1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
.. _nddata_utils:
Image Utilities
***************
Overview
========
The `astropy.nddata.utils` module includes general utility functions
for array operations.
.. _cutout_images:
2D Cutout Images
================
Getting Started
---------------
The `~astropy.nddata.utils.Cutout2D` class can be used to create a
postage stamp cutout image from a 2D array. If an optional
`~astropy.wcs.WCS` object is input to
`~astropy.nddata.utils.Cutout2D`, then the
`~astropy.nddata.utils.Cutout2D` object will contain an updated
`~astropy.wcs.WCS` corresponding to the cutout array.
First, we simulate a single source on a 2D data array. If you would like to
simulate many sources, see :ref:`bounding-boxes`.
Note: The pair convention is different for **size** and **position**! The
position is specified as (x,y), but the size is specified as (y,x).
>>> import numpy as np
>>> from astropy.modeling.models import Gaussian2D
>>> y, x = np.mgrid[0:500, 0:500]
>>> data = Gaussian2D(1, 50, 100, 10, 5, theta=0.5)(x, y)
Now, we can display the image:
.. doctest-skip::
>>> import matplotlib.pyplot as plt
>>> plt.imshow(data, origin='lower')
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.modeling.models import Gaussian2D
y, x = np.mgrid[0:500, 0:500]
data = Gaussian2D(1, 50, 100, 10, 5, theta=0.5)(x, y)
plt.imshow(data, origin='lower')
Next we can create a cutout for the single object in this image. We
create a cutout centered at position ``(x, y) = (49.7, 100.1)`` with a
size of ``(ny, nx) = (41, 51)`` pixels::
>>> from astropy.nddata import Cutout2D
>>> from astropy import units as u
>>> position = (49.7, 100.1)
>>> size = (41, 51) # pixels
>>> cutout = Cutout2D(data, position, size)
The ``size`` keyword can also be a `~astropy.units.Quantity` object::
>>> size = u.Quantity((41, 51), u.pixel)
>>> cutout = Cutout2D(data, position, size)
Or contain `~astropy.units.Quantity` objects::
>>> size = (41*u.pixel, 51*u.pixel)
>>> cutout = Cutout2D(data, position, size)
A square cutout image can be generated by passing an integer or
a scalar `~astropy.units.Quantity`::
>>> size = 41
>>> cutout2 = Cutout2D(data, position, size)
>>> size = 41 * u.pixel
>>> cutout2 = Cutout2D(data, position, size)
The cutout array is stored in the ``data`` attribute of the
`~astropy.nddata.utils.Cutout2D` instance. If the ``copy`` keyword is
`False` (default), then ``cutout.data`` will be a view into the
original ``data`` array. If ``copy=True``, then ``cutout.data`` will
hold a copy of the original ``data``. Now we display the cutout
image:
.. doctest-skip::
>>> cutout = Cutout2D(data, position, (41, 51))
>>> plt.imshow(cutout.data, origin='lower')
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.modeling.models import Gaussian2D
from astropy.nddata import Cutout2D
y, x = np.mgrid[0:500, 0:500]
data = Gaussian2D(1, 50, 100, 10, 5, theta=0.5)(x, y)
position = (49.7, 100.1)
cutout = Cutout2D(data, position, (41, 51))
plt.imshow(cutout.data, origin='lower')
The cutout object can plot its bounding box on the original data using
the :meth:`~astropy.nddata.utils.Cutout2D.plot_on_original` method:
.. doctest-skip::
>>> plt.imshow(data, origin='lower')
>>> cutout.plot_on_original(color='white')
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.modeling.models import Gaussian2D
from astropy.nddata import Cutout2D
y, x = np.mgrid[0:500, 0:500]
data = Gaussian2D(1, 50, 100, 10, 5, theta=0.5)(x, y)
position = (49.7, 100.1)
size = (41, 51)
cutout = Cutout2D(data, position, size)
plt.imshow(data, origin='lower')
cutout.plot_on_original(color='white')
Many properties of the cutout array are also stored as attributes,
including::
>>> # shape of the cutout array
>>> print(cutout.shape)
(41, 51)
>>> # rounded pixel index of the input position
