1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
.. Force downloading of sites.json so that future doctest output isn't
.. cluttered with "Downloading ... [done]". This can be removed once we have a
.. better way of ignoring output lines based on pattern-matching, e.g.:
.. https://github.com/astropy/pytest-doctestplus/issues/11
.. testsetup::
>>> from astropy.coordinates import EarthLocation
>>> EarthLocation._get_site_registry(force_download=True) #doctest: +REMOTE_DATA +IGNORE_OUTPUT
.. _astropy-coordinates:
*******************************************************
Astronomical Coordinate Systems (`astropy.coordinates`)
*******************************************************
Introduction
============
The `~astropy.coordinates` package provides classes for representing a variety
of celestial/spatial coordinates and their velocity components, as well as tools
for converting between common coordinate systems in a uniform way.
Getting Started
===============
The best way to start using `~astropy.coordinates` is to use the |SkyCoord|
class. |SkyCoord| objects are instantiated by passing in positions (and
optional velocities) with specified units and a coordinate frame. Sky positions
are commonly passed in as `~astropy.units.Quantity` objects and the frame is
specified with the string name.
Example
-------
..
EXAMPLE START
Using the SkyCoord Class
To create a |SkyCoord| object to represent an ICRS (Right ascension [RA],
Declination [Dec]) sky position::
>>> from astropy import units as u
>>> from astropy.coordinates import SkyCoord
>>> c = SkyCoord(ra=10.625*u.degree, dec=41.2*u.degree, frame='icrs')
The initializer for |SkyCoord| is very flexible and supports inputs provided in
a number of convenient formats. The following ways of initializing a coordinate
are all equivalent to the above::
>>> c = SkyCoord(10.625, 41.2, frame='icrs', unit='deg')
>>> c = SkyCoord('00h42m30s', '+41d12m00s', frame='icrs')
>>> c = SkyCoord('00h42.5m', '+41d12m')
>>> c = SkyCoord('00 42 30 +41 12 00', unit=(u.hourangle, u.deg))
>>> c = SkyCoord('00:42.5 +41:12', unit=(u.hourangle, u.deg))
>>> c # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
(10.625, 41.2)>
The examples above illustrate a few rules to follow when creating a
coordinate object:
- Coordinate values can be provided either as unnamed positional arguments or
via keyword arguments like ``ra`` and ``dec``, or ``l`` and ``b`` (depending
on the frame).
- The coordinate ``frame`` keyword is optional because it defaults to
`~astropy.coordinates.ICRS`.
- Angle units must be specified for all components, either by passing in a
`~astropy.units.Quantity` object (e.g., ``10.5*u.degree``), by including them
in the value (e.g., ``'+41d12m00s'``), or via the ``unit`` keyword.
..
EXAMPLE END
|SkyCoord| and all other `~astropy.coordinates` objects also support
array coordinates. These work in the same way as single-value coordinates, but
they store multiple coordinates in a single object. When you are going
to apply the same operation to many different coordinates (say, from a
catalog), this is a better choice than a list of |SkyCoord| objects,
because it will be *much* faster than applying the operation to each
|SkyCoord| in a ``for`` loop. Like the underlying `~numpy.ndarray` instances
that contain the data, |SkyCoord| objects can be sliced, reshaped, etc.,
and can be used with functions like `numpy.moveaxis`, etc., that affect the
shape::
>>> import numpy as np
>>> c = SkyCoord(ra=[10, 11, 12, 13]*u.degree, dec=[41, -5, 42, 0]*u.degree)
>>> c
<SkyCoord (ICRS): (ra, dec) in deg
[(10., 41.), (11., -5.), (12., 42.), (13., 0.)]>
>>> c[1]
<SkyCoord (ICRS): (ra, dec) in deg
(11., -5.)>
>>> c.reshape(2, 2)
<SkyCoord (ICRS): (ra, dec) in deg
[[(10., 41.), (11., -5.)],
[(12., 42.), (13., 0.)]]>
>>> np.roll(c, 1)
<SkyCoord (ICRS): (ra, dec) in deg
[(13., 0.), (10., 41.), (11., -5.), (12., 42.)]>
Coordinate Access
-----------------
Once you have a coordinate object you can access the components of that
coordinate (e.g., RA, Dec) to get string representations of the full
coordinate.
