File: ecsv.rst

package info (click to toggle)
astropy 5.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 41,972 kB
  • sloc: python: 219,331; ansic: 147,297; javascript: 13,556; lex: 8,496; sh: 3,319; xml: 1,622; makefile: 185
file content (473 lines) | stat: -rw-r--r-- 15,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
.. _ecsv_format:

ECSV Format
===========

The `Enhanced Character-Separated Values (ECSV) format
<https://github.com/astropy/astropy-APEs/blob/main/APE6.rst>`_ can be used to
write ``astropy`` `~astropy.table.Table` or `~astropy.table.QTable` datasets to
a text-only human readable data file and then read the table back without loss
of information. The format stores column specifications like unit and data type
along with table metadata by using a YAML header data structure. The
actual tabular data are stored in a standard character separated values (CSV)
format, giving compatibility with a wide variety of non-specialized CSV table
readers.

.. attention::

    The ECSV format is the recommended way to store Table data in a
    human-readable ASCII file. This includes use cases from informal
    use in science research to production pipelines and data systems.

    In addition to Python, ECSV is supported in `TOPCAT
    <http://www.star.bris.ac.uk/~mbt/topcat/>`_ and in the java `STIL
    <http://www.star.bris.ac.uk/~mbt/topcat/sun253/inEcsv.html>`_ library. .

Usage
-----

When writing in the ECSV format there are only two choices for the delimiter,
either space or comma, with space being the default. Any other value of
``delimiter`` will give an error. For reading the delimiter is specified within
the file itself.

Apart from the delimiter, the only other applicable read/write arguments are
``names``, ``include_names``, and ``exclude_names``. All other arguments will be
either ignored or raise an error.

Simple Table
------------
..
  EXAMPLE START
  Writing Data Tables as ECSV: Simple Table

The following writes a table as a simple space-delimited file. The
ECSV format is auto-selected due to ``.ecsv`` suffix::

  >>> import numpy as np
  >>> from astropy.table import Table
  >>> data = Table()
  >>> data['a'] = np.array([1, 2], dtype=np.int8)
  >>> data['b'] = np.array([1, 2], dtype=np.float32)
  >>> data['c'] = np.array(['hello', 'world'])
  >>> data.write('my_data.ecsv')  # doctest: +SKIP

The contents of ``my_data.ecsv`` are shown below::

  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: a, datatype: int8}
  # - {name: b, datatype: float32}
  # - {name: c, datatype: string}
  # schema: astropy-2.0
  a b c
  1 1.0 hello
  2 2.0 world

The ECSV header is the section prefixed by the ``#`` comment character. An ECSV
file must start with the ``%ECSV <version>`` line. The ``datatype`` element
defines the list of columns and the ``schema`` relates to astropy-specific
extensions that are used for writing `Mixin Columns`_.

..
  EXAMPLE END

Masked Data
-----------

You can write masked (or "missing") data in the ECSV format in two different
ways, either using an empty string to represent missing values or by splitting
the masked columns into separate data and mask columns.

Empty String
""""""""""""

The first (default) way uses an empty string as a marker in place of
masked values. This is a bit more common outside of ``astropy`` and does not
require any astropy-specific extensions.

  >>> from astropy.table import MaskedColumn
  >>> t = Table()
  >>> t['x'] = MaskedColumn([1.0, 2.0, 3.0], unit='m', dtype='float32')
  >>> t['x'][1] = np.ma.masked
  >>> t['y'] = MaskedColumn([False, True, False], dtype='bool')
  >>> t['y'][0] = np.ma.masked

  >>> t.write('my_data.ecsv', format='ascii.ecsv', overwrite=True)  # doctest: +SKIP

The contents of ``my_data.ecsv`` are shown below::

  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: x, unit: m, datatype: float32}
  # - {name: y, datatype: bool}
  # schema: astropy-2.0
  x y
  1.0 ""
  "" True
  3.0 False

To read this back, you would run the following::

  >>> Table.read('my_data.ecsv')  # doctest: +SKIP
  <Table length=3>
     x      y
     m
  float32  bool
  ------- -----
      1.0    --
       --  True
      3.0 False

Data + Mask
"""""""""""

The second way is to tell the writer to break any masked column into a data
column and a mask column by supplying the ``serialize_method='data_mask'``
argument::

  >>> t.write('my_data.ecsv', serialize_method='data_mask', overwrite=True)  # doctest: +SKIP

There are two main reasons you might want to do this:

- Storing the data "under the mask" instead of replacing it with an empty string.
- Writing a string column that contains empty strings which are not masked.