>>> print(cutout.position_original)
(50, 100)
>>> # corresponding position in the cutout array
>>> print(cutout.position_cutout)
(25, 20)
>>> # (non-rounded) input position in both the original and cutout arrays
>>> print((cutout.input_position_original, cutout.input_position_cutout)) # doctest: +FLOAT_CMP
((49.7, 100.1), (24.700000000000003, 20.099999999999994))
>>> # the origin pixel in both arrays
>>> print((cutout.origin_original, cutout.origin_cutout))
((25, 80), (0, 0))
>>> # tuple of slice objects for the original array
>>> print(cutout.slices_original)
(slice(80, 121, None), slice(25, 76, None))
>>> # tuple of slice objects for the cutout array
>>> print(cutout.slices_cutout)
(slice(0, 41, None), slice(0, 51, None))
There are also two `~astropy.nddata.utils.Cutout2D` methods to convert
pixel positions between the original and cutout arrays::
>>> print(cutout.to_original_position((2, 1)))
(27, 81)
>>> print(cutout.to_cutout_position((27, 81)))
(2, 1)
2D Cutout Modes
---------------
There are three modes for creating cutout arrays: ``'trim'``,
``'partial'``, and ``'strict'``. For the ``'partial'`` and ``'trim'``
modes, a partial overlap of the cutout array and the input ``data``
array is sufficient. For the ``'strict'`` mode, the cutout array has
to be fully contained within the ``data`` array, otherwise an
`~astropy.nddata.utils.PartialOverlapError` is raised. In all modes,
non-overlapping arrays will raise a
`~astropy.nddata.utils.NoOverlapError`. In ``'partial'`` mode,
positions in the cutout array that do not overlap with the ``data``
array will be filled with ``fill_value``. In ``'trim'`` mode only the
overlapping elements are returned, thus the resulting cutout array may
be smaller than the requested ``size``.
The default uses ``mode='trim'``, which can result in cutout arrays
that are smaller than the requested ``size``::
>>> data2 = np.arange(20.).reshape(5, 4)
>>> cutout1 = Cutout2D(data2, (0, 0), (3, 3), mode='trim')
>>> print(cutout1.data) # doctest: +FLOAT_CMP
[[0. 1.]
[4. 5.]]
>>> print(cutout1.shape)
(2, 2)
>>> print((cutout1.position_original, cutout1.position_cutout))
((0, 0), (0, 0))
With ``mode='partial'``, the cutout will never be trimmed. Instead it
will be filled with ``fill_value`` (the default is ``numpy.nan``) if
the cutout is not fully contained in the data array::
>>> cutout2 = Cutout2D(data2, (0, 0), (3, 3), mode='partial')
>>> print(cutout2.data) # doctest: +FLOAT_CMP
[[nan nan nan]
[nan 0. 1.]
[nan 4. 5.]]
Note that for the ``'partial'`` mode, the positions (and several other
attributes) are calculated for on the *valid* (non-filled) cutout
values::
>>> print((cutout2.position_original, cutout2.position_cutout))
((0, 0), (1, 1))
>>> print((cutout2.origin_original, cutout2.origin_cutout))
((0, 0), (1, 1))
>>> print(cutout2.slices_original)
(slice(0, 2, None), slice(0, 2, None))
>>> print(cutout2.slices_cutout)
(slice(1, 3, None), slice(1, 3, None))
Using ``mode='strict'`` will raise an exception if the cutout is not
fully contained in the data array:
.. doctest-skip::
>>> cutout3 = Cutout2D(data2, (0, 0), (3, 3), mode='strict')
PartialOverlapError: Arrays overlap only partially.
2D Cutout from a `~astropy.coordinates.SkyCoord` Position
---------------------------------------------------------
The input ``position`` can also be specified as a
`~astropy.coordinates.SkyCoord`, in which case a `~astropy.wcs.WCS`
object must be input via the ``wcs`` keyword.
First, we define a `~astropy.coordinates.SkyCoord` position and a
`~astropy.wcs.WCS` object for our data (usually this would come from
your FITS header)::
>>> from astropy.coordinates import SkyCoord
>>> from astropy.wcs import WCS
>>> position = SkyCoord('13h11m29.96s -01d19m18.7s', frame='icrs')
>>> wcs = WCS(naxis=2)
>>> rho = np.pi / 3.
>>> scale = 0.05 / 3600.
