1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
|
.. _astropy-time:
*******************************
Time and Dates (`astropy.time`)
*******************************
Introduction
============
The `astropy.time` package provides functionality for manipulating times and
dates. Specific emphasis is placed on supporting time scales (e.g., UTC, TAI,
UT1, TDB) and time representations (e.g., JD, MJD, ISO 8601) that are used in
astronomy and required to calculate, for example, sidereal times and barycentric
corrections. The `astropy.time` package is based on fast and memory efficient
PyERFA_ wrappers around the ERFA_ time and calendar routines.
All time manipulations and arithmetic operations are done internally using two
64-bit floats to represent time. Floating point algorithms from [#]_ are used so
that the |Time| object maintains sub-nanosecond precision over times spanning
the age of the universe.
.. [#] Shewchuk, 1997, Discrete & Computational Geometry 18(3):305-363
Getting Started
===============
The usual way to use `astropy.time` is to create a |Time| object by
supplying one or more input time values as well as the `time format`_ and `time
scale`_ of those values. The input time(s) can either be a single scalar like
``"2010-01-01 00:00:00"`` or a list or a ``numpy`` array of values as shown
below. In general, any output values have the same shape (scalar or array) as
the input.
Examples
--------
.. EXAMPLE START: Creating a Time Object with astropy.time
To create a |Time| object:
>>> import numpy as np
>>> from astropy.time import Time
>>> times = ['1999-01-01T00:00:00.123456789', '2010-01-01T00:00:00']
>>> t = Time(times, format='isot', scale='utc')
>>> t
<Time object: scale='utc' format='isot' value=['1999-01-01T00:00:00.123' '2010-01-01T00:00:00.000']>
>>> t[1]
<Time object: scale='utc' format='isot' value=2010-01-01T00:00:00.000>
The ``format`` argument specifies how to interpret the input values (e.g., ISO,
JD, or Unix time). The ``scale`` argument specifies the `time scale`_ for the
values (e.g., UTC, TT, or UT1). The ``scale`` argument is optional and defaults
to UTC except for `Time from Epoch Formats`_.
.. EXAMPLE END
We could have written the above as::
>>> t = Time(times, format='isot')
When the format of the input can be unambiguously determined, the
``format`` argument is not required, so we can then simplify even further::
>>> t = Time(times)
Now we can get the representation of these times in the JD and MJD
formats by requesting the corresponding |Time| attributes::
>>> t.jd # doctest: +FLOAT_CMP
array([2451179.50000143, 2455197.5 ])
>>> t.mjd # doctest: +FLOAT_CMP
array([51179.00000143, 55197. ])
The full power of output representation is available via the
`~astropy.time.Time.to_value` method which also allows controlling the
`subformat`_. For instance, using ``numpy.longdouble`` as the output type
for higher precision::
>>> t.to_value('mjd', 'long') # doctest: +SKIP
array([51179.00000143, 55197. ], dtype=float128)
The default representation can be changed by setting the ``format`` attribute::
>>> t.format = 'fits'
>>> t
<Time object: scale='utc' format='fits' value=['1999-01-01T00:00:00.123'
'2010-01-01T00:00:00.000']>
>>> t.format = 'isot'
We can also convert to a different time scale, for instance from UTC to
TT. This uses the same attribute mechanism as above but now returns a new
|Time| object::
>>> t2 = t.tt
>>> t2
<Time object: scale='tt' format='isot' value=['1999-01-01T00:01:04.307' '2010-01-01T00:01:06.184']>
>>> t2.jd # doctest: +FLOAT_CMP
array([2451179.5007443 , 2455197.50076602])
Note that both the ISO (ISOT) and JD representations of ``t2`` are different
than for ``t`` because they are expressed relative to the TT time scale. Of
course, from the numbers or strings you would not be able to tell this was the
case::
>>> print(t2.fits)
['1999-01-01T00:01:04.307' '2010-01-01T00:01:06.184']
You can set the time values in place using the usual ``numpy`` array setting
item syntax::
>>> t2 = t.tt.copy() # Copy required if transformed Time will be modified
>>> t2[1] = '2014-12-25'
>>> print(t2)
['1999-01-01T00:01:04.307' '2014-12-25T00:00:00.000']
The |Time| object also has support for missing values, which is particularly
useful for :ref:`table_operations` such as joining and stacking::
>>> t2[0] = np.ma.masked # Declare that first time is missing or invalid
>>> print(t2)
[-- '2014-12-25T00:00:00.000']
Finally, some further examples of what is possible. For details, see
the API documentation below.
>>> dt = t[1] - t[0]
>>> dt # doctest: +FLOAT_CMP
<TimeDelta object: scale='tai' format='jd' value=4018.00002172>
Here, note the conversion of the timescale to TAI. Time differences
can only have scales in which one day is always equal to 86400 seconds.
>>> import numpy as np
>>> t[0] + dt * np.linspace(0., 1., 12)
<Time object: scale='utc' format='isot' value=['1999-01-01T00:00:00.123' '2000-01-01T06:32:43.930'
'2000-12-31T13:05:27.737' '2001-12-31T19:38:11.544'
'2003-01-01T02:10:55.351' '2004-01-01T08:43:39.158'
'2004-12-31T15:16:22.965' '2005-12-31T21:49:06.772'
'2007-01-01T04:21:49.579' '2008-01-01T10:54:33.386'
'2008-12-31T17:27:17.193' '2010-01-01T00:00:00.000']>
>>> t.sidereal_time('apparent', 'greenwich') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude [6.68050179, 6.70281947] hourangle>
You can also use time-based `~astropy.units.Quantity` for time arithmetic:
>>> import astropy.units as u
>>> Time("2020-01-01") + 5 * u.day
<Time object: scale='utc' format='iso' value=2020-01-06 00:00:00.000>
As of v5.1, |Time| objects can also be passed directly to
`numpy.linspace` to create even-sampled time arrays, including support for
non-scalar ``start`` and/or ``stop`` points - given compatible shapes.
>>> stop = ['1999-01-05T00:00:00.123456789', '2010-05-01T00:00:00']
>>> tstp = Time(stop, format='isot', scale='utc')
>>> np.linspace(t, tstp, 4, endpoint=False)
<Time object: scale='utc' format='isot' value=[['1999-01-01T00:00:00.123' '2010-01-01T00:00:00.000']
['1999-01-02T00:00:00.123' '2010-01-31T00:00:00.000']
['1999-01-03T00:00:00.123' '2010-03-02T00:00:00.000']
['1999-01-04T00:00:00.123' '2010-04-01T00:00:00.000']]>
Using `astropy.time`
====================
Time Object Basics
------------------
In `astropy.time` a "time" is a single instant of time which is
independent of the way the time is represented (the "format") and the time
"scale" which specifies the offset and scaling relation of the unit of time.
There is no distinction made between a "date" and a "time" since both concepts
(as loosely defined in common usage) are just different representations of a
moment in time.
.. _time-format:
Time Format
^^^^^^^^^^^
The time format specifies how an instant of time is represented. The currently
available formats are can be found in the ``Time.FORMATS`` dict and are listed
in the table below. Each of these formats is implemented as a class that derives
from the base :class:`~astropy.time.TimeFormat` class. This class structure can
be adapted and extended by users for specialized time formats not supplied in
`astropy.time`.