The contents of ``my_data.ecsv`` are shown below. First notice that there are
two new columns ``x.mask`` and ``y.mask`` that have been added, and these explicitly
record the mask values for those columns. Next notice now that the ECSV
header is a bit more complex and includes the astropy-specific extensions that
tell the reader how to interpret the plain CSV columns ``x, x.mask, y, y.mask``
and reassemble them back into the appropriate masked columns.
::

  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: x, unit: m, datatype: float32}
  # - {name: x.mask, datatype: bool}
  # - {name: y, datatype: bool}
  # - {name: y.mask, datatype: bool}
  # meta: !!omap
  # - __serialized_columns__:
  #     x:
  #       __class__: astropy.table.column.MaskedColumn
  #       data: !astropy.table.SerializedColumn {name: x}
  #       mask: !astropy.table.SerializedColumn {name: x.mask}
  #     y:
  #       __class__: astropy.table.column.MaskedColumn
  #       data: !astropy.table.SerializedColumn {name: y}
  #       mask: !astropy.table.SerializedColumn {name: y.mask}
  # schema: astropy-2.0
  x x.mask y y.mask
  1.0 False False True
  2.0 True True False
  3.0 False False False

.. note::

   For the security minded, the ``__class__`` value must within an allowed list
   of astropy classes that are trusted by the reader. You cannot use an
   arbitrary class here.

..
  EXAMPLE START
  Using ECSV Format to Write Astropy Tables with Masked or Missing Data

Per-column control
@@@@@@@@@@@@@@@@@@

In rare cases it may be necessary to specify the serialization method for each
column individually. This is shown in the example below::

  >>> from astropy.table.table_helpers import simple_table
  >>> t = simple_table(masked=True)
  >>> t['c'][0] = ""  # Valid empty string in data
  >>> t
  <Table masked=True length=3>
    a      b     c
  int64 float64 str1
  ----- ------- ----
     --     1.0
      2     2.0   --
      3      --    e

Now we tell ECSV writer to output separate data and mask columns for the
string column ``'c'``:

.. doctest-skip::

  >>> t['c'].info.serialize_method['ecsv'] = 'data_mask'
  >>> ascii.write(t, format='ecsv')
  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: a, datatype: int64}
  # - {name: b, datatype: float64}
  # - {name: c, datatype: string}
  # - {name: c.mask, datatype: bool}
  # meta: !!omap
  # - __serialized_columns__:
  #     c:
  #       __class__: astropy.table.column.MaskedColumn
  #       data: !astropy.table.SerializedColumn {name: c}
  #       mask: !astropy.table.SerializedColumn {name: c.mask}
  # schema: astropy-2.0
  a b c c.mask
  "" 1.0 "" False
  2 2.0 d True
  3 "" e False

When you read this back in, both the empty (zero-length) string and the masked
``'d'`` value in the column ``'c'`` will be preserved.

..
  EXAMPLE END

.. _ecsv_format_mixin_columns:

Mixin Columns
-------------

It is possible to store not only standard `~astropy.table.Column` and
`~astropy.table.MaskedColumn` objects to ECSV but also the following
:ref:`mixin_columns`:

- `astropy.time.Time`
- `astropy.time.TimeDelta`
- `astropy.units.Quantity`
- `astropy.coordinates.Latitude`
- `astropy.coordinates.Longitude`
- `astropy.coordinates.Angle`
- `astropy.coordinates.Distance`
- `astropy.coordinates.EarthLocation`
- `astropy.coordinates.SkyCoord`
- `astropy.table.NdarrayMixin`
- Coordinate representation types such as `astropy.coordinates.SphericalRepresentation`

