File: representations.rst

package info (click to toggle)
astropy 5.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 41,972 kB
  • sloc: python: 219,331; ansic: 147,297; javascript: 13,556; lex: 8,496; sh: 3,319; xml: 1,622; makefile: 185
file content (687 lines) | stat: -rw-r--r-- 28,159 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
.. _astropy-coordinates-representations:

Using and Designing Coordinate Representations
**********************************************

Points in a 3D vector space can be represented in different ways, such as
Cartesian, spherical polar, cylindrical, and so on. These underlie the way
coordinate data in `astropy.coordinates` is represented, as described in the
:ref:`astropy-coordinates-overview`. Below, we describe how you can use them on
their own as a way to convert between different representations, including
ones not built-in, and to do simple vector arithmetic.

The built-in representation classes are:

* `~astropy.coordinates.CartesianRepresentation`: Cartesian
  coordinates ``x``, ``y``, and ``z``.
* `~astropy.coordinates.SphericalRepresentation`: spherical
  polar coordinates represented by a longitude (``lon``), a latitude
  (``lat``), and a distance (``distance``). The latitude is a value ranging
  from -90 to 90 degrees.
* `~astropy.coordinates.UnitSphericalRepresentation`:
  spherical polar coordinates on a unit sphere, represented by a longitude
  (``lon``) and latitude (``lat``).
* `~astropy.coordinates.PhysicsSphericalRepresentation`:
  spherical polar coordinates, represented by an inclination (``theta``) and
  azimuthal angle (``phi``), and radius ``r``. The inclination goes from 0 to
  180 degrees, and is related to the latitude in the
  `~astropy.coordinates.SphericalRepresentation` by
  ``theta = 90 deg - lat``.
* `~astropy.coordinates.CylindricalRepresentation`:
  cylindrical polar coordinates, represented by a cylindrical radius
  (``rho``), azimuthal angle (``phi``), and height (``z``).

.. Note::
   For information about using and changing the representation of
   `~astropy.coordinates.SkyCoord` objects, see the
   :ref:`astropy-skycoord-representations` section.

Instantiating and Converting
============================

Representation classes are instantiated with `~astropy.units.Quantity`
objects::

    >>> from astropy import units as u
    >>> from astropy.coordinates.representation import CartesianRepresentation
    >>> car = CartesianRepresentation(3 * u.kpc, 5 * u.kpc, 4 * u.kpc)
    >>> car  # doctest: +FLOAT_CMP
    <CartesianRepresentation (x, y, z) in kpc
        (3., 5., 4.)>

Array `~astropy.units.Quantity` objects can also be passed to
representations. They will have the expected shape, which can be changed using
methods with the same names as those for `~numpy.ndarray`, such as ``reshape``,
``ravel``, etc.::

  >>> x = u.Quantity([[1., 0., 0.], [3., 5., 3.]], u.m)
  >>> y = u.Quantity([[0., 2., 0.], [4., 0., -4.]], u.m)
  >>> z = u.Quantity([[0., 0., 3.], [0., 12., -12.]], u.m)
  >>> car_array = CartesianRepresentation(x, y, z)
  >>> car_array  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      [[(1.,  0.,   0.), (0.,  2.,   0.), (0.,  0.,   3.)],
       [(3.,  4.,   0.), (5.,  0.,  12.), (3., -4., -12.)]]>
  >>> car_array.shape
  (2, 3)
  >>> car_array.ravel()  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      [(1.,  0.,   0.), (0.,  2.,   0.), (0.,  0.,   3.), (3.,  4.,   0.),
       (5.,  0.,  12.), (3., -4., -12.)]>

Representations can be converted to other representations using the
``represent_as`` method::

    >>> from astropy.coordinates.representation import SphericalRepresentation, CylindricalRepresentation
    >>> sph = car.represent_as(SphericalRepresentation)
    >>> sph  # doctest: +FLOAT_CMP
    <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
        (1.03037683, 0.60126422, 7.07106781)>
    >>> cyl = car.represent_as(CylindricalRepresentation)
    >>> cyl  # doctest: +FLOAT_CMP
    <CylindricalRepresentation (rho, phi, z) in (kpc, rad, kpc)
        (5.83095189, 1.03037683, 4.)>