=========== ================================================= =====================================
Format Class Example Argument
=========== ================================================= =====================================
byear :class:`~astropy.time.TimeBesselianEpoch` 1950.0
byear_str :class:`~astropy.time.TimeBesselianEpochString` 'B1950.0'
cxcsec :class:`~astropy.time.TimeCxcSec` 63072064.184
datetime :class:`~astropy.time.TimeDatetime` datetime(2000, 1, 2, 12, 0, 0)
decimalyear :class:`~astropy.time.TimeDecimalYear` 2000.45
fits :class:`~astropy.time.TimeFITS` '2000-01-01T00:00:00.000'
gps :class:`~astropy.time.TimeGPS` 630720013.0
iso :class:`~astropy.time.TimeISO` '2000-01-01 00:00:00.000'
isot :class:`~astropy.time.TimeISOT` '2000-01-01T00:00:00.000'
jd :class:`~astropy.time.TimeJD` 2451544.5
jyear :class:`~astropy.time.TimeJulianEpoch` 2000.0
jyear_str :class:`~astropy.time.TimeJulianEpochString` 'J2000.0'
mjd :class:`~astropy.time.TimeMJD` 51544.0
plot_date :class:`~astropy.time.TimePlotDate` 730120.0003703703
unix :class:`~astropy.time.TimeUnix` 946684800.0
unix_tai :class:`~astropy.time.TimeUnixTai` 946684800.0
yday :class:`~astropy.time.TimeYearDayTime` 2000:001:00:00:00.000
ymdhms :class:`~astropy.time.TimeYMDHMS` {'year': 2010, 'month': 3, 'day': 1}
datetime64 :class:`~astropy.time.TimeDatetime64` np.datetime64('2000-01-01T01:01:01')
=========== ================================================= =====================================
.. note:: The :class:`~astropy.time.TimeFITS` format implements most
of the FITS standard [#]_, including support for the ``LOCAL`` timescale.
Note, though, that FITS supports some deprecated names for timescales;
these are translated to the formal names upon initialization. Furthermore,
any specific realization information, such as ``UT(NIST)`` is stored only as
long as the time scale is not changed.
.. [#] `Rots et al. 2015, A&A 574:A36 <https://ui.adsabs.harvard.edu/abs/2015A%26A...574A..36R>`_
Changing Format
"""""""""""""""
.. EXAMPLE START: Changing Time Format
The default representation can be changed by setting the ``format`` attribute::
>>> t = Time('2000-01-02')
>>> t.format = 'jd'
>>> t
<Time object: scale='utc' format='jd' value=2451545.5>
Be aware that when changing format, the current output subformat (see section
below) may not exist in the new format. In this case, the subformat will not be
preserved::
>>> t = Time('2000-01-02', format='fits', out_subfmt='longdate')
>>> t.value
'+02000-01-02'
>>> t.format = 'iso'
>>> t.out_subfmt
u'*'
>>> t.format = 'fits'
>>> t.value
'2000-01-02T00:00:00.000'
.. EXAMPLE END
Subformat
"""""""""
Many of the available time format classes support the concept of a subformat.
This allows for variations on the basic theme of a format in both the input
parsing/validation and the output.
The table below illustrates available subformats for the string formats
``iso``, ``fits``, and ``yday`` formats:
======== ============ ==============================
Format Subformat Input / Output
======== ============ ==============================
``iso`` date_hms 2001-01-02 03:04:05.678
``iso`` date_hm 2001-01-02 03:04
``iso`` date 2001-01-02
``fits`` date_hms 2001-01-02T03:04:05.678
``fits`` longdate_hms +02001-01-02T03:04:05.678
``fits`` longdate +02001-01-02
``yday`` date_hms 2001:032:03:04:05.678
``yday`` date_hm 2001:032:03:04
``yday`` date 2001:032
======== ============ ==============================
Numerical formats such as ``mjd``, ``jyear``, or ``cxcsec`` all support the
subformats: ``'float'``, ``'long'``, ``'decimal'``, ``'str'``, and ``'bytes'``.
Here, ``'long'`` uses ``numpy.longdouble`` for somewhat enhanced precision (with
the enhancement depending on platform), and ``'decimal'`` instances of
:class:`decimal.Decimal` for full precision. For the ``'str'`` and ``'bytes'``
subformats, the number of digits is also chosen such that time values are
represented accurately.
When used on input, these formats allow creating a time using a single input
value that accurately captures the value to the full available precision in
|Time|. Conversely, the single value on output using |Time|
`~astropy.time.Time.to_value` or |TimeDelta| `~astropy.time.TimeDelta.to_value`
can have higher precision than the standard 64-bit float::
>>> tm = Time('51544.000000000000001', format='mjd') # String input
>>> tm.mjd # float64 output loses last digit but Decimal gets it
51544.0
>>> tm.to_value('mjd', subfmt='decimal') # doctest: +SKIP
Decimal('51544.00000000000000099920072216264')
>>> tm.to_value('mjd', subfmt='str')
'51544.000000000000001'
The complete list of subformat options for the |Time| formats that
have them is:
================ ========================================
Format Subformats
================ ========================================
``byear`` float, long, decimal, str, bytes
``cxcsec`` float, long, decimal, str, bytes
``datetime64`` date_hms, date_hm, date
``decimalyear`` float, long, decimal, str, bytes
``fits`` date_hms, date, longdate_hms, longdate
``gps`` float, long, decimal, str, bytes
``iso`` date_hms, date_hm, date
``isot`` date_hms, date_hm, date
``jd`` float, long, decimal, str, bytes
``jyear`` float, long, decimal, str, bytes
``mjd`` float, long, decimal, str, bytes
``plot_date`` float, long, decimal, str, bytes
``unix`` float, long, decimal, str, bytes
``unix_tai`` float, long, decimal, str, bytes
``yday`` date_hms, date_hm, date
================ ========================================
The complete list of subformat options for the |TimeDelta| formats
that have them is:
================ ========================================
Format Subformats
================ ========================================
``jd`` float, long, decimal, str, bytes
``sec`` float, long, decimal, str, bytes
================ ========================================
Time from Epoch Formats
"""""""""""""""""""""""
The formats ``cxcsec``, ``gps``, ``unix``, and ``unix_tai`` are special in that
they provide a floating point representation of the elapsed time in seconds
since a particular reference date. These formats have a intrinsic time scale
which is used to compute the elapsed seconds since the reference date.
============ ====== ========================
Format Scale Reference date
============ ====== ========================
``cxcsec`` TT ``1998-01-01 00:00:00``
``unix`` UTC ``1970-01-01 00:00:00``
``unix_tai`` TAI ``1970-01-01 00:00:08``
``gps`` TAI ``1980-01-06 00:00:19``
============ ====== ========================
Unlike the other formats which default to UTC, if no ``scale`` is provided when
initializing a |Time| object then the above intrinsic scale is used.
This is done for computational efficiency.
.. _time-scale:
Time Scale
^^^^^^^^^^
The time scale (or `time standard
<https://en.wikipedia.org/wiki/Time_standard>`_) is "a specification for
measuring time: either the rate at which time passes; or points in time; or
both" [#]_, [#]_.
::
>>> Time.SCALES
('tai', 'tcb', 'tcg', 'tdb', 'tt', 'ut1', 'utc', 'local')
====== =================================
Scale Description
====== =================================
tai International Atomic Time (TAI)
tcb Barycentric Coordinate Time (TCB)
tcg Geocentric Coordinate Time (TCG)
tdb Barycentric Dynamical Time (TDB)
tt Terrestrial Time (TT)
ut1 Universal Time (UT1)
utc Coordinated Universal Time (UTC)
local Local Time Scale (LOCAL)
====== =================================
.. [#] Wikipedia `time standard <https://en.wikipedia.org/wiki/Time_standard>`_ article
.. [#] SOFA_ Time Scale and Calendar Tools
`(PDF) <http://www.iausofa.org/sofa_ts_c.pdf>`_
.. note:: The ``local`` time scale is meant for free-running clocks or
simulation times (i.e., to represent a time without a properly defined
scale). This means it cannot be converted to any other time scale, and
arithmetic is possible only with |Time| instances with scale ``local`` and
with |TimeDelta| instances with scale ``local`` or `None`.