In general, a mixin column may contain multiple data components as well as
object attributes beyond the standard `~astropy.table.Column` attributes like
``format`` or ``description``. Storing such mixin columns is done by replacing
the mixin column with column(s) representing the underlying data component(s)
and then inserting metadata which informs the reader of how to reconstruct the
original column. For example, a `~astropy.coordinates.SkyCoord` mixin column in
``'spherical'`` representation would have data attributes ``ra``, ``dec``,
``distance``, along with object attributes like ``representation_type`` or
``frame``.

..
  EXAMPLE START
  Writing a Table with a SkyCoord Column in ECSV Format

This example demonstrates writing a `~astropy.table.QTable` that has `~astropy.time.Time`
and `~astropy.coordinates.SkyCoord` mixin columns::

  >>> from astropy.coordinates import SkyCoord
  >>> import astropy.units as u
  >>> from astropy.table import QTable

  >>> sc = SkyCoord(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg)
  >>> sc.info.description = 'flying circus'
  >>> q = [1, 2] * u.m
  >>> q.info.format = '.2f'
  >>> t = QTable()
  >>> t['c'] = [1, 2]
  >>> t['q'] = q
  >>> t['sc'] = sc

  >>> t.write('my_data.ecsv')  # doctest: +SKIP

The contents of ``my_data.ecsv`` are below::

  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: c, datatype: int64}
  # - {name: q, unit: m, datatype: float64, format: .2f}
  # - {name: sc.ra, unit: deg, datatype: float64}
  # - {name: sc.dec, unit: deg, datatype: float64}
  # meta: !!omap
  # - __serialized_columns__:
  #     q:
  #       __class__: astropy.units.quantity.Quantity
  #       __info__: {format: .2f}
  #       unit: !astropy.units.Unit {unit: m}
  #       value: !astropy.table.SerializedColumn {name: q}
  #     sc:
  #       __class__: astropy.coordinates.sky_coordinate.SkyCoord
  #       __info__: {description: flying circus}
  #       dec: !astropy.table.SerializedColumn
  #         __class__: astropy.coordinates.angles.Latitude
  #         unit: &id001 !astropy.units.Unit {unit: deg}
  #         value: !astropy.table.SerializedColumn {name: sc.dec}
  #       frame: icrs
  #       ra: !astropy.table.SerializedColumn
  #         __class__: astropy.coordinates.angles.Longitude
  #         unit: *id001
  #         value: !astropy.table.SerializedColumn {name: sc.ra}
  #         wrap_angle: !astropy.coordinates.Angle
  #           unit: *id001
  #           value: 360.0
  #       representation_type: spherical
  # schema: astropy-2.0
  c q sc.ra sc.dec
  1 1.0 1.0 3.0
  2 2.0 2.0 4.0

The ``'__class__'`` keyword gives the fully-qualified class name and must be
one of the specifically allowed ``astropy`` classes. There is no option to add
user-specified allowed classes. The ``'__info__'`` keyword contains values for
standard `~astropy.table.Column` attributes like ``description`` or ``format``,
for any mixin columns that are represented by more than one serialized column.

..
  EXAMPLE END

.. _ecsv_format_masked_columns:

Multidimensional Columns
------------------------

Using ECSV it is possible to write a table that contains multidimensional
columns (both masked and unmasked). This is done by encoding each element as a
string using JSON. This functionality works for all column types that are
supported by ECSV including :ref:`mixin_columns`. This capability is added in
astropy 4.3 and ECSV version 1.0.

..
  EXAMPLE START
  Using ECSV Format to Write Astropy Tables with Multidimensional Columns

We start by defining a table with 2 rows where each element in the second column
``'b'`` is itself a 3x2 array::

  >>> t = Table()
  >>> t['a'] = ['x', 'y']
  >>> t['b'] = np.arange(12, dtype=np.float64).reshape(2, 3, 2)
  >>> t
  <Table length=2>
   a        b
  str1 float64[3,2]
  ---- ------------
     x   0.0 .. 5.0
     y  6.0 .. 11.0

  >>> t['b'][0]
  array([[0., 1.],
        [2., 3.],
        [4., 5.]])