All representations can be converted to each other without loss of
information, with the exception of
`~astropy.coordinates.UnitSphericalRepresentation`. This class
is used to store the longitude and latitude of points but does not contain
any distance to the points, and assumes that they are located on a unit and
dimensionless sphere::

    >>> from astropy.coordinates.representation import UnitSphericalRepresentation
    >>> sph_unit = car.represent_as(UnitSphericalRepresentation)
    >>> sph_unit  # doctest: +FLOAT_CMP
    <UnitSphericalRepresentation (lon, lat) in rad
        (1.03037683, 0.60126422)>

Converting back to Cartesian, the absolute scaling information has been
removed, and the points are still located on a unit sphere::

    >>> sph_unit = car.represent_as(UnitSphericalRepresentation)
    >>> sph_unit.represent_as(CartesianRepresentation)  # doctest: +FLOAT_CMP
    <CartesianRepresentation (x, y, z) [dimensionless]
        (0.42426407, 0.70710678, 0.56568542)>


Array Values and NumPy Array Method Analogs
===========================================

Array `~astropy.units.Quantity` objects can also be passed to representations,
and such representations can be sliced, reshaped, etc., using the same methods
as are available to `~numpy.ndarray`. Corresponding functions, as well as
others that affect the shape, such as `~numpy.atleast_1d` and
`~numpy.rollaxis`, work as expected.

Example
-------

..
  EXAMPLE START
  Array Values and NumPy Array Method Analogs

To pass array `~astropy.units.Quantity` objects to representations::

  >>> import numpy as np
  >>> x = np.linspace(0., 5., 6)
  >>> y = np.linspace(10., 15., 6)
  >>> z = np.linspace(20., 25., 6)
  >>> car_array = CartesianRepresentation(x * u.m, y * u.m, z * u.m)
  >>> car_array
  <CartesianRepresentation (x, y, z) in m
      [(0., 10., 20.), (1., 11., 21.), (2., 12., 22.),
       (3., 13., 23.), (4., 14., 24.), (5., 15., 25.)]>

To manipulate using methods and ``numpy`` functions::

  >>> car_array.reshape(3, 2)
  <CartesianRepresentation (x, y, z) in m
      [[(0., 10., 20.), (1., 11., 21.)],
       [(2., 12., 22.), (3., 13., 23.)],
       [(4., 14., 24.), (5., 15., 25.)]]>
  >>> car_array[2]
  <CartesianRepresentation (x, y, z) in m
      (2., 12., 22.)>
  >>> car_array[2] = car_array[1]
  >>> car_array[:3]
  <CartesianRepresentation (x, y, z) in m
      [(0., 10., 20.), (1., 11., 21.), (1., 11., 21.)]>
  >>> np.roll(car_array, 1)
  <CartesianRepresentation (x, y, z) in m
      [(5., 15., 25.), (0., 10., 20.), (1., 11., 21.), (1., 11., 21.),
       (3., 13., 23.), (4., 14., 24.)]>

And to set elements using other representation classes (as long
as they are compatible in their units and number of dimensions)::

  >>> car_array[2] = SphericalRepresentation(0*u.deg, 0*u.deg, 99*u.m)
  >>> car_array[:3]  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      [(0., 10., 20.), (1., 11., 21.), (99., 0., 0.)]>
  >>> car_array[0] = UnitSphericalRepresentation(0*u.deg, 0*u.deg)
  Traceback (most recent call last):
  ...
  ValueError: value must be representable as CartesianRepresentation without loss of information.

..
  EXAMPLE END

.. _astropy-coordinates-representations-arithmetic:

Vector Arithmetic
=================

Representations support basic vector arithmetic such as taking the norm,
multiplying with and dividing by quantities, and taking dot and cross products,
as well as adding, subtracting, summing and taking averages of representations,
and multiplying with matrices.

.. Note:: All arithmetic except the matrix multiplication works with
   non-Cartesian representations as well. For taking the norm, multiplication,
   and division, this uses just the non-angular components, while for the other
   operations the representation is converted to Cartesian internally before
   the operation is done, and the result is converted back to the original
   representation. Hence, for optimal speed it may be best to work using
   Cartesian representations.