The system of transformation between supported time scales (i.e., all but
``local``) is shown in the figure below. Further details are provided in the
`Convert time scale`_ section.
.. image:: time_scale_conversion.png
Scalar or Array
^^^^^^^^^^^^^^^
A |Time| object can hold either a single time value or an array of time values.
The distinction is made entirely by the form of the input time(s). If a |Time|
object holds a single value then any format outputs will be a single scalar
value, and likewise for arrays.
Example
"""""""
.. EXAMPLE START: Time Objects Holding Scalar or Array Values
Like other arrays and lists, |Time| objects holding arrays are subscriptable,
returning scalar or array objects as appropriate::
>>> from astropy.time import Time
>>> t = Time(100.0, format='mjd')
>>> t.jd
2400100.5
>>> t = Time([100.0, 200.0, 300.], format='mjd')
>>> t.jd # doctest: +FLOAT_CMP
array([2400100.5, 2400200.5, 2400300.5])
>>> t[:2] # doctest: +FLOAT_CMP
<Time object: scale='utc' format='mjd' value=[100. 200.]>
>>> t[2]
<Time object: scale='utc' format='mjd' value=300.0>
>>> t = Time(np.arange(50000., 50003.)[:, np.newaxis],
... np.arange(0., 1., 0.5), format='mjd')
>>> t # doctest: +FLOAT_CMP
<Time object: scale='utc' format='mjd' value=[[50000. 50000.5]
[50001. 50001.5]
[50002. 50002.5]]>
>>> t[0] # doctest: +FLOAT_CMP
<Time object: scale='utc' format='mjd' value=[50000. 50000.5]>
.. EXAMPLE END
.. _astropy-time-shape-methods:
NumPy Method Analogs and Applicable NumPy Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For |Time| instances holding arrays, many of the same methods and attributes
that work on `~numpy.ndarray` instances can be used. For example, you can
reshape |Time| instances and take specific parts using
:meth:`~astropy.time.Time.reshape`, :meth:`~astropy.time.Time.ravel`,
:meth:`~astropy.time.Time.flatten`, :attr:`~astropy.time.Time.T`,
:meth:`~astropy.time.Time.transpose`, :meth:`~astropy.time.Time.swapaxes`,
:meth:`~astropy.time.Time.diagonal`, :meth:`~astropy.time.Time.squeeze`, or
:meth:`~astropy.time.Time.take`. Corresponding functions, as well as others
that affect the shape, such as `~numpy.atleast_1d` and `~numpy.rollaxis`, work
as expected. (The relevant functions have to be explicitly enabled in
``astropy`` source code; let us know if a ``numpy`` function is not supported
that you think should work.)
Examples
""""""""
.. EXAMPLE START: Reshaping Time Instances Using NumPy Method Analogs
To reshape |Time| instances::
>>> t.reshape(2, 3)
<Time object: scale='utc' format='mjd' value=[[50000. 50000.5 50001. ]
[50001.5 50002. 50002.5]]>
>>> t.T
<Time object: scale='utc' format='mjd' value=[[50000. 50001. 50002. ]
[50000.5 50001.5 50002.5]]>
>>> np.roll(t, 1, axis=0)
<Time object: scale='utc' format='mjd' value=[[50002. 50002.5]
[50000. 50000.5]
[50001. 50001.5]]>
Note that similarly to the `~numpy.ndarray` methods, all but
:meth:`~astropy.time.Time.flatten` try to use new views of the data,
with the data copied only if that is impossible (as discussed, for example, in
the documentation for ``numpy`` :func:`~numpy.reshape`).
.. EXAMPLE END
Some arithmetic methods are supported as well: :meth:`~astropy.time.Time.min`,
:meth:`~astropy.time.Time.max`, :meth:`~astropy.time.Time.ptp`,
:meth:`~astropy.time.Time.sort`, :meth:`~astropy.time.Time.argmin`,
:meth:`~astropy.time.Time.argmax`, and :meth:`~astropy.time.Time.argsort`.
.. EXAMPLE START: Applying Arithmetic Methods to Time Instances
To apply arithmetic methods to |Time| instances::
>> t.max()
<Time object: scale='utc' format='mjd' value=50002.5>
>> t.ptp(axis=0) # doctest: +FLOAT_CMP
<TimeDelta object: scale='tai' format='jd' value=[2. 2.]>
.. EXAMPLE END
.. _astropy-time-inferring-input:
Inferring Input Format
^^^^^^^^^^^^^^^^^^^^^^
The |Time| class initializer will not accept ambiguous inputs, but it will make
automatic inferences in cases where the inputs are unambiguous. This can apply
when the times are supplied as objects, inputs for ``ymdhms``, or strings. In
the latter case it is not required to specify the format because the available
string formats have no overlap. However, if the format is known in advance the
string parsing will be faster if the format is provided.
Example
"""""""
.. EXAMPLE START: Inferring Input Format in the Time Class
To infer input format::
>>> from datetime import datetime
>>> t = Time(datetime(2010, 1, 2, 1, 2, 3))
>>> t.format
'datetime'
>>> t = Time('2010-01-02 01:02:03')
>>> t.format
'iso'
.. EXAMPLE END
Internal Representation
^^^^^^^^^^^^^^^^^^^^^^^
The |Time| object maintains an internal representation of time as a pair of
double precision numbers expressing Julian days. The sum of the two numbers is
the Julian Date for that time relative to the given `time scale`_. Users
requiring no better than microsecond precision over human time scales (~100
years) can safely ignore the internal representation details and skip this
section.
This representation is driven by the underlying ERFA_ C-library implementation.
The ERFA routines take care throughout to maintain overall precision of the
double pair. Users are free to choose the way in which total JD is
provided, though internally one part contains integer days and the
other the fraction of the day, as this ensures optimal accuracy for
all conversions. The internal JD pair is available via the ``jd1``
and ``jd2`` attributes::
>>> t = Time('2010-01-01 00:00:00', scale='utc')
>>> t.jd1, t.jd2
(2455198.0, -0.5)
>>> t2 = t.tai
>>> t2.jd1, t2.jd2 # doctest: +FLOAT_CMP
(2455198., -0.49960648148148146)
Creating a Time Object
----------------------
The allowed |Time| arguments to create a time object are listed below:
**val** : numpy ndarray, list, str, or number
Data to initialize table.
**val2** : numpy ndarray, list, str, or number; optional
Data to initialize table.
**format** : str, optional
Format of input value(s).
**scale** : str, optional
Time scale of input value(s).
**precision** : int between 0 and 9 inclusive
Decimal precision when outputting seconds as floating point.
**in_subfmt** : str
Unix glob to select subformats for parsing input times.
**out_subfmt** : str
Unix glob to select subformat for output times.
**location** : |EarthLocation| or tuple, optional
If a tuple, three |Quantity| items with length units for geocentric
coordinates, or a longitude, latitude, and optional height for geodetic
coordinates. Can be a single location, or one for each input time.
val
^^^
The ``val`` argument specifies the input time or times and can be a single
string or number, or it can be a Python list or ```numpy`` array of strings or
numbers. To initialize a |Time| object based on a specified time, it *must* be
present.
In most situations, you also need to specify the `time scale`_ via the
``scale`` argument. The |Time| class will never guess the `time scale`_,
so a concise example would be::
>>> t1 = Time(50100.0, scale='tt', format='mjd')
>>> t2 = Time('2010-01-01 00:00:00', scale='utc')
It is possible to create a new |Time| object from one or more existing time
objects. In this case, the format and scale will be inferred from the
first object unless explicitly specified.