The component values are accessed using (typically lowercase) named attributes
that depend on the coordinate frame (e.g., ICRS, Galactic, etc.). For the
default, ICRS, the coordinate component names are ``ra`` and ``dec``::
>>> c = SkyCoord(ra=10.68458*u.degree, dec=41.26917*u.degree)
>>> c.ra # doctest: +FLOAT_CMP
<Longitude 10.68458 deg>
>>> c.ra.hour # doctest: +FLOAT_CMP
0.7123053333333335
>>> c.ra.hms # doctest: +FLOAT_CMP
hms_tuple(h=0.0, m=42.0, s=44.299200000000525)
>>> c.dec # doctest: +FLOAT_CMP
<Latitude 41.26917 deg>
>>> c.dec.degree # doctest: +FLOAT_CMP
41.26917
>>> c.dec.radian # doctest: +FLOAT_CMP
0.7202828960652683
Coordinates can be converted to strings using the
:meth:`~astropy.coordinates.SkyCoord.to_string` method::
>>> c = SkyCoord(ra=10.68458*u.degree, dec=41.26917*u.degree)
>>> c.to_string('decimal')
'10.6846 41.2692'
>>> c.to_string('dms')
'10d41m04.488s 41d16m09.012s'
>>> c.to_string('hmsdms')
'00h42m44.2992s +41d16m09.012s'
For additional information see the section on :ref:`working_with_angles`.
Transformation
--------------
One convenient way to transform to a new coordinate frame is by accessing
the appropriately named attribute.
Example
^^^^^^^
..
EXAMPLE START
Transforming to a New Coordinate Frame
To get the coordinate in the `~astropy.coordinates.Galactic` frame use::
>>> c_icrs = SkyCoord(ra=10.68458*u.degree, dec=41.26917*u.degree, frame='icrs')
>>> c_icrs.galactic # doctest: +FLOAT_CMP
<SkyCoord (Galactic): (l, b) in deg
(121.17424181, -21.57288557)>
For more control, you can use the `~astropy.coordinates.SkyCoord.transform_to`
method, which accepts a frame name, frame class, or frame instance::
>>> c_fk5 = c_icrs.transform_to('fk5') # c_icrs.fk5 does the same thing
>>> c_fk5 # doctest: +FLOAT_CMP
<SkyCoord (FK5: equinox=J2000.000): (ra, dec) in deg
(10.68459154, 41.26917146)>
>>> from astropy.coordinates import FK5
>>> c_fk5.transform_to(FK5(equinox='J1975')) # precess to a different equinox # doctest: +FLOAT_CMP
<SkyCoord (FK5: equinox=J1975.000): (ra, dec) in deg
(10.34209135, 41.13232112)>
..
EXAMPLE END
This form of `~astropy.coordinates.SkyCoord.transform_to` also makes it
possible to convert from celestial coordinates to
`~astropy.coordinates.AltAz` coordinates, allowing the use of |SkyCoord|
as a tool for planning observations. For a more complete example of
this, see :ref:`sphx_glr_generated_examples_coordinates_plot_obs-planning.py`.
Some coordinate frames such as `~astropy.coordinates.AltAz` require Earth
rotation information (UT1-UTC offset and/or polar motion) when transforming
to/from other frames. These Earth rotation values are automatically downloaded
from the International Earth Rotation and Reference Systems (IERS) service when
required. See :ref:`utils-iers` for details of this process.
Representation
--------------
So far we have been using a spherical coordinate representation in all of our
examples, and this is the default for the built-in frames. Frequently it is
convenient to initialize or work with a coordinate using a different
representation such as Cartesian or Cylindrical. This can be done by setting
the ``representation_type`` for either |SkyCoord| objects or low-level frame
coordinate objects.
Example
^^^^^^^
..
EXAMPLE START
Working with Nonspherical Coordinate Representations
To initialize or work with a coordinate using a different representation such
as Cartesian or Cylindrical::
>>> c = SkyCoord(x=1, y=2, z=3, unit='kpc', representation_type='cartesian')
>>> c # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (x, y, z) in kpc
(1., 2., 3.)>
>>> c.x, c.y, c.z # doctest: +FLOAT_CMP
(<Quantity 1. kpc>, <Quantity 2. kpc>, <Quantity 3. kpc>)
>>> c.representation_type = 'cylindrical'
>>> c # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (rho, phi, z) in (kpc, deg, kpc)
(2.23606798, 63.43494882, 3.)>
For all of the details see :ref:`astropy-skycoord-representations`.