Examples
--------

..
  EXAMPLE START
  Vector Arithmetic Operations with Representation Objects

To see how vector arithmetic operations work with representation objects,
consider the following examples::

  >>> car_array = CartesianRepresentation([[1., 0., 0.], [3., 5.,  3.]] * u.m,
  ...                                     [[0., 2., 0.], [4., 0., -4.]] * u.m,
  ...                                     [[0., 0., 3.], [0.,12.,-12.]] * u.m)
  >>> car_array  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      [[(1.,  0.,  0.), (0.,  2.,   0.), (0.,  0.,   3.)],
       [(3.,  4.,  0.), (5.,  0.,  12.), (3., -4., -12.)]]>
  >>> car_array.norm()  # doctest: +FLOAT_CMP
  <Quantity [[ 1.,  2.,  3.],
             [ 5., 13., 13.]] m>
  >>> car_array / car_array.norm()  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) [dimensionless]
      [[(1.        ,  0.        ,  0.        ),
        (0.        ,  1.        ,  0.        ),
        (0.        ,  0.        ,  1.        )],
       [(0.6       ,  0.8       ,  0.        ),
        (0.38461538,  0.        ,  0.92307692),
        (0.23076923, -0.30769231, -0.92307692)]]>
  >>> (car_array[1] - car_array[0]) / (10. * u.s)  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m / s
      [(0.2,  0.4,  0. ), (0.5, -0.2,  1.2), (0.3, -0.4, -1.5)]>
  >>> car_array.sum()  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      (12.,  2.,  3.)>
  >>> car_array.mean(axis=0)  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      [(2. ,  2.,  0. ), (2.5,  1.,  6. ), (1.5, -2., -4.5)]>

  >>> unit_x = UnitSphericalRepresentation(0.*u.deg, 0.*u.deg)
  >>> unit_y = UnitSphericalRepresentation(90.*u.deg, 0.*u.deg)
  >>> unit_z = UnitSphericalRepresentation(0.*u.deg, 90.*u.deg)
  >>> car_array.dot(unit_x)  # doctest: +FLOAT_CMP
  <Quantity [[1., 0., 0.],
             [3., 5., 3.]] m>
  >>> car_array.dot(unit_y)  # doctest: +FLOAT_CMP
  <Quantity [[ 6.12323400e-17,  2.00000000e+00,  0.00000000e+00],
             [ 4.00000000e+00,  3.06161700e-16, -4.00000000e+00]] m>
  >>> car_array.dot(unit_z)  # doctest: +FLOAT_CMP
  <Quantity [[ 6.12323400e-17,  0.00000000e+00,  3.00000000e+00],
             [ 1.83697020e-16,  1.20000000e+01, -1.20000000e+01]] m>
  >>> car_array.cross(unit_x)  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      [[(0.,  0.,  0.), (0.,   0., -2.), (0.,   3.,  0.)],
       [(0.,  0., -4.), (0.,  12.,  0.), (0., -12.,  4.)]]>

  >>> from astropy.coordinates.matrix_utilities import rotation_matrix
  >>> rotation = rotation_matrix(90 * u.deg, axis='z')
  >>> rotation  # doctest: +FLOAT_CMP
  array([[ 6.12323400e-17,  1.00000000e+00,  0.00000000e+00],
         [-1.00000000e+00,  6.12323400e-17,  0.00000000e+00],
         [ 0.00000000e+00,  0.00000000e+00,  1.00000000e+00]])
  >>> car_array.transform(rotation)  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in m
      [[( 6.12323400e-17, -1.00000000e+00,   0.),
        ( 2.00000000e+00,  1.22464680e-16,   0.),
        ( 0.00000000e+00,  0.00000000e+00,   3.)],
       [( 4.00000000e+00, -3.00000000e+00,   0.),
        ( 3.06161700e-16, -5.00000000e+00,  12.),
        (-4.00000000e+00, -3.00000000e+00, -12.)]]>

..
  EXAMPLE END

.. _astropy-coordinates-differentials:

Differentials and Derivatives of Representations
================================================

In addition to positions in 3D space, coordinates also deal with proper motions
and radial velocities, which require a way to represent differentials of
coordinates (i.e., finite realizations) of derivatives. To support this, the
representations all have corresponding ``Differential`` classes, which can hold
offsets or derivatives in terms of the components of the representation class.
Adding such an offset to a representation means the offset is taken in the
direction of the corresponding coordinate. (Although for any representation
other than Cartesian, this is only defined relative to a specific location, as
the unit vectors are not invariant.)