::
>>> Time([t1, t2]) # doctest: +FLOAT_CMP
<Time object: scale='tt' format='mjd' value=[50100. 55197.00076602]>
val2
^^^^
The ``val2`` argument is available for those situations where high precision is
required. Recall that the internal representation of time within `astropy.time`
is two double-precision numbers that when summed give the Julian date. If
provided, the ``val2`` argument is used in combination with ``val`` to set the
second of the internal time values. The exact interpretation of ``val2`` is
determined by the input format class. All string-valued formats ignore ``val2``
and all numeric inputs effectively add the two values in a way that maintains
the highest precision. For example::
>>> t = Time(100.0, 0.000001, format='mjd', scale='tt')
>>> t.jd, t.jd1, t.jd2 # doctest: +FLOAT_CMP
(2400100.500001, 2400101.0, -0.499999)
format
^^^^^^
The ```format`` argument sets the time `time format`_, and as mentioned it is
required unless the format can be unambiguously determined from the input times.
scale
^^^^^
The ``scale`` argument sets the `time scale`_ and is required except for time
formats such as ``plot_date`` (:class:`~astropy.time.TimePlotDate`) and ``unix``
(:class:`~astropy.time.TimeUnix`). These formats represent the duration
in SI seconds since a fixed instant in time is independent of time scale. See
the `Time from Epoch Formats`_ for more details.
precision
^^^^^^^^^
The ``precision`` setting affects string formats when outputting a value that
includes seconds. It must be an integer between 0 and 9. There is no effect
when inputting time values from strings. The default precision is 3. Note
that the limit of 9 digits is driven by the way that ERFA_ handles fractional
seconds. In practice this should should not be an issue. ::
>>> t = Time('B1950.0', precision=3)
>>> t.byear_str
'B1950.000'
>>> t.precision = 0
>>> t.byear_str
'B1950'
in_subfmt
^^^^^^^^^
The ``in_subfmt`` argument provides a mechanism to select one or more
`subformat`_ values from the available subformats for input. Multiple
allowed subformats can be selected using Unix-style wildcard characters, in
particular ``*`` and ``?``, as documented in the Python `fnmatch
<https://docs.python.org/3/library/fnmatch.html>`_ module.
The default value for ``in_subfmt`` is ``*`` which matches any available
subformat. This allows for convenient input of values with unknown or
heterogeneous subformat::
>>> Time(['2000:001', '2000:002:03:04', '2001:003:04:05:06.789'])
<Time object: scale='utc' format='yday'
value=['2000:001:00:00:00.000' '2000:002:03:04:00.000' '2001:003:04:05:06.789']>
You can explicitly specify ``in_subfmt`` in order to strictly require a
certain subformat::
>>> t = Time('2000:002:03:04', in_subfmt='date_hm')
>>> t = Time('2000:002', in_subfmt='date_hm') # doctest: +SKIP
Traceback (most recent call last):
...
ValueError: Input values did not match any of the formats where the
format keyword is optional ['astropy_time', 'datetime',
'byear_str', 'iso', 'isot', 'jyear_str', 'yday']
out_subfmt
^^^^^^^^^^
The ``out_subfmt`` argument is similar to ``in_subfmt`` except that it applies
to output formatting. In the case of multiple matching subformats, the first
matching subformat is used.
>>> Time('2000-01-01 02:03:04', out_subfmt='date').iso
'2000-01-01'
>>> Time('2000-01-01 02:03:04', out_subfmt='date_hms').iso
'2000-01-01 02:03:04.000'
>>> Time('2000-01-01 02:03:04', out_subfmt='date*').iso
'2000-01-01 02:03:04.000'
>>> Time('50814.123456789012345', format='mjd', out_subfmt='str').mjd
'50814.123456789012345'
See also the `subformat`_ section.
location
^^^^^^^^
This optional parameter specifies the observer location, using an
|EarthLocation| object or a tuple containing any form that can initialize one:
either a tuple with geocentric coordinates (X, Y, Z), or a tuple with geodetic
coordinates (longitude, latitude, height; with height defaulting to zero).
They are used for time scales that are sensitive to observer location
(currently, only TDB, which relies on the PyERFA_ routine `erfa.dtdb` to
determine the time offset between TDB and TT), as well as for sidereal time if
no explicit longitude is given.
>>> t = Time('2001-03-22 00:01:44.732327132980', scale='utc',
... location=('120d', '40d'))
>>> t.sidereal_time('apparent', 'greenwich') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 12. hourangle>
>>> t.sidereal_time('apparent') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 20. hourangle>
.. note:: In future versions, we hope to add the possibility to add observatory
objects and/or names.
Getting the Current Time
^^^^^^^^^^^^^^^^^^^^^^^^
The current time can be determined as a |Time| object using the
`~astropy.time.Time.now` class method::
>>> nt = Time.now()
>>> ut = Time(datetime.utcnow(), scale='utc')
The two should be very close to each other.
.. _time-fast-c-parser:
Fast C-based Date String Parser
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Time formats that are based on a date string representation of time, including
`~astropy.time.TimeISO`, `~astropy.time.TimeISOT`, and
`~astropy.time.TimeYearDayTime`, make use of a fast C-based date parser that
improves speed by a factor of 20 or more for large arrays of times.
The C parser is stricter than the Python-based parser (which relies on
`~time.strptime`). In particular fields like the month or day of year must
always have a fixed number of ASCII digits. As an example the Python parser will
accept ``2000-1-2T3:04:5.23`` while the C parser requires
``2000-01-02T03:04:05.23``
Use of the C parser is enabled by default except when the input subformat
``in_subfmt`` argument is different from the default value of ``'*'``. If the
fast C parser fails to parse the date values then the |Time| initializer will
automatically fall through to the Python parser.
In rare cases where you need to explicitly control which parser gets used there
is a configuration item ``time.conf.use_fast_parser`` that can be set. The
default is ``'True'``, which means to try the fast parser and fall through to
Python parser if needed. Note that the configuration value is a string, not a
bool object.
For example to disable the C parser use::
>>> from astropy.time import conf
>>> date = '2000-1-2T3:04:5.23'
>>> t = Time(date, format='isot') # Succeeds by default
>>> with conf.set_temp('use_fast_parser', 'False'):
... t = Time(date, format='isot')
... print(t)
2000-01-02T03:04:05.230
To force the user of the C parser (for example in testing) use::
>>> with conf.set_temp('use_fast_parser', 'force'):
... try:
... t = Time(date, format='isot')
... except ValueError as err:
... print(err)
Input values did not match the format class isot:
ValueError: fast C time string parser failed: non-digit found where digit (0-9) required
Using Time Objects
------------------
The operations available with |Time| objects include:
- Get and set time value(s) for an array-valued |Time| object.
- Set missing (masked) values.
- Get the representation of the time value(s) in a particular `time format`_.
- Get a new time object for the same time value(s) but referenced to a different
`time scale`_.
- Calculate `sidereal time and Earth rotation angle`_ corresponding to the time value(s).
- Do time arithmetic involving |Time|, |TimeDelta| and/or |Quantity| objects with units of time.
Get and Set Values
^^^^^^^^^^^^^^^^^^
For an existing |Time| object which is array-valued, you can use the
usual ``numpy`` array item syntax to get either a single item or a subset
of items. The returned value is a |Time| object with all the same
attributes.
