File: physical_models.rst

package info (click to toggle)
astropy 5.2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 41,972 kB
  • sloc: python: 219,331; ansic: 147,297; javascript: 13,556; lex: 8,496; sh: 3,319; xml: 1,622; makefile: 185
file content (326 lines) | stat: -rw-r--r-- 10,369 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
.. _predef_physicalmodels:

***************
Physical Models
***************

These are models that are physical motivated, generally as solutions to
physical problems.  This is in contrast to those that are mathematically motivated,
generally as solutions to mathematical problems.

.. _blackbody-planck-law:

BlackBody
=========

The :class:`~astropy.modeling.physical_models.BlackBody` model provides a model
for using `Planck's Law <https://en.wikipedia.org/wiki/Planck%27s_law>`_.
The blackbody function is

.. math::

   B_{\nu}(T) = A \frac{2 h \nu^{3} / c^{2}}{exp(h \nu / k T) - 1}

where :math:`\nu` is the frequency, :math:`T` is the temperature,
:math:`A` is the scaling factor,
:math:`h` is the Plank constant, :math:`c` is the speed of light, and
:math:`k` is the Boltzmann constant.

The two parameters of the model the scaling factor ``scale`` (A) and
the absolute temperature ``temperature`` (T).  If the ``scale`` factor does not
have units, then the result is in units of spectral radiance, specifically
ergs/(cm^2 Hz s sr).  If the ``scale`` factor is passed with spectral radiance units,
then the result is in those units (e.g., ergs/(cm^2 A s sr) or MJy/sr).
Setting the ``scale`` factor with units of ergs/(cm^2 A s sr) will give the
Planck function as :math:`B_\lambda`.
The temperature can be passed as a Quantity with any supported temperature unit.

An example plot for a blackbody with a temperature of 10000 K and a scale of 1 is
shown below.  A scale of 1 shows the Planck function with no scaling in the
default units returned by :class:`~astropy.modeling.physical_models.BlackBody`.

.. plot::
    :include-source:

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling.models import BlackBody
    import astropy.units as u

    wavelengths = np.logspace(np.log10(1000), np.log10(3e4), num=1000) * u.AA

    # blackbody parameters
    temperature = 10000 * u.K

    # BlackBody provides the results in ergs/(cm^2 Hz s sr) when scale has no units
    bb = BlackBody(temperature=temperature, scale=10000.0)
    bb_result = bb(wavelengths)

    fig, ax = plt.subplots(ncols=1)
    ax.plot(wavelengths, bb_result, '-')

    ax.set_xscale('log')
    ax.set_xlabel(fr"$\lambda$ [{wavelengths.unit}]")
    ax.set_ylabel(fr"$F(\lambda)$ [{bb_result.unit}]")

    plt.tight_layout()
    plt.show()

The :meth:`~astropy.modeling.physical_models.BlackBody.bolometric_flux` member
function gives the bolometric flux using
:math:`\sigma T^4/\pi` where :math:`\sigma` is the Stefan-Boltzmann constant.

The :meth:`~astropy.modeling.physical_models.BlackBody.lambda_max` and
:meth:`~astropy.modeling.physical_models.BlackBody.nu_max` member functions
give the wavelength and frequency of the maximum for :math:`B_\lambda`
and :math:`B_\nu`, respectively, calculated using `Wien's Law
<https://en.wikipedia.org/wiki/Wien%27s_displacement_law>`_.

Drude1D
=======

The :class:`~astropy.modeling.physical_models.Drude1D` model provides a model
for the behavior of an electron in a material
(see `Drude Model <https://en.wikipedia.org/wiki/Drude_model>`_).
Like the :class:`~astropy.modeling.functional_models.Lorentz1D` model, the Drude model
has broader wings than the :class:`~astropy.modeling.functional_models.Gaussian1D`
model.  The Drude profile has been used to model dust features including the
2175 Angstrom extinction feature and the mid-infrared aromatic/PAH features.
The Drude function at :math:`x` is

.. math::

    D(x) = A \frac{(f/x_0)^2}{((x/x_0 - x_0/x)^2 + (f/x_0)^2}

where :math:`A` is the amplitude, :math:`f` is the full width at half maximum,
and :math:`x_0` is the central wavelength.  An example of a Drude1D model
with :math:`x_0 = 2175` Angstrom and :math:`f = 400` Angstrom is shown below.