Examples
--------

..
  EXAMPLE START
  Differentials and Derivatives of Representations

To see how the ``Differential`` classes of representations works, consider the
following::

  >>> from astropy.coordinates import SphericalRepresentation, SphericalDifferential
  >>> sph_coo = SphericalRepresentation(lon=0.*u.deg, lat=0.*u.deg,
  ...                                   distance=1.*u.kpc)
  >>> sph_derivative = SphericalDifferential(d_lon=1.*u.arcsec/u.yr,
  ...                                        d_lat=0.*u.arcsec/u.yr,
  ...                                        d_distance=0.*u.km/u.s)
  >>> sph_derivative.to_cartesian(base=sph_coo)  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in arcsec kpc / (rad yr)
      (0., 1., 0.)>

Note how the conversion to Cartesian can only be done using a ``base``, since
otherwise the code cannot know what direction an increase in longitude
corresponds to. For ``lon=0``, this is in the ``y`` direction. Now, to get
the coordinates at two later times::

  >>> sph_coo + sph_derivative * [1., 3600*180/np.pi] * u.yr  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      [(4.84813681e-06, 0., 1.        ), (7.85398163e-01, 0., 1.41421356)]>

The above shows how addition is not to longitude itself, but in the direction
of increasing longitude: for the large shift, by the equivalent of one radian,
the distance has increased as well (after all, a source will likely not move
along a curve on the sky!). This also means that the order of operations is
important::

  >>> big_offset = SphericalDifferential(1.*u.radian, 0.*u.radian, 0.*u.kpc)
  >>> sph_coo + big_offset + big_offset  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (1.57079633, 0., 2.)>
  >>> sph_coo + (big_offset + big_offset)  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (1.10714872, 0., 2.23606798)>

..
  EXAMPLE END

..
  EXAMPLE START
  Working with Proper Motions and Radial Velocities in Differential Objects

Often, you may have just a proper motion or a radial velocity, but not both::

  >>> from astropy.coordinates import UnitSphericalDifferential, RadialDifferential
  >>> radvel = RadialDifferential(1000*u.km/u.s)
  >>> sph_coo + radvel * 1. * u.Myr  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (0., 0., 2.02271217)>
  >>> pm = UnitSphericalDifferential(1.*u.mas/u.yr, 0.*u.mas/u.yr)
  >>> sph_coo + pm * 1. * u.Myr  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (0.0048481, 0., 1.00001175)>
  >>> pm + radvel  # doctest: +FLOAT_CMP
  <SphericalDifferential (d_lon, d_lat, d_distance) in (mas / yr, mas / yr, km / s)
      (1., 0., 1000.)>
  >>> sph_coo + (pm + radvel) * 1. * u.Myr  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (0.00239684, 0., 2.02271798)>

Note in the above that the proper motion is defined strictly as a change in
longitude (i.e., it does not include a ``cos(latitude)`` term). There are
special classes where this term is included::

  >>> from astropy.coordinates import UnitSphericalCosLatDifferential
  >>> sph_lat60 = SphericalRepresentation(lon=0.*u.deg, lat=60.*u.deg,
  ...                                     distance=1.*u.kpc)
  >>> pm = UnitSphericalDifferential(1.*u.mas/u.yr, 0.*u.mas/u.yr)
  >>> pm  # doctest: +FLOAT_CMP
  <UnitSphericalDifferential (d_lon, d_lat) in mas / yr
      (1., 0.)>
  >>> pm_coslat = UnitSphericalCosLatDifferential(1.*u.mas/u.yr, 0.*u.mas/u.yr)
  >>> pm_coslat  # doctest: +FLOAT_CMP
  <UnitSphericalCosLatDifferential (d_lon_coslat, d_lat) in mas / yr
      (1., 0.)>
  >>> sph_lat60 + pm * 1. * u.Myr  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (0.0048481, 1.04719246, 1.00000294)>
  >>> sph_lat60 + pm_coslat * 1. * u.Myr  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (0.00969597, 1.0471772, 1.00001175)>