Examples
""""""""
.. EXAMPLE START: Get and Set Values for Time Objects
To get an item or a subset of items::
>>> t = Time(['2001:020', '2001:040', '2001:060', '2001:080'],
... out_subfmt='date')
>>> print(t[1])
2001:040
>>> print(t[1:])
['2001:040' '2001:060' '2001:080']
>>> print(t[[2, 0]])
['2001:060' '2001:020']
You can also set values in place for an array-valued |Time| object::
>>> t = Time(['2001:020', '2001:040', '2001:060', '2001:080'],
... out_subfmt='date')
>>> t[1] = '2010:001'
>>> print(t)
['2001:020' '2010:001' '2001:060' '2001:080']
>>> t[[2, 0]] = '1990:123'
>>> print(t)
['1990:123' '2010:001' '1990:123' '2001:080']
.. EXAMPLE END
The new value (on the right hand side) when setting can be one of three
possibilities:
- Scalar string value or array of string values where each value
is in a valid time format that can be automatically parsed and
used to create a |Time| object.
- Value or array of values where each value has the same ``format`` as
the |Time| object being set. For instance, a float or ``numpy`` array
of floats for an object with ``format='unix'``.
- |Time| object with identical ``location`` (but ``scale`` and
``format`` need not be the same). The right side value will be
transformed so the time ``scale`` matches.
Whenever any item is set, then the internal cache (see `Caching`_) is cleared
along with the ``delta_tdb_tt`` and/or ``delta_ut1_utc`` transformation
offsets, if they have been set.
If it is required that the |Time| object be immutable, then set the
``writeable`` attribute to `False`. In this case, attempting to set a value will
raise a ``ValueError: Time object is read-only``. See the section on
`Caching`_ for an example.
Missing Values
^^^^^^^^^^^^^^
The |Time| and |TimeDelta| objects support functionality for marking values as
missing or invalid. This is also known as masking, and is especially useful for
:ref:`table_operations` such as joining and stacking.
Example
"""""""
.. EXAMPLE START: Missing Values in Time and TimeDelta Objects
To set one or more items as missing, assign the special value
`numpy.ma.masked`::
>>> t = Time(['2001:020', '2001:040', '2001:060', '2001:080'],
... out_subfmt='date')
>>> t[2] = np.ma.masked
>>> print(t)
['2001:020' '2001:040' -- '2001:080']
.. note:: The operation of setting an array element to `numpy.ma.masked`
(missing) *overwrites* the actual time data and therefore there is no way to
recover the original value. In this sense, the `numpy.ma.masked` value
behaves just like any other valid |Time| value when setting. This is
similar to how `Pandas missing data
<https://pandas.pydata.org/pandas-docs/stable/missing_data.html>`_ works,
but somewhat different from `NumPy masked arrays
<https://numpy.org/doc/stable/reference/maskedarray.html>`_ which
maintain a separate mask array and retain the underlying data. In the
|Time| object the ``mask`` attribute is read-only and cannot be directly set.
.. EXAMPLE END
Once one or more values in the object are masked, any operations will
propagate those values as masked, and access to format attributes such
as ``unix`` or ``value`` will return a `~numpy.ma.MaskedArray`
object::
>>> t.unix # doctest: +SKIP
masked_array(data = [979948800.0 981676800.0 -- 985132800.0],
mask = [False False True False],
fill_value = 1e+20)
You can view the ``mask``, but note that it is read-only and
setting the mask is always done by setting the item to `~numpy.ma.masked`.
>>> t.mask
array([False, False, True, False]...)
>>> t[:2] = np.ma.masked
.. warning:: The internal implementation of missing value support is provisional
and may change in a subsequent release. This would impact information in the
next section. However, the documented API for using missing values with
|Time| and |TimeDelta| objects is stable.
Custom Format Classes and Missing Values
""""""""""""""""""""""""""""""""""""""""
For advanced users who have written a custom time format via a
`~astropy.time.TimeFormat` subclass, it may be necessary to modify your
class *if you wish to support missing values*. For applications that
do not take advantage of missing values no changes are required.
Missing values in a `~astropy.time.TimeFormat` subclass object are marked by
setting the corresponding entries of the ``jd2`` attribute to be ``numpy.nan``
(but this is never done directly by the user). For most array operations and
``numpy`` functions the ``numpy.nan`` entries are propagated as expected and
all is well. However, this is not always the case, and in particular the `ERFA`_
routines do not generally support ``numpy.nan`` values gracefully.
In cases where ``numpy.nan`` is not acceptable, format class methods should use
the ``jd2_filled`` property instead of ``jd2``. This replaces ``numpy.nan`` with
``0.0``. Since ``jd2`` is always in the range -1 to +1, substituting ``0.0``
will allow functions to return "reasonable" values which will then be masked in
any subsequent outputs. See the ``value`` property of the
`~astropy.time.TimeDecimalYear` format for any example.
Get Representation
^^^^^^^^^^^^^^^^^^
Instants of time can be represented in different ways, for instance as an
ISO-format date string (``'1999-07-23 04:31:00'``) or seconds since 1998.0
(``49091460.0``) or Modified Julian Date (``51382.187451574``).
The representation of a |Time| object in a particular format is available
by getting the object attribute corresponding to the format name. The list of
available format names is in the `time format`_ section.
>>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
>>> t.jd # JD representation of time in current scale (UTC)
2455197.5
>>> t.iso # ISO representation of time in current scale (UTC)
'2010-01-01 00:00:00.000'
>>> t.unix # seconds since 1970.0 (UTC)
1262304000.0
>>> t.datetime # Representation as datetime.datetime object
datetime.datetime(2010, 1, 1, 0, 0)
Example
"""""""
.. EXAMPLE START: Get Representation of a Time Object
To get the representation of a |Time| object::
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> jyear = np.linspace(2000, 2001, 20) # doctest: +SKIP
>>> t = Time(jyear, format='jyear') # doctest: +SKIP
>>> plt.plot_date(t.plot_date, jyear) # doctest: +SKIP
>>> plt.gcf().autofmt_xdate() # orient date labels at a slant # doctest: +SKIP
>>> plt.draw() # doctest: +SKIP
.. EXAMPLE END
Convert Time Scale
^^^^^^^^^^^^^^^^^^
A new |Time| object for the same time value(s) but referenced to a new `time
scale`_ can be created getting the object attribute corresponding to the time
scale name. The list of available time scale names is in the `time scale`_
section and in the figure below illustrating the network of time scale
transformations.
.. image:: time_scale_conversion.png
Examples
""""""""
.. EXAMPLE START: Converting Time Scales in Time Objects
To create a |Time| object with a new time scale::
>>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
>>> t.tt # TT scale
<Time object: scale='tt' format='iso' value=2010-01-01 00:01:06.184>
>>> t.tai
<Time object: scale='tai' format='iso' value=2010-01-01 00:00:34.000>
In this process the ``format`` and other object attributes like ``lon``,
``lat``, and ``precision`` are also propagated to the new object.
.. EXAMPLE END
As noted in the `Time Object Basics`_ section, a |Time| object can only be
changed by explicitly setting some of its elements. The process of changing the
time scale therefore begins by making a copy of the original object and then
converting the internal time values in the copy to the new time scale. The new
|Time| object is returned by the attribute access.
Caching
^^^^^^^
The computations for transforming to different time scales or formats can be
time-consuming for large arrays. In order to avoid repeated computations, each
|Time| or |TimeDelta| instance caches such transformations internally::
>>> t = Time(np.arange(1e6), format='unix', scale='utc')
>>> time x = t.tt # doctest: +SKIP
CPU times: user 263 ms, sys: 4.02 ms, total: 267 ms
Wall time: 267 ms
>>> time x = t.tt # doctest: +SKIP
CPU times: user 28 µs, sys: 9 µs, total: 37 µs
Wall time: 32.9 µs
Actions such as changing the output precision or subformat will clear
the cache. In order to explicitly clear the internal cache do::
>>> del t.cache
>>> time x = t.tt # doctest: +SKIP
CPU times: user 263 ms, sys: 4.02 ms, total: 267 ms
Wall time: 267 ms
In order to ensure consistency between the transformed (and cached) version and
the original, the transformed object is set to be not writeable. For example::
>>> x = t.tt
>>> x[1] = '2000:001'
Traceback (most recent call last):
...
