
times.append(datetime(year=year, month=1, day=1))
else: # greater than a month but less than a year
mmin = tmin.month
mmax = tmax.month + 12 * (ymax - ymin)
mstep = int(select_step_scalar(max(1, (mmax - mmin) / 3)))
mmin = mstep * max(1, mmin // mstep)
# Generate the months for these steps
times = []
for month in range(mmin, mmax + 1, mstep):
times.append(datetime(year=ymin + month // 12,
month=month % 12, day=1))
# Convert back to MJD
values = Time(times, scale=self._converter.scale).mjd
elif vrange > 1: # greater than a day
self.set_params(steps=[1, 2, 5, 10])
values = super().tick_values(vmin, vmax)
else:
# Determine ideal step
dv = (vmax - vmin) / 3 * 24 << u.hourangle
# And round to nearest sensible value
dv = select_step_hour(dv).to_value(u.hourangle) / 24
# Determine tick locations
imin = np.ceil(vmin / dv)
imax = np.floor(vmax / dv)
values = np.arange(imin, imax + 1, dtype=np.int64) * dv
else:
values = super().tick_values(vmin, vmax)
# Get rid of values outside of the input interval
values = values[(values >= vmin) & (values <= vmax)]
return values
def __call__(self):
vmin, vmax = self.axis.get_view_interval()
return self.tick_values(vmin, vmax)
class AstropyTimeFormatter(ScalarFormatter):
def __init__(self, converter, *args, **kwargs):
super().__init__(*args, **kwargs)
self._converter = converter
self.set_useOffset(False)
self.set_scientific(False)
def __call__(self, value, pos=None):
# Needed for Matplotlib <3.1
if self._converter.format in STR_FORMATS:
return self.format_ticks([value])[0]
else:
return super().__call__(value, pos=pos)
def format_ticks(self, values):
if len(values) == 0:
return []
if self._converter.format in YMDHMS_FORMATS:
times = Time(values, format='mjd', scale=self._converter.scale)
formatted = getattr(times, self._converter.format)
if self._converter.simplify:
if self._converter.format in ('fits', 'iso', 'isot'):
if all([x.endswith('00:00:00.000') for x in formatted]):
split = ' ' if self._converter.format == 'iso' else 'T'
formatted = [x.split(split)[0] for x in formatted]
elif self._converter.format == 'yday':
if all([x.endswith(':001:00:00:00.000') for x in formatted]):
formatted = [x.split(':', 1)[0] for x in formatted]
return formatted
elif self._converter.format == 'byear_str':
return Time(values, format='byear', scale=self._converter.scale).byear_str
elif self._converter.format == 'jyear_str':
return Time(values, format='jyear', scale=self._converter.scale).jyear_str
else:
return super().format_ticks(values)
class MplTimeConverter(units.ConversionInterface):
def __init__(self, scale=None, format=None, simplify=None):
super().__init__()
self.format = format
self.scale = scale
self.simplify = simplify
# Keep track of original converter in case the context manager is
# used in a nested way.
self._original_converter = units.registry.get(Time)
units.registry[Time] = self
@property
def format(self):
return self._format
@format.setter
def format(self, value):
if value in UNSUPPORTED_FORMATS:
raise ValueError(f'time_support does not support format={value}')
self._format = value
def __enter__(self):
return self
def __exit__(self, type, value, tb):
if self._original_converter is None:
del units.registry[Time]
else:
units.registry[Time] = self._original_converter
def default_units(self, x, axis):
if isinstance(x, tuple):
x = x[0]
if self.format is None:
self.format = x.format
if self.scale is None:
self.scale = x.scale
return 'astropy_time'
def convert(self, value, unit, axis):
"""
Convert a Time value to a scalar or array.
"""
scaled = getattr(value, self.scale)
if self.format in YMDHMS_FORMATS:
return scaled.mjd
elif self.format == 'byear_str':
return scaled.byear
elif self.format == 'jyear_str':
return scaled.jyear
else:
return getattr(scaled, self.format)
def axisinfo(self, unit, axis):
"""
Return major and minor tick locators and formatters.
"""
majloc = AstropyTimeLocator(self)
majfmt = AstropyTimeFormatter(self)
return units.AxisInfo(majfmt=majfmt,
majloc=majloc,
label=f'Time ({self.scale})')
return MplTimeConverter(scale=scale, format=format, simplify=simplify)
|