.. plot::
    :include-source:

    import numpy as np
    import matplotlib.pyplot as plt

    from astropy.modeling.models import Drude1D
    import astropy.units as u

    wavelengths = np.linspace(1000, 4000, num=1000) * u.AA

    # Parameters and model
    mod = Drude1D(amplitude=1.0, x_0=2175. * u.AA, fwhm=400. * u.AA)
    mod_result = mod(wavelengths)

    fig, ax = plt.subplots(ncols=1)
    ax.plot(wavelengths, mod_result, '-')

    ax.set_xlabel(fr"$\lambda$ [{wavelengths.unit}]")
    ax.set_ylabel(r"$D(\lambda)$")

    plt.tight_layout()
    plt.show()

.. _NFW:

NFW
=========

The :class:`~astropy.modeling.physical_models.NFW` model computes a
1-dimensional Navarro–Frenk–White profile. The dark matter density in an
NFW profile is given by:


.. math::

   \rho(r)=\frac{\delta_c\rho_{c}}{r/r_s(1+r/r_s)^2}

where :math:`\rho_{c}` is the critical density of the Universe at the redshift
of the profile, :math:`\delta_c` is the over density, and :math:`r_s` is the
scale radius of the profile.


This model relies on three parameters:

  ``mass`` : the mass of the profile (in solar masses if no units are provided)

  ``concentration`` : the profile concentration

  ``redshift`` : the redshift of the profile

As well as two optional initialization variables:

  ``massfactor`` : tuple or string specifying the overdensity type and factor (default ("critical", 200))

  ``cosmo`` : the cosmology for density calculation (default default_cosmology)

.. note::
	Initialization of NFW profile object required before evaluation (in order to set mass
	overdensity and cosmology).


Sample plots of an NFW profile with the following parameters are displayed below:
  ``mass`` = :math:`2.0 x 10^{15} M_{sun}`

  ``concentration`` = 8.5

  ``redshift`` = 0.63

The first plot is of the NFW profile density as a function of radius.
The second plot displays the profile density and radius normalized by the NFW scale
density and scale radius, respectively. The scale density and scale radius are available
as attributes ``rho_s`` and ``r_s``, and the overdensity radius can be accessed via ``r_virial``.

.. plot::
    :include-source:

    import numpy as np
    import matplotlib.pyplot as plt
    from astropy.modeling.models import NFW
    import astropy.units as u
    from astropy import cosmology

    # NFW Parameters
    mass = u.Quantity(2.0E15, u.M_sun)
    concentration = 8.5
    redshift = 0.63
    cosmo = cosmology.Planck15
    massfactor = ("critical", 200)

    # Create NFW Object
    n = NFW(mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo,
	    massfactor=massfactor)

    # Radial distribution for plotting
    radii = range(1,2001,10) * u.kpc

    # Radial NFW density distribution
    n_result = n(radii)

    # Plot creation
    fig, ax = plt.subplots(2)
    fig.suptitle('1 Dimensional NFW Profile')

    # Density profile subplot
    ax[0].plot(radii, n_result, '-')
    ax[0].set_yscale('log')
    ax[0].set_xlabel(fr"$r$ [{radii.unit}]")
    ax[0].set_ylabel(fr"$\rho$ [{n_result.unit}]")

    # Create scaled density / scaled radius subplot
    # NFW Object
    n = NFW(mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo,
	    massfactor=massfactor)