ValueError: Time object is read-only. Make a copy() or set "writeable" attribute to True.
If you require modifying the object then make a copy first, for example, ``x =
t.tt.copy()``.
Transformation Offsets
""""""""""""""""""""""
Time scale transformations that cross one of the orange circles in the image
above require an additional offset time value that is model or
observation dependent. See SOFA_ `Time Scale and Calendar Tools
<http://www.iausofa.org/sofa_ts_c.pdf>`_ for further details.
The two attributes :attr:`~astropy.time.Time.delta_ut1_utc` and
:attr:`~astropy.time.Time.delta_tdb_tt` provide a way to set
these offset times explicitly. These represent the time scale offsets
UT1 - UTC and TDB - TT, respectively. As an example::
>>> t = Time('2010-01-01 00:00:00', format='iso', scale='utc')
>>> t.delta_ut1_utc = 0.334 # Explicitly set one part of the transformation
>>> t.ut1.iso # ISO representation of time in UT1 scale
'2010-01-01 00:00:00.334'
For the UT1 to UTC offset, you have to interpolate the observed values provided
by the `International Earth Rotation and Reference Systems (IERS) Service
<http://www.iers.org>`_. ``astropy`` will automatically download and use values
from the IERS which cover times spanning from 1973-Jan-01 through one year into
the future. In addition, the ``astropy`` package is bundled with a data table of
values provided in Bulletin B, which cover the period from 1962 to shortly
before an ``astropy`` release.
When the :attr:`~astropy.time.Time.delta_ut1_utc` attribute is not set
explicitly, IERS values will be used (initiating a download of a few Mb
file the first time). For details about how IERS values are used in ``astropy``
time and coordinates, and to understand how to control automatic downloads, see
:ref:`utils-iers`. The example below illustrates converting to the ``UT1``
scale along with the auto-download feature::
>>> t = Time('2016:001')
>>> t.ut1 # doctest: +SKIP
Downloading https://maia.usno.navy.mil/ser7/finals2000A.all
|==================================================================| 3.0M/3.0M (100.00%) 6s
<Time object: scale='ut1' format='yday' value=2016:001:00:00:00.082>
.. note:: The :class:`~astropy.utils.iers.IERS_Auto` class contains machinery
to ensure that the IERS table is kept up to date by auto-downloading the
latest version as needed. This means that the IERS table is assured of
having the state-of-the-art definitive and predictive values for Earth
rotation. As a user it is **your responsibility** to understand the
accuracy of IERS predictions if your science depends on that. If you
request ``UT1-UTC`` for times beyond the range of IERS table data then the
nearest available values will be provided.
In the case of the TDB to TT offset, most users need only provide the ``lon``
and ``lat`` values when creating the |Time| object. If the
:attr:`~astropy.time.Time.delta_tdb_tt` attribute is not explicitly set, then
the PyERFA_ routine `erfa.dtdb` will be used to compute the TDB to TT
offset. Note that if ``lon`` and ``lat`` are not explicitly initialized,
values of 0.0 degrees for both will be used.
Example
~~~~~~~
.. EXAMPLE START: Transformation Offsets in Time Objects
The following code replicates an example in the SOFA_ `Time Scale and Calendar
Tools <http://www.iausofa.org/sofa_ts_c.pdf>`_ document. It does the transform
from UTC to all supported time scales (TAI, TCB, TCG, TDB, TT, UT1, UTC). This
requires an observer location (here, latitude and longitude).
::
>>> import astropy.units as u
>>> t = Time('2006-01-15 21:24:37.5', format='iso', scale='utc',
... location=(-155.933222*u.deg, 19.48125*u.deg))
>>> t.utc.iso
'2006-01-15 21:24:37.500'
>>> t.ut1.iso # doctest: +REMOTE_DATA
'2006-01-15 21:24:37.834'
>>> t.tai.iso
'2006-01-15 21:25:10.500'
>>> t.tt.iso
'2006-01-15 21:25:42.684'
>>> t.tcg.iso
'2006-01-15 21:25:43.323'
>>> t.tdb.iso
'2006-01-15 21:25:42.684'
>>> t.tcb.iso
'2006-01-15 21:25:56.894'
.. EXAMPLE END
Hashing
^^^^^^^
A user can generate a unique hash key for scalar (0-dimensional) |Time| or
|TimeDelta| objects. The key is based on a tuple of ``jd1``,
``jd2``, ``scale``, and ``location`` (if present, ``None`` otherwise).
Note that two |Time| objects with a different ``scale`` can compare equally
but still have different hash keys. This a practical consideration driven
in by performance, but in most cases represents a desirable behavior.
Printing Time Arrays
^^^^^^^^^^^^^^^^^^^^
If your ``times`` array contains a lot of elements, the ``value`` argument will
display all the elements of the |Time| object ``t`` when it is called or
printed. To control the number of elements to be displayed, set the
``threshold`` argument with ``np.printoptions`` as follows:
>>> many_times = np.arange(1000)
>>> t = Time(many_times, format='cxcsec')
>>> with np.printoptions(threshold=10):
... print(repr(t))
... print(t.iso)
<Time object: scale='tt' format='cxcsec' value=[ 0. 1. 2. ... 997. 998. 999.]>
['1998-01-01 00:00:00.000' '1998-01-01 00:00:01.000'
'1998-01-01 00:00:02.000' ... '1998-01-01 00:16:37.000'
'1998-01-01 00:16:38.000' '1998-01-01 00:16:39.000']
Sidereal Time and Earth Rotation Angle
--------------------------------------
Apparent or mean sidereal time can be calculated using
:meth:`~astropy.time.Time.sidereal_time`. The method returns a |Longitude|
with units of hour angle, which by default is for the longitude corresponding to
the location with which the |Time| object is initialized. Like the scale
transformations, ERFA_ C-library routines are used under the hood, which support
calculations following different IAU resolutions.
Similarly, one can calculate the Earth rotation angle with
:meth:`~astropy.time.Time.earth_rotation_angle`. Unlike sidereal time, which
is referred to the equinox and is a complicated function of both UT1 and
Terrestrial Time, the Earth rotation angle is referred to the Celestial
Intermediate Origin (CIO) and is a linear function of UT1 alone.
For the recent IAU precession models, as well as for the Earth rotation angle,
the result includes the TIO locator (s'), which positions the Terrestrial
Intermediate Origin on the equator of the Celestial Intermediate Pole (CIP)
and is rigorously corrected for polar motion.
Example
^^^^^^^
.. EXAMPLE START: Calculating Sidereal Time and Earth Rotation Angle for Time Objects
To calculate sidereal time::
>>> t = Time('2006-01-15 21:24:37.5', scale='utc', location=('120d', '45d'))
>>> t.sidereal_time('mean') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 13.08952187 hourangle>
>>> t.sidereal_time('apparent') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 13.08950368 hourangle>
>>> t.earth_rotation_angle() # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 13.08436206 hourangle>
>>> t.sidereal_time('apparent', 'greenwich') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 5.08950368 hourangle>
>>> t.sidereal_time('apparent', '-90d') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 23.08950368 hourangle>
>>> t.sidereal_time('apparent', '-90d', 'IAU1994') # doctest: +FLOAT_CMP +REMOTE_DATA
<Longitude 23.08950365 hourangle>
.. EXAMPLE END
Time Deltas
-----------
Time arithmetic is supported using the |TimeDelta| class. The following
operations are available:
- Create a |TimeDelta| explicitly by instantiating a class object.