Close inspections shows that indeed the changes are as expected. The systems
with and without ``cos(latitude)`` can be converted to each other, provided you
supply the ``base`` (representation)::

  >>> usph_lat60 = sph_lat60.represent_as(UnitSphericalRepresentation)
  >>> pm_coslat2 = pm.represent_as(UnitSphericalCosLatDifferential,
  ...                              base=usph_lat60)
  >>> pm_coslat2  # doctest: +FLOAT_CMP
  <UnitSphericalCosLatDifferential (d_lon_coslat, d_lat) in mas / yr
      (0.5, 0.)>
  >>> sph_lat60 + pm_coslat2 * 1. * u.Myr  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, kpc)
      (0.0048481, 1.04719246, 1.00000294)>

.. Note:: At present, the differential classes are generally meant to work with
   first derivatives, but they do not check the units of the inputs to enforce
   this. Passing in second derivatives (e.g., acceleration values with
   acceleration units) will succeed, but any transformations that occur through
   re-representation of the differential will not necessarily be correct.

..
  EXAMPLE END

Attaching ``Differential`` Objects to ``Representation`` Objects
================================================================

``Differential`` objects can be attached to ``Representation`` objects as a way
to encapsulate related information into a single object. ``Differential``
objects can be passed in to the initializer of any of the built-in
``Representation`` classes.

Example
-------

..
  EXAMPLE START
  Attaching Differential Objects to Representation Objects

To store a single velocity differential with a position::

  >>> from astropy.coordinates import representation as r
  >>> dif = r.SphericalDifferential(d_lon=1 * u.mas/u.yr,
  ...                               d_lat=2 * u.mas/u.yr,
  ...                               d_distance=3 * u.km/u.s)
  >>> rep = r.SphericalRepresentation(lon=0.*u.deg, lat=0.*u.deg,
  ...                                 distance=1.*u.kpc,
  ...                                 differentials=dif)
  >>> rep  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (deg, deg, kpc)
      (0., 0., 1.)
   (has differentials w.r.t.: 's')>
  >>> rep.differentials  # doctest: +FLOAT_CMP
  {'s': <SphericalDifferential (d_lon, d_lat, d_distance) in (mas / yr, mas / yr, km / s)
       (1., 2., 3.)>}

..
  EXAMPLE END

The ``Differential`` objects are stored as a Python dictionary on the
``Representation`` object with keys equal to the (string) unit with which the
differential derivatives are taken (converted to SI).

..
  EXAMPLE START
  Differential and Representation Object Storage

In this case the key is ``'s'`` (second) because the ``Differential`` units are
velocities, a time derivative. Passing a single differential to the
``Representation`` initializer will automatically generate the necessary key
and store it in the differentials dictionary, but a dictionary is required to
specify multiple differentials::

  >>> dif2 = r.SphericalDifferential(d_lon=4 * u.mas/u.yr**2,
  ...                                d_lat=5 * u.mas/u.yr**2,
  ...                                d_distance=6 * u.km/u.s**2)
  >>> rep = r.SphericalRepresentation(lon=0.*u.deg, lat=0.*u.deg,
  ...                                 distance=1.*u.kpc,
  ...                                 differentials={'s': dif, 's2': dif2})
  >>> rep.differentials['s']  # doctest: +FLOAT_CMP
  <SphericalDifferential (d_lon, d_lat, d_distance) in (mas / yr, mas / yr, km / s)
      (1., 2., 3.)>
  >>> rep.differentials['s2']  # doctest: +FLOAT_CMP
  <SphericalDifferential (d_lon, d_lat, d_distance) in (mas / yr2, mas / yr2, km / s2)
      (4., 5., 6.)>

..
  EXAMPLE END

..
  EXAMPLE START
  Attaching Differential Objects to a Representation after Creation