Now we can write this to ECSV and observe how the N-d column ``'b'`` has been
written as a string with ``datatype: string``. Notice also that the column
descriptor for the column includes the new ``subtype: float64[3,2]`` attribute
specifying the type and shape of each item.

.. doctest-skip::

  >>> ascii.write(t, format='ecsv')  # doctest: +SKIP
  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: a, datatype: string}
  # - {name: b, datatype: string, subtype: 'float64[3,2]'}
  # schema: astropy-2.0
  a b
  x [[0.0,1.0],[2.0,3.0],[4.0,5.0]]
  y [[6.0,7.0],[8.0,9.0],[10.0,11.0]]

When you read this back in, the sequence of JSON-encoded column items are then
decoded using JSON back into the original N-d column.

..
  EXAMPLE END

Variable-length arrays
----------------------

ECSV supports storing multidimensional columns is when the length of each array
element may vary. This data structure is supported in the `FITS standard
<https://fits.gsfc.nasa.gov/fits_standard.html>`_. While ``numpy`` does not
natively support variable-length arrays, it is possible to represent such a
structure using an object-type array of typed ``np.ndarray`` objects. This is how
the ``astropy`` FITS reader outputs a variable-length array.

This capability is added in astropy 4.3 and ECSV version 1.0.

Most commonly variable-length arrays have a 1-d array in each cell of the
column. You might a column with 1-d ``np.ndarray`` cells having lengths of 2, 5,
and 3 respectively.

The ECSV standard and ``astropy`` also supports arbitrary N-d arrays in each
cell, where all dimensions except the last one must match. For instance you
could have a column with ``np.ndarray`` cells having shapes of ``(4,4,2)``,
``(4,4,5)``, and ``(4,4,3)`` respectively.

..
  EXAMPLE START
  Using ECSV Format to Write Astropy Tables with Variable-Length Arrays

The example below shows writing a variable-length 1-d array to ECSV. Notice the
new ECSV column attribute ``subtype: 'int64[null]'``. The ``[null]`` indicates a
variable length for the one dimension. If we had been writing the N-d example
above the subtype would have been ``int64[4,4,null]``.

.. doctest-skip::

  >>> t = Table()
  >>> t['a'] = np.empty(3, dtype=object)
  >>> t['a'] = [np.array([1, 2], dtype=np.int64),
  ...           np.array([3, 4, 5], dtype=np.int64),
  ...           np.array([6, 7, 8, 9], dtype=np.int64)]
  >>> ascii.write(t, format='ecsv')
  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: a, datatype: string, subtype: 'int64[null]'}
  # schema: astropy-2.0
  a
  [1,2]
  [3,4,5]
  [6,7,8,9]

..
  EXAMPLE END

Object arrays
-------------

ECSV can store object-type columns with simple Python objects consisting of
``dict``, ``list``, ``str``, ``int``, ``float``, ``bool`` and ``None`` elements.
More precisely, any object that can be serialized to `JSON
<https://www.json.org/>`__ using the standard library `json
<https://docs.python.org/3/library/json.html>`__ package is supported.

..
  EXAMPLE START
  Using ECSV Format to Write Astropy Tables with Object Arrays

The example below shows writing an object array to ECSV. Because JSON requires
a double-quote around strings, and because ECSV requires ``""`` to represent
a double-quote within a string, one tends to get double-double quotes in this
representation.

.. doctest-skip::

  >>> t = Table()
  >>> t['a'] = np.array([{'a': 1},
  ...                    {'b': [2.5, None]},
  ...                    True], dtype=object)
  >>> ascii.write(t, format='ecsv')
  # %ECSV 1.0
  # ---
  # datatype:
  # - {name: a, datatype: string, subtype: json}
  # schema: astropy-2.0
  a
  "{""a"":1}"
  "{""b"":[2.5,null]}"
  true

..
  EXAMPLE END