- Create a |TimeDelta| by subtracting two |Time| objects.
- Add a |TimeDelta| to a |Time| object to get a new |Time|.
- Subtract a |TimeDelta| from a |Time| object to get a new |Time|.
- Add two |TimeDelta| objects to get a new |TimeDelta|.
- Negate a |TimeDelta| or take its absolute value.
- Multiply or divide a |TimeDelta| by a constant or array.
- Convert |TimeDelta| objects to and from time-like |Quantity|'s.
The |TimeDelta| class is derived from the |Time| class and shares many of its
properties. One difference is that the time scale has to be one for which one
day is exactly 86400 seconds. Hence, the scale cannot be UTC.
|Quantity| objects with time units can also be used in place of |TimeDelta|.
The available time formats are:
========= ===================================================
Format Class
========= ===================================================
sec :class:`~astropy.time.TimeDeltaSec`
jd :class:`~astropy.time.TimeDeltaJD`
datetime :class:`~astropy.time.TimeDeltaDatetime`
========= ===================================================
Examples
^^^^^^^^
.. EXAMPLE START: Time Arithmetic Using the TimeDelta Class
Use of the |TimeDelta| object is illustrated in the few examples below::
>>> t1 = Time('2010-01-01 00:00:00')
>>> t2 = Time('2010-02-01 00:00:00')
>>> dt = t2 - t1 # Difference between two Times
>>> dt
<TimeDelta object: scale='tai' format='jd' value=31.0>
>>> dt.sec
2678400.0
>>> from astropy.time import TimeDelta
>>> dt2 = TimeDelta(50.0, format='sec')
>>> t3 = t2 + dt2 # Add a TimeDelta to a Time
>>> t3.iso
'2010-02-01 00:00:50.000'
>>> t2 - dt2 # Subtract a TimeDelta from a Time
<Time object: scale='utc' format='iso' value=2010-01-31 23:59:10.000>
>>> dt + dt2 # doctest: +FLOAT_CMP
<TimeDelta object: scale='tai' format='jd' value=31.0005787037>
>>> import numpy as np
>>> t1 + dt * np.linspace(0, 1, 5)
<Time object: scale='utc' format='iso' value=['2010-01-01 00:00:00.000'
'2010-01-08 18:00:00.000' '2010-01-16 12:00:00.000' '2010-01-24 06:00:00.000'
'2010-02-01 00:00:00.000']>
>>> import astropy.units as u
>>> t1 + 1 * u.hour
<Time object: scale='utc' format='iso' value=2010-01-01 01:00:00.000>
# The now deprecated default assumes days for numeric inputs
>>> t1 + 5.0 # doctest: +SHOW_WARNINGS +ELLIPSIS
<Time object: scale='utc' format='iso' value=2010-01-06 00:00:00.000>
TimeDeltaMissingUnitWarning: Numerical value without unit or explicit format passed to TimeDelta, assuming days
The |TimeDelta| has a `~astropy.time.TimeDelta.to_value` method which supports
controlling the type of the output representation by providing either a format
name and optional `subformat`_ or a valid ``astropy`` unit::
>>> dt.to_value(u.hr)
744.0
>>> dt.to_value('jd', 'str')
'31.0'
.. EXAMPLE END
Time Scales for Time Deltas
^^^^^^^^^^^^^^^^^^^^^^^^^^^
We have shown in the above that the difference between two UTC times is a
|TimeDelta| with a scale of TAI. This is because a UTC time difference cannot be
uniquely defined unless the user knows the two times that were differenced
(because of leap seconds, a day does not always have 86400 seconds). For all
other time scales, the |TimeDelta| inherits the scale of the first |Time|
object.
Examples
""""""""
.. EXAMPLE START: Time Scales for Time Deltas
To get the time scale for a |TimeDelta| object::
>>> t1 = Time('2010-01-01 00:00:00', scale='tcg')
>>> t2 = Time('2011-01-01 00:00:00', scale='tcg')
>>> dt = t2 - t1
>>> dt
<TimeDelta object: scale='tcg' format='jd' value=365.0>
When |TimeDelta| objects are added or subtracted from |Time| objects, scales
are converted appropriately, with the final scale being that of the |Time|
object::
>>> t2 + dt
<Time object: scale='tcg' format='iso' value=2012-01-01 00:00:00.000>
>>> t2.tai
<Time object: scale='tai' format='iso' value=2010-12-31 23:59:27.068>
>>> t2.tai + dt
<Time object: scale='tai' format='iso' value=2011-12-31 23:59:27.046>
|TimeDelta| objects can be converted only to objects with compatible scales
(i.e., scales for which it is not necessary to know the times that were
differenced)::
>>> dt.tt # doctest: +FLOAT_CMP
<TimeDelta object: scale='tt' format='jd' value=364.999999746>
>>> dt.tdb # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ScaleValueError: Cannot convert TimeDelta with scale 'tcg' to scale 'tdb'
|TimeDelta| objects can also have an undefined scale, in which case it is
assumed that their scale matches that of the other |Time| or |TimeDelta|
object (or is TAI in case of a UTC time)::
>>> t2.tai + TimeDelta(365., format='jd', scale=None)
<Time object: scale='tai' format='iso' value=2011-12-31 23:59:27.068>
.. note:: Since internally |Time| uses floating point numbers, round-off
errors can cause two times to be not strictly equal even if
mathematically they should be. For times in UTC in particular, this
can lead to surprising behavior, because when you add a
|TimeDelta|, which cannot have a scale of UTC, the UTC time is
first converted to TAI, then the addition is done, and finally the
time is converted back to UTC. Hence, rounding errors can be
incurred, which means that even expected equalities may not hold::
>>> t = Time(2450000., 1e-6, format='jd')
>>> t + TimeDelta(0, format='jd') == t
False
.. EXAMPLE END
.. _time-light-travel-time:
Barycentric and Heliocentric Light Travel Time Corrections
----------------------------------------------------------
The arrival times of photons at an observatory are not particularly useful for
accurate timing work, such as eclipse/transit timing of binaries or exoplanets.
This is because the changing location of the observatory causes photons to
arrive early or late. The solution is to calculate the time the photon would
have arrived at a standard location; either the Solar System barycenter or the
heliocenter.
Example
^^^^^^^
.. EXAMPLE START: Barycentric and Heliocentric Light Travel Time Corrections
Suppose you observed the dwarf nova IP Peg from Greenwich and have a list of
times in MJD form, in the UTC timescale. You then create appropriate |Time| and
|SkyCoord| objects and calculate light travel times to the barycenter as
follows::
>>> from astropy import time, coordinates as coord, units as u
>>> ip_peg = coord.SkyCoord("23:23:08.55", "+18:24:59.3",
... unit=(u.hourangle, u.deg), frame='icrs')
>>> greenwich = coord.EarthLocation.of_site('greenwich') # doctest: +REMOTE_DATA
>>> times = time.Time([56325.95833333, 56325.978254], format='mjd',
... scale='utc', location=greenwich) # doctest: +REMOTE_DATA
>>> ltt_bary = times.light_travel_time(ip_peg) # doctest: +REMOTE_DATA
>>> ltt_bary # doctest: +FLOAT_CMP +REMOTE_DATA
<TimeDelta object: scale='tdb' format='jd' value=[-0.0037715 -0.00377286]>
If you desire the light travel time to the heliocenter instead, then use::
>>> ltt_helio = times.light_travel_time(ip_peg, 'heliocentric') # doctest: +REMOTE_DATA
>>> ltt_helio # doctest: +FLOAT_CMP +REMOTE_DATA
<TimeDelta object: scale='tdb' format='jd' value=[-0.00376576 -0.00376712]>
The method returns an |TimeDelta| object, which can be added to
your times to give the arrival time of the photons at the barycenter or
heliocenter. Here, you should be careful with the timescales used; for more
detailed information about timescales, see :ref:`time-scale`.