..
EXAMPLE END
Distance
--------
|SkyCoord| and the individual frame classes also support specifying a distance
from the frame origin. The origin depends on the particular coordinate frame;
this can be, for example, centered on the earth, centered on the solar system
barycenter, etc.
Examples
^^^^^^^^
..
EXAMPLE START
Specifying a Distance with SkyCoord
Two angles and a distance specify a unique point in 3D space, which also allows
converting the coordinates to a Cartesian representation::
>>> c = SkyCoord(ra=10.68458*u.degree, dec=41.26917*u.degree, distance=770*u.kpc)
>>> c.cartesian.x # doctest: +FLOAT_CMP
<Quantity 568.71286542 kpc>
>>> c.cartesian.y # doctest: +FLOAT_CMP
<Quantity 107.3008974 kpc>
>>> c.cartesian.z # doctest: +FLOAT_CMP
<Quantity 507.88994292 kpc>
With distances assigned, |SkyCoord| convenience methods are more powerful, as
they can make use of the 3D information. For example, to compute the physical,
3D separation between two points in space::
>>> c1 = SkyCoord(ra=10*u.degree, dec=9*u.degree, distance=10*u.pc, frame='icrs')
>>> c2 = SkyCoord(ra=11*u.degree, dec=10*u.degree, distance=11.5*u.pc, frame='icrs')
>>> c1.separation_3d(c2) # doctest: +FLOAT_CMP
<Distance 1.52286024 pc>
..
EXAMPLE END
Convenience Methods
-------------------
|SkyCoord| defines a number of convenience methods that support, for example,
computing on-sky (i.e., angular) and 3D separations between two coordinates.
Examples
^^^^^^^^
..
EXAMPLE START
SkyCoord Convenience Methods
To compute on-sky and 3D separations between two coordinates::
>>> c1 = SkyCoord(ra=10*u.degree, dec=9*u.degree, frame='icrs')
>>> c2 = SkyCoord(ra=11*u.degree, dec=10*u.degree, frame='fk5')
>>> c1.separation(c2) # Differing frames handled correctly # doctest: +FLOAT_CMP
<Angle 1.40453359 deg>
Or cross-matching catalog coordinates (detailed in
:ref:`astropy-coordinates-matching`)::
>>> target_c = SkyCoord(ra=10*u.degree, dec=9*u.degree, frame='icrs')
>>> # read in coordinates from a catalog...
>>> catalog_c = ... # doctest: +SKIP
>>> idx, sep, _ = target_c.match_to_catalog_sky(catalog_c) # doctest: +SKIP
..
EXAMPLE END
The `astropy.coordinates` sub-package also provides a quick way to get
coordinates for named objects, assuming you have an active internet
connection. The `~astropy.coordinates.SkyCoord.from_name` method of |SkyCoord|
uses `Sesame <http://cds.u-strasbg.fr/cgi-bin/Sesame>`_ to retrieve coordinates
for a particular named object.
..
EXAMPLE START
Retrieving Coordinates for a Named Object with SkyCoord
To retrieve coordinates for a particular named object::
>>> SkyCoord.from_name("PSR J1012+5307") # doctest: +REMOTE_DATA +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
(153.1393271, 53.117343)>
In some cases, the coordinates are embedded in the catalog name of the object.
For such object names, `~astropy.coordinates.SkyCoord.from_name` is able
to parse the coordinates from the name if given the ``parse=True`` option.
For slow connections, this may be much faster than a sesame query for the same
object name. It's worth noting, however, that the coordinates extracted in this
way may differ from the database coordinates by a few deci-arcseconds, so only
use this option if you do not need sub-arcsecond accuracy for your coordinates::
>>> SkyCoord.from_name("CRTS SSS100805 J194428-420209", parse=True) # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
(296.11666667, -42.03583333)>
..
EXAMPLE END
For sites (primarily observatories) on the Earth, `astropy.coordinates` provides
a quick way to get an |EarthLocation| - the
:func:`~astropy.coordinates.EarthLocation.of_site` classmethod:
.. doctest-remote-data::
>>> from astropy.coordinates import EarthLocation
>>> apo = EarthLocation.of_site('Apache Point Observatory')
>>> apo # doctest: +FLOAT_CMP
<EarthLocation (-1463969.30185172, -5166673.34223433, 3434985.71204565) m>
To see the list of site names available, use
:func:`~astropy.coordinates.EarthLocation.get_site_names`::
>>> EarthLocation.get_site_names() # doctest: +REMOTE_DATA
['ALMA', 'AO', 'ARCA', ...]