``Differential`` objects can also be attached to a ``Representation`` after
creation::

  >>> rep = r.CartesianRepresentation(x=1 * u.kpc, y=2 * u.kpc, z=3 * u.kpc)
  >>> dif = r.CartesianDifferential(*[1, 2, 3] * u.km/u.s)
  >>> rep = rep.with_differentials(dif)
  >>> rep  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in kpc
      (1., 2., 3.)
   (has differentials w.r.t.: 's')>

This works for array data as well, as long as the shape of the
``Differential`` data is the same as that of the ``Representation``::

  >>> xyz = np.arange(12).reshape(3, 4) * u.au
  >>> d_xyz = np.arange(12).reshape(3, 4) * u.km/u.s
  >>> rep = r.CartesianRepresentation(*xyz)
  >>> dif = r.CartesianDifferential(*d_xyz)
  >>> rep = rep.with_differentials(dif)
  >>> rep  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in AU
      [(0., 4.,  8.), (1., 5.,  9.), (2., 6., 10.), (3., 7., 11.)]
   (has differentials w.r.t.: 's')>

..
  EXAMPLE END

..
  EXAMPLE START
  Converting Positional Data to a New Representation

As with a ``Representation`` instance without a differential, to convert the
positional data to a new representation, use the ``.represent_as()``::

  >>> rep.represent_as(r.SphericalRepresentation)  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, AU)
      [(1.57079633, 1.10714872,  8.94427191),
       (1.37340077, 1.05532979, 10.34408043),
       (1.24904577, 1.00685369, 11.83215957),
       (1.16590454, 0.96522779, 13.37908816)]>

However, by passing just the desired representation class, only the
``Representation`` has changed, and the differentials are dropped. To
re-represent both the ``Representation`` and any ``Differential`` objects, you
must specify target classes for the ``Differential`` as well::

  >>> rep2 = rep.represent_as(r.SphericalRepresentation, r.SphericalDifferential)
  >>> rep2  # doctest: +FLOAT_CMP
  <SphericalRepresentation (lon, lat, distance) in (rad, rad, AU)
    [(1.57079633, 1.10714872,  8.94427191),
     (1.37340077, 1.05532979, 10.34408043),
     (1.24904577, 1.00685369, 11.83215957),
     (1.16590454, 0.96522779, 13.37908816)]
   (has differentials w.r.t.: 's')>
  >>> rep2.differentials['s']  # doctest: +FLOAT_CMP
  <SphericalDifferential (d_lon, d_lat, d_distance) in (km rad / (AU s), km rad / (AU s), km / s)
      [( 6.12323400e-17, 1.11022302e-16,  8.94427191),
       (-2.77555756e-17, 5.55111512e-17, 10.34408043),
       ( 0.00000000e+00, 0.00000000e+00, 11.83215957),
       ( 5.55111512e-17, 0.00000000e+00, 13.37908816)]>

..
  EXAMPLE END

..
  EXAMPLE START
  Shape-Changing Operations with Differential Objects

Shape-changing operations (e.g., reshapes) are propagated to all
``Differential`` objects because they are guaranteed to have the same shape as
their host ``Representation`` object::

  >>> rep.shape
  (4,)
  >>> rep.differentials['s'].shape
  (4,)
  >>> new_rep = rep.reshape(2, 2)
  >>> new_rep.shape
  (2, 2)
  >>> new_rep.differentials['s'].shape
  (2, 2)

This also works for slicing::

  >>> new_rep = rep[:2]
  >>> new_rep.shape
  (2,)
  >>> new_rep.differentials['s'].shape
  (2,)

Operations on representations that return `~astropy.units.Quantity` objects (as
opposed to other ``Representation`` instances) still work, but only operate on
the positional information, for example::

  >>> rep.norm()  # doctest: +FLOAT_CMP
  <Quantity [ 8.94427191, 10.34408043, 11.83215957, 13.37908816] AU>

Operations that involve combining or scaling representations or pairs of
representation objects that contain differentials will currently fail, but
support for some operations may be added in future versions::

  >>> rep + rep
  Traceback (most recent call last):
  ...
  TypeError: Operation 'add' is not supported when differentials are attached to a CartesianRepresentation.