    # Radial distribution for plotting
    radii = np.logspace(np.log10(1e-5), np.log10(2), num=1000) * u.Mpc
    n_result = n(radii)

    # Scaled density / scaled radius subplot
    ax[1].plot(radii / n.radius_s, n_result / n.density_s, '-')
    ax[1].set_xscale('log')
    ax[1].set_yscale('log')
    ax[1].set_xlabel(r"$r / r_s$")
    ax[1].set_ylabel(r"$\rho / \rho_s$")

    # Display plot
    plt.tight_layout(rect=[0, 0.03, 1, 0.95])
    plt.show()



The :meth:`~astropy.modeling.physical_models.NFW.circular_velocity` member provides the circular
velocity at each position ``r`` via the equation:


.. math::

   v_{circ}(r)^2=\frac{1}{x}\frac{\ln(1+cx)-(cx)/(1+cx)}{\ln(1+c)-c/(1+c)}

where x is the ratio ``r``:math:`/r_{vir}`. Circular velocities are provided in km/s.

A sample plot of circular velocities of an NFW profile with the following parameters is displayed
below:

  ``mass`` = :math:`2.0 x 10^{15} M_{sun}`

  ``concentration`` = 8.5

  ``redshift`` = 0.63

The maximum circular velocity and radius of maximum circular velocity are available as attributes
``v_max`` and ``r_max``.


.. plot::
    :include-source:

    import matplotlib.pyplot as plt
    from astropy.modeling.models import NFW
    import astropy.units as u
    from astropy import cosmology

    # NFW Parameters
    mass = u.Quantity(2.0E15, u.M_sun)
    concentration = 8.5
    redshift = 0.63
    cosmo = cosmology.Planck15
    massfactor = ("critical", 200)

    # Create NFW Object
    n = NFW(mass=mass, concentration=concentration, redshift=redshift, cosmo=cosmo,
            massfactor=massfactor)

    # Radial distribution for plotting
    radii = range(1,200001,10) * u.kpc

    # NFW circular velocity distribution
    n_result = n.circular_velocity(radii)

    # Plot creation
    fig,ax = plt.subplots()
    ax.set_title('NFW Profile Circular Velocity')
    ax.plot(radii, n_result, '-')
    ax.set_xscale('log')
    ax.set_xlabel(fr"$r$ [{radii.unit}]")
    ax.set_ylabel(r"$v_{circ}$" + f" [{n_result.unit}]")

    # Display plot
    plt.tight_layout(rect=[0, 0.03, 1, 0.95])
    plt.show()


.. _Cosmologies:

Cosmologies
===========

The instances of the |Cosmology| class (and subclasses) include
|Cosmology.to_format|, a method to convert a Cosmology to another python
object. Specifically, any redshift method can be converted to a
:class:`~astropy.modeling.FittableModel` instance using the argument
``format="astropy.model"``.
During the conversion, each |Cosmology| :class:`~astropy.cosmology.Parameter`
is converted to a :class:`astropy.modeling.Model`
:class:`~astropy.modeling.Parameter`, while the redshift-method becomes the
model's ``__call__`` / ``evaluate`` method.
This means cosmologies can now be fit with data!

.. code-block::

    >>> from astropy.cosmology import Planck18
    >>> model = Planck18.to_format(format="astropy.model", method="lookback_time")
    >>> model
    <FlatLambdaCDMCosmologyLookbackTimeModel(H0=67.66 km / (Mpc s), Om0=0.30966,
        Tcmb0=2.7255 K, Neff=3.046, m_nu=[0.  , 0.  , 0.06] eV, Ob0=0.04897,
        name='Planck18')>

When finished, e.g. fitting, a model can be turned back into a |Cosmology|
using |Cosmology.from_format|.

.. code-block::

    >>> from astropy.cosmology import Cosmology
    >>> cosmo = Cosmology.from_format(model, format="astropy.model")
    >>> cosmo == Planck18
    True