For arbitrary Earth addresses (e.g., not observatory sites), use the
:func:`~astropy.coordinates.EarthLocation.of_address` classmethod to retrieve
the latitude and longitude. This works with fully specified addresses, location
names, city names, etc:
.. doctest-remote-data::
>>> EarthLocation.of_address('1002 Holy Grail Court, St. Louis, MO') # doctest: +FLOAT_CMP
<EarthLocation (-26769.86528679, -4997007.71191864, 3950273.57633915) m>
>>> EarthLocation.of_address('Danbury, CT') # doctest: +FLOAT_CMP
<EarthLocation ( 1364606.64511651, -4593292.9428273, 4195415.93695139) m>
By default the `OpenStreetMap Nominatim service
<https://wiki.openstreetmap.org/wiki/Nominatim>`_ is used, but by providing a
`Google Geocoding API key
<https://developers.google.com/maps/documentation/geocoding/get-api-key>`_ with
the ``google_api_key`` argument it is possible to use Google Maps instead. It
is also possible to query the height of the location in addition to its
longitude and latitude, but only with the Google queries::
>>> EarthLocation.of_address("Cape Town", get_height=True) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: Currently, `get_height` only works when using the Google
geocoding API...
.. note::
:func:`~astropy.coordinates.SkyCoord.from_name`,
:func:`~astropy.coordinates.EarthLocation.of_site`, and
:func:`~astropy.coordinates.EarthLocation.of_address` are designed for
convenience, not accuracy. If you need accurate coordinates for an
object you should find the appropriate reference and input the coordinates
manually, or use more specialized functionality like that in the `astroquery
<https://astroquery.readthedocs.io/>`_ or `astroplan
<https://astroplan.readthedocs.io/>`_ affiliated packages.
Also note that these methods retrieve data from the internet to
determine the celestial or geographic coordinates. The online data may be
updated, so if you need to guarantee that your scripts are reproducible
in the long term, see the :doc:`remote_methods` section.
This functionality can be combined to do more complicated tasks like computing
barycentric corrections to radial velocity observations (also a supported
high-level |SkyCoord| method - see :ref:`astropy-coordinates-rv-corrs`):
.. doctest-remote-data::
>>> from astropy.time import Time
>>> obstime = Time('2017-2-14')
>>> target = SkyCoord.from_name('M31')
>>> keck = EarthLocation.of_site('Keck')
>>> target.radial_velocity_correction(obstime=obstime, location=keck).to('km/s') # doctest: +FLOAT_CMP
<Quantity -22.359784554780255 km / s>
While ``astropy.coordinates`` does not natively support converting an Earth
location to a timezone, the longitude and latitude can be retrieved from any
`~astropy.coordinates.EarthLocation` object, which could then be passed to any
third-party package that supports timezone solving, such as `timezonefinder
<https://timezonefinder.readthedocs.io/>`_. For example, ``timezonefinder`` can
be used to retrieve the timezone name for an address with:
.. doctest-skip::
>>> loc = EarthLocation.of_address('Tucson, AZ')
>>> from timezonefinder import TimezoneFinder
>>> tz_name = TimezoneFinder().timezone_at(lng=loc.lon.degree,
... lat=loc.lat.degree)
>>> tz_name
'America/Phoenix'
The resulting timezone name could then be used with any packages that support
time zone definitions, such as the (Python 3.9 default package) `zoneinfo
<https://docs.python.org/3/library/zoneinfo.html>`_:
.. doctest-skip::
>>> from zoneinfo import ZoneInfo # requires Python 3.9 or greater
>>> tz = ZoneInfo(tz_name)
>>> dt = datetime.datetime(2021, 4, 12, 20, 0, 0, tzinfo=tz)
(Please note that the above code is not tested regularly with the ``astropy`` test
suite, so please raise an issue if this no longer works.)
Velocities (Proper Motions and Radial Velocities)
-------------------------------------------------
In addition to positional coordinates, `~astropy.coordinates` supports storing
and transforming velocities. These are available both via the lower-level
:doc:`coordinate frame classes <frames>`, and via |SkyCoord| objects::
>>> sc = SkyCoord(1*u.deg, 2*u.deg, radial_velocity=20*u.km/u.s)
>>> sc # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
(1., 2.)