If you have a ``Representation`` with attached ``Differential`` objects, you
can retrieve a copy of the ``Representation`` without the ``Differential``
object and use this ``Differential``-free object for any arithmetic operation::

  >>> 15 * rep.without_differentials()  # doctest: +FLOAT_CMP
  <CartesianRepresentation (x, y, z) in AU
      [( 0.,  60., 120.), (15.,  75., 135.), (30.,  90., 150.),
       (45., 105., 165.)]>

..
  EXAMPLE END

.. _astropy-coordinates-create-repr:

Creating Your Own Representations
=================================

To create your own representation class, your class must inherit from the
`~astropy.coordinates.BaseRepresentation` class. This base has an ``__init__``
method that will put all arguments components through their initializers,
verify they can be broadcast against each other, and store the components on
``self`` as the name prefixed with '_'. Furthermore, through its metaclass it
provides default properties for the components so that they can be accessed
using ``<instance>.<component>``. For the machinery to work, the following
must be defined:

* ``attr_classes`` class attribute (:class:`dict`):

  Defines through its keys the names of the components (as well as the default
  order), and through its values defines the class of which they should be
  instances (which should be `~astropy.units.Quantity` or a subclass, or
  anything that can initialize it).

* ``from_cartesian`` class method:

  Takes a `~astropy.coordinates.CartesianRepresentation` object and
  returns an instance of your class.

* ``to_cartesian`` method:

  Returns a `~astropy.coordinates.CartesianRepresentation` object.

* ``__init__`` method (optional):

  If you want more than the basic initialization and checks provided by the
  base representation class, or just an explicit signature, you can define your
  own ``__init__``. In general, it is recommended to stay close to the
  signature assumed by the base representation, ``__init__(self, comp1, comp2,
  comp3, copy=True)``, and use ``super`` to call the base representation
  initializer.

Once you do this, you will then automatically be able to call ``represent_as``
to convert other representations to/from your representation class. Your
representation will also be available for use in |SkyCoord| and all frame
classes.

A representation class may also have a ``_unit_representation`` attribute
(although it is not required). This attribute points to the appropriate
"unit" representation (i.e., a representation that is dimensionless). This is
probably only meaningful for subclasses of
`~astropy.coordinates.SphericalRepresentation`, where it is assumed that it
will be a subclass of `~astropy.coordinates.UnitSphericalRepresentation`.

Finally, if you wish to also use offsets in your coordinate system, two further
methods should be defined (please see
`~astropy.coordinates.SphericalRepresentation` for an example):

* ``unit_vectors`` method:

  Returns a ``dict`` with a
  `~astropy.coordinates.CartesianRepresentation` of unit vectors in the
  direction of each component.

* ``scale_factors`` method:

  Returns a ``dict`` with a `~astropy.units.Quantity` for each component with
  the appropriate physical scale factor for a unit change in that direction.

And furthermore you should define a ``Differential`` class based on
`~astropy.coordinates.BaseDifferential`. This class only needs to define:

* ``base_representation`` attribute:

  A link back to the representation for which this differential holds.


In pseudo-code, this means that a class will look like::

    class MyRepresentation(BaseRepresentation):

        attr_classes = {
            "comp1": ComponentClass1,
            "comp2": ComponentClass2,
            "comp3": ComponentClass3,
        }

	# __init__ is optional
        def __init__(self, comp1, comp2, comp3, copy=True):
            super().__init__(comp1, comp2, comp3, copy=copy)
            ...

        @classmethod
        def from_cartesian(self, cartesian):
            ...
            return MyRepresentation(...)

        def to_cartesian(self):
            ...
            return CartesianRepresentation(...)

	# if differential motion is needed
	def unit_vectors(self):
	    ...
	    return {'comp1': CartesianRepresentation(...),
	            'comp2': CartesianRepresentation(...),
		    'comp3': CartesianRepresentation(...)}

        def scale_factors(self):
	    ...
	    return {'comp1': ...,
	            'comp2': ...,
		    'comp3': ...}

    class MyDifferential(BaseDifferential):
        base_representation = MyRepresentation