>>> wcs.wcs.cd = [[scale*np.cos(rho), -scale*np.sin(rho)],
... [scale*np.sin(rho), scale*np.cos(rho)]]
>>> wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
>>> wcs.wcs.crval = [position.ra.to_value(u.deg),
... position.dec.to_value(u.deg)]
>>> wcs.wcs.crpix = [50, 100]
Now we can create the cutout array using the
`~astropy.coordinates.SkyCoord` position and ``wcs`` object::
>>> cutout = Cutout2D(data, position, (30, 40), wcs=wcs)
>>> plt.imshow(cutout.data, origin='lower') # doctest: +SKIP
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.modeling.models import Gaussian2D
from astropy.nddata import Cutout2D
from astropy.coordinates import SkyCoord
from astropy.wcs import WCS
y, x = np.mgrid[0:500, 0:500]
data = Gaussian2D(1, 50, 100, 10, 5, theta=0.5)(x, y)
position = SkyCoord('13h11m29.96s -01d19m18.7s', frame='icrs')
wcs = WCS(naxis=2)
rho = np.pi / 3.
scale = 0.05 / 3600.
wcs.wcs.cd = [[scale*np.cos(rho), -scale*np.sin(rho)],
[scale*np.sin(rho), scale*np.cos(rho)]]
wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
wcs.wcs.crval = [position.ra.value, position.dec.value]
wcs.wcs.crpix = [50, 100]
cutout = Cutout2D(data, position, (30, 40), wcs=wcs)
plt.imshow(cutout.data, origin='lower')
The ``wcs`` attribute of the `~astropy.nddata.utils.Cutout2D` object now
contains the propagated `~astropy.wcs.WCS` for the cutout array.
Now we can find the sky coordinates for a given pixel in the cutout array.
Note that we need to use the ``cutout.wcs`` object for the cutout
positions::
>>> from astropy.wcs.utils import pixel_to_skycoord
>>> x_cutout, y_cutout = (5, 10)
>>> pixel_to_skycoord(x_cutout, y_cutout, cutout.wcs) # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
( 197.8747893, -1.32207626)>
We now find the corresponding pixel in the original ``data`` array and
its sky coordinates::
>>> x_data, y_data = cutout.to_original_position((x_cutout, y_cutout))
>>> pixel_to_skycoord(x_data, y_data, wcs) # doctest: +FLOAT_CMP
<SkyCoord (ICRS): (ra, dec) in deg
( 197.8747893, -1.32207626)>
As expected, the sky coordinates in the original ``data`` and the
cutout array agree.
2D Cutout Using an Angular ``size``
-----------------------------------
The input ``size`` can also be specified as a
`~astropy.units.Quantity` in angular units (e.g., degrees, arcminutes,
arcseconds, etc.). For this case, a `~astropy.wcs.WCS` object must be
input via the ``wcs`` keyword.
For this example, we will use the data, `~astropy.coordinates.SkyCoord`
position, and ``wcs`` object from above to create a cutout with size
1.5 x 2.5 arcseconds::
>>> size = u.Quantity((1.5, 2.5), u.arcsec)
>>> cutout = Cutout2D(data, position, size, wcs=wcs)
>>> plt.imshow(cutout.data, origin='lower') # doctest: +SKIP
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.modeling.models import Gaussian2D
from astropy.nddata import Cutout2D
from astropy.coordinates import SkyCoord
from astropy.wcs import WCS
from astropy import units as u
y, x = np.mgrid[0:500, 0:500]
data = Gaussian2D(1, 50, 100, 10, 5, theta=0.5)(x, y)
position = SkyCoord('13h11m29.96s -01d19m18.7s', frame='icrs')
wcs = WCS(naxis=2)
rho = np.pi / 3.
scale = 0.05 / 3600.
wcs.wcs.cd = [[scale*np.cos(rho), -scale*np.sin(rho)],
[scale*np.sin(rho), scale*np.cos(rho)]]
wcs.wcs.ctype = ['RA---TAN', 'DEC--TAN']
wcs.wcs.crval = [position.ra.value, position.dec.value]
wcs.wcs.crpix = [50, 100]
size = u.Quantity((1.5, 2.5), u.arcsec)
cutout = Cutout2D(data, position, size, wcs=wcs)
plt.imshow(cutout.data, origin='lower')
Saving a 2D Cutout to a FITS File with an Updated WCS
=====================================================
A `~astropy.nddata.utils.Cutout2D` object can be saved to a FITS file,
including the updated WCS object for the cutout region. In this example, we
download an example FITS image and create a cutout image. The resulting
`~astropy.nddata.utils.Cutout2D` object is then saved to a new FITS file with
the updated WCS for the cutout region.
.. literalinclude:: examples/cutout2d_tofits.py
:language: python
|