File: example-fitting-constraints.rst

package info (click to toggle)
astropy 5.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 41,972 kB
  • sloc: python: 219,331; ansic: 147,297; javascript: 13,556; lex: 8,496; sh: 3,319; xml: 1,622; makefile: 185
file content (150 lines) | stat: -rw-r--r-- 5,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Fitting with constraints
========================

`~astropy.modeling.fitting` support constraints, however, different fitters support
different types of constraints. The `~astropy.modeling.fitting.Fitter.supported_constraints`
attribute shows the type of constraints supported by a specific fitter::

    >>> from astropy.modeling import fitting
    >>> fitting.LinearLSQFitter.supported_constraints
    ['fixed']
    >>> fitting.LevMarLSQFitter.supported_constraints
    ['fixed', 'tied', 'bounds']
    >>> fitting.SLSQPLSQFitter.supported_constraints
    ['bounds', 'eqcons', 'ineqcons', 'fixed', 'tied']

Fixed Parameter Constraint
--------------------------

All fitters support fixed (frozen) parameters through the ``fixed`` argument
to models or setting the `~astropy.modeling.Parameter.fixed`
attribute directly on a parameter.

For linear fitters, freezing a polynomial coefficient means that the
corresponding term will be subtracted from the data before fitting a
polynomial without that term to the result. For example, fixing ``c0`` in a
polynomial model will fit a polynomial with the zero-th order term missing
to the data minus that constant. The fixed coefficients and corresponding terms
are restored to the fit polynomial and this is the polynomial returned from the fitter::

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=12345)
    >>> from astropy.modeling import models, fitting
    >>> x = np.arange(1, 10, .1)
    >>> p1 = models.Polynomial1D(2, c0=[1, 1], c1=[2, 2], c2=[3, 3],
    ...                          n_models=2)
    >>> p1  # doctest: +FLOAT_CMP
    <Polynomial1D(2, c0=[1., 1.], c1=[2., 2.], c2=[3., 3.], n_models=2)>
    >>> y = p1(x, model_set_axis=False)
    >>> n = (rng.standard_normal(y.size)).reshape(y.shape)
    >>> p1.c0.fixed = True
    >>> pfit = fitting.LinearLSQFitter()
    >>> new_model = pfit(p1, x, y + n)  # doctest: +IGNORE_WARNINGS
    >>> print(new_model)  # doctest: +SKIP
    Model: Polynomial1D
    Inputs: ('x',)
    Outputs: ('y',)
    Model set size: 2
    Degree: 2
    Parameters:
         c0         c1                 c2
        --- ------------------ ------------------
        1.0  2.072116176718454   2.99115839177437
        1.0 1.9818866652726403 3.0024208951927585

The syntax to fix the same parameter ``c0`` using an argument to the model
instead of ``p1.c0.fixed = True`` would be::

    >>> p1 = models.Polynomial1D(2, c0=[1, 1], c1=[2, 2], c2=[3, 3],
    ...                          n_models=2, fixed={'c0': True})


Bounded Constraints
-------------------

Bounded fitting is supported through the ``bounds`` arguments to models or by
setting `~astropy.modeling.Parameter.min` and `~astropy.modeling.Parameter.max`
attributes on a parameter.  Bounds for the
`~astropy.modeling.fitting.LevMarLSQFitter` are always exactly satisfied--if
the value of the parameter is outside the fitting interval, it will be reset to
the value at the bounds. The `~astropy.modeling.fitting.SLSQPLSQFitter` optimization
algorithm handles bounds internally.

.. _tied:

Tied Constraints
----------------

The `~astropy.modeling.Parameter.tied` constraint is often useful with :ref:`Compound models <compound-models-intro>`.
In this example we will read a spectrum from a file called ``spec.txt``
and fit Gaussians to the lines simultaneously while linking the flux of the OIII_1 and OIII_2 lines.

.. plot::
    :include-source:

    import numpy as np
    from astropy.io import ascii
    from astropy.utils.data import get_pkg_data_filename
    from astropy.modeling import models, fitting
    fname = get_pkg_data_filename('data/spec.txt', package='astropy.modeling.tests')
    spec = ascii.read(fname)
    wave = spec['lambda']
    flux = spec['flux']

    # Use the rest wavelengths of known lines as initial values for the fit.

    Hbeta = 4862.721
    OIII_1 = 4958.911
    OIII_2 = 5008.239

    # Create Gaussian1D models for each of the Hbeta and OIII lines.

    h_beta = models.Gaussian1D(amplitude=34, mean=Hbeta, stddev=5)
    o3_2 = models.Gaussian1D(amplitude=170, mean=OIII_2, stddev=5)
    o3_1 = models.Gaussian1D(amplitude=57, mean=OIII_1, stddev=5)


    # Tie the ratio of the intensity of the two OIII lines.

    def tie_ampl(model):
        return model.amplitude_2 / 3.1

    o3_1.amplitude.tied = tie_ampl


    # Also tie the wavelength of the Hbeta line to the OIII wavelength.

    def tie_wave(model):
        return model.mean_0 * OIII_1 / Hbeta

    o3_1.mean.tied = tie_wave

    # Create a Polynomial model to fit the continuum.

    mean_flux = flux.mean()
    cont = np.where(flux > mean_flux, mean_flux, flux)
    linfitter = fitting.LinearLSQFitter()
    poly_cont = linfitter(models.Polynomial1D(1), wave, cont)

    # Create a compound model for the three lines and the continuum.

    hbeta_combo = h_beta + o3_1 + o3_2 + poly_cont

    # Fit all lines simultaneously -
    # this will need one iteration more than the default of 100.

    fitter = fitting.LevMarLSQFitter()
    fitted_model = fitter(hbeta_combo, wave, flux, maxiter=111)
    fitted_lines = fitted_model(wave)

    from matplotlib import pyplot as plt
    fig = plt.figure(figsize=(9, 6))
    p = plt.plot(wave, flux, label="data")
    p = plt.plot(wave, fitted_lines, 'r', label="fit")
    p = plt.legend()
    p = plt.xlabel("Wavelength")
    p = plt.ylabel("Flux")
    t = plt.text(4800, 70, 'Hbeta', rotation=90)
    t = plt.text(4900, 100, 'OIII_1', rotation=90)
    t = plt.text(4950, 180, 'OIII_2', rotation=90)
    plt.show()