(radial_velocity) in km / s
(20.,)>
For more details on velocity support (and limitations), see the
:doc:`velocities` page.
.. _astropy-coordinates-overview:
Overview of `astropy.coordinates` Concepts
==========================================
.. note ::
More detailed information and justification of the design is available in
`APE (Astropy Proposal for Enhancement) 5
<https://github.com/astropy/astropy-APEs/blob/main/APE5.rst>`_.
Here we provide an overview of the package and associated framework.
This background information is not necessary for using `~astropy.coordinates`,
particularly if you use the |SkyCoord| high-level class, but it is helpful for
more advanced usage, particularly creating your own frame, transformations, or
representations. Another useful piece of background information are some
:ref:`astropy-coordinates-definitions` as they are used in
`~astropy.coordinates`.
`~astropy.coordinates` is built on a three-tiered system of objects:
representations, frames, and a high-level class. Representations
classes are a particular way of storing a three-dimensional data point
(or points), such as Cartesian coordinates or spherical polar
coordinates. Frames are particular reference frames like FK5 or ICRS,
which may store their data in different representations, but have well-
defined transformations between each other. These transformations are
all stored in the ``astropy.coordinates.frame_transform_graph``, and new
transformations can be created by users. Finally, the high-level class
(|SkyCoord|) uses the frame classes, but provides a more accessible
interface to these objects as well as various convenience methods and
more string-parsing capabilities.
Separating these concepts makes it easier to extend the functionality of
`~astropy.coordinates`. It allows representations, frames, and
transformations to be defined or extended separately, while still
preserving the high-level capabilities and ease-of-use of the |SkyCoord|
class.
.. topic:: Examples:
See :ref:`sphx_glr_generated_examples_coordinates_plot_obs-planning.py` for
an example of using the `~astropy.coordinates` functionality to prepare for
an observing run.
Using `astropy.coordinates`
===========================
More detailed information on using the package is provided on separate pages,
listed below.
.. toctree::
:maxdepth: 1
angles
skycoord
transforming
solarsystem
satellites
formatting
matchsep
representations
frames
velocities
apply_space_motion
spectralcoord
galactocentric
remote_methods
common_errors
definitions
inplace
In addition, another resource for the capabilities of this package is the
``astropy.coordinates.tests.test_api_ape5`` testing file. It showcases most of
the major capabilities of the package, and hence is a useful supplement to
this document. You can see it by either downloading a copy of the Astropy
source code, or typing the following in an IPython session::
In [1]: from astropy.coordinates.tests import test_api_ape5
In [2]: test_api_ape5??
.. note that if this section gets too long, it should be moved to a separate
doc page - see the top of performance.inc.rst for the instructions on how to
do that
.. include:: performance.inc.rst
.. _astropy-coordinates-seealso:
See Also
========
Some references that are particularly useful in understanding subtleties of the
coordinate systems implemented here include:
* `USNO Circular 179 <https://arxiv.org/abs/astro-ph/0602086>`_
A useful guide to the IAU 2000/2003 work surrounding ICRS/IERS/CIRS and
related problems in precision coordinate system work.
* `Standards Of Fundamental Astronomy <http://www.iausofa.org/>`_
The definitive implementation of IAU-defined algorithms. The "SOFA Tools
for Earth Attitude" document is particularly valuable for understanding
the latest IAU standards in detail.
* `IERS Conventions (2010) <https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html>`_
An exhaustive reference covering the ITRS, the IAU2000 celestial coordinates
framework, and other related details of modern coordinate conventions.
* Meeus, J. "Astronomical Algorithms"
A valuable text describing details of a wide range of coordinate-related
problems and concepts.
* `Revisiting Spacetrack Report #3 <https://celestrak.com/publications/AIAA/2006-6753/AIAA-2006-6753-Rev2.pdf>`_
A discussion of the simplified general perturbation (SGP) for satellite orbits, with a description of
the True Equator Mean Equinox (TEME) coordinate frame.
Built-in Frames and Transformations
===================================
.. automodule:: astropy.coordinates.builtin_frames
.. _astropy-coordinates-api:
Reference/API
=============
.. automodapi:: astropy.coordinates
|