.. EXAMPLE END
The heliocenter is not a fixed point, and therefore the gravity
continually changes at the heliocenter. Thus, the use of a relativistic
timescale like TDB is not particularly appropriate, and, historically,
times corrected to the heliocenter are given in the UTC timescale::
>>> times_heliocentre = times.utc + ltt_helio # doctest: +REMOTE_DATA
Corrections to the barycenter are more precise than the heliocenter,
because the barycenter is a fixed point where gravity is constant. For
maximum accuracy you want to have your barycentric corrected times in a
timescale that has always ticked at a uniform rate, and ideally one
whose tick rate is related to the rate that a clock would tick at the
barycenter. For this reason, barycentric corrected times normally use
the TDB timescale::
>>> time_barycentre = times.tdb + ltt_bary # doctest: +REMOTE_DATA
.. EXAMPLE START: Calculating Light Travel Time Using JPL Ephemerides
By default, the light travel time is calculated using the position and velocity
of Earth and the Sun from ERFA_
routines, but you can also get more precise calculations using the JPL
ephemerides (which are derived from dynamical models). An example using the JPL
ephemerides is:
.. doctest-requires:: jplephem
>>> ltt_bary_jpl = times.light_travel_time(ip_peg, ephemeris='jpl') # doctest: +REMOTE_DATA +IGNORE_OUTPUT
>>> ltt_bary_jpl # doctest: +REMOTE_DATA +FLOAT_CMP
<TimeDelta object: scale='tdb' format='jd' value=[-0.0037715 -0.00377286]>
>>> (ltt_bary_jpl - ltt_bary).to(u.ms) # doctest: +REMOTE_DATA +IGNORE_OUTPUT
<Quantity [-0.00132325, -0.00132861] ms>
The difference between the built-in ephemerides and the JPL ephemerides is
normally of the order of 1/100th of a millisecond, so the built-in ephemerides
should be suitable for most purposes. For more details about what ephemerides
are available, including the requirements for using JPL ephemerides, see
:ref:`astropy-coordinates-solarsystem`.
.. EXAMPLE END
Interaction with time-like Quantities
-------------------------------------
Where possible, |Quantity| objects with units of time are treated as |TimeDelta|
objects with undefined scale (though necessarily with lower precision). They
can also be used as input in constructing |Time| and |TimeDelta| objects, and
|TimeDelta| objects can be converted to |Quantity| objects of arbitrary units
of time.
Examples
^^^^^^^^
.. EXAMPLE START: Time Object Interaction with time-like Quantities
To use |Quantity| objects with units of time::
>>> import astropy.units as u
>>> Time(10.*u.yr, format='gps') # time-valued quantities can be used for
... # for formats requiring a time offset
<Time object: scale='tai' format='gps' value=315576000.0>
>>> Time(10.*u.yr, 1.*u.s, format='gps')
<Time object: scale='tai' format='gps' value=315576001.0>
>>> Time(2000.*u.yr, format='jyear')
<Time object: scale='tt' format='jyear' value=2000.0>
>>> Time(2000.*u.yr, format='byear')
... # but not for Besselian year, which implies
... # a different time scale
...
Traceback (most recent call last):
...
ValueError: Input values did not match the format class byear:
ValueError: Cannot use Quantities for 'byear' format, as the interpretation would be ambiguous. Use float with Besselian year instead.
>>> TimeDelta(10.*u.yr) # With a quantity, no format is required
<TimeDelta object: scale='None' format='jd' value=3652.5>
>>> dt = TimeDelta([10., 20., 30.], format='jd')
>>> dt.to(u.hr) # can convert TimeDelta to a quantity # doctest: +FLOAT_CMP
<Quantity [240., 480., 720.] h>
>>> dt > 400. * u.hr # and compare to quantities with units of time
array([False, True, True]...)
>>> dt + 1.*u.hr # can also add/subtract such quantities # doctest: +FLOAT_CMP
<TimeDelta object: scale='None' format='jd' value=[10.04166667 20.04166667 30.04166667]>
>>> Time(50000., format='mjd', scale='utc') + 1.*u.hr # doctest: +FLOAT_CMP
<Time object: scale='utc' format='mjd' value=50000.0416667>
>>> dt * 10.*u.km/u.s # for multiplication and division with a
... # Quantity, TimeDelta is converted # doctest: +FLOAT_CMP
<Quantity [100., 200., 300.] d km / s>
>>> dt * 10.*u.Unit(1) # unless the Quantity is dimensionless # doctest: +FLOAT_CMP
<TimeDelta object: scale='None' format='jd' value=[100. 200. 300.]>
.. EXAMPLE END
Writing a Custom Format
-----------------------
Some applications may need a custom |Time| format, and this capability is
available by making a new subclass of the `~astropy.time.TimeFormat` class.
When such a subclass is defined in your code, the format class and
corresponding name is automatically registered in the set of available time
formats.
Examples
^^^^^^^^
.. EXAMPLE START: Writing a Custom Format with the TimeFormat Class
The key elements of a new format class are illustrated by examining the
code for the ``jd`` format (which is one of the most minimal)::
class TimeJD(TimeFormat):
"""
Julian Date time format.
"""
name = 'jd' # Unique format name
def set_jds(self, val1, val2):
"""
Set the internal jd1 and jd2 values from the input val1, val2.
The input values are expected to conform to this format, as
validated by self._check_val_type(val1, val2) during __init__.
"""
self._check_scale(self._scale) # Validate scale.
self.jd1, self.jd2 = day_frac(val1, val2)
@property
def value(self):
"""
Return format ``value`` property from internal jd1, jd2
"""
return self.jd1 + self.jd2
As mentioned above, the ``_check_val_type(self, val1, val2)``
method may need to be overridden to validate the inputs as conforming to the
format specification. By default this checks for valid float, float array, or
|Quantity| inputs. In contrast, the ``iso`` format class ensures the inputs
meet the ISO format specification for strings.
.. EXAMPLE END
.. EXAMPLE START: Customizing the TimeFormat Class with Changes to Date Format
One special case that is relatively common and more convenient to implement is a
format that makes a small change to the date format. For instance, you could
insert ``T`` in the ``yday`` format with the following ``TimeYearDayTimeCustom``
class. Notice how the ``subfmts`` definition is modified slightly from the
standard `~astropy.time.TimeISO` class from which it inherits::
>>> from astropy.time import TimeISO
>>> class TimeYearDayTimeCustom(TimeISO):
... """
... Year, day-of-year and time as "<YYYY>-<DOY>T<HH>:<MM>:<SS.sss...>".
... The day-of-year (DOY) goes from 001 to 365 (366 in leap years).
... For example, 2000-001T00:00:00.000 is midnight on January 1, 2000.
... The allowed subformats are:
... - 'date_hms': date + hours, mins, secs (and optional fractional secs)
... - 'date_hm': date + hours, mins
... - 'date': date
... """
... name = 'yday_custom' # Unique format name
... subfmts = (('date_hms',
... '%Y-%jT%H:%M:%S',
... '{year:d}-{yday:03d}T{hour:02d}:{min:02d}:{sec:02d}'),
... ('date_hm',
... '%Y-%jT%H:%M',
... '{year:d}-{yday:03d}T{hour:02d}:{min:02d}'),
... ('date',
... '%Y-%j',
... '{year:d}-{yday:03d}'))
>>> t = Time('2000-01-01')
>>> t.yday_custom
'2000-001T00:00:00.000'
>>> t2 = Time('2016-001T00:00:00')
>>> t2.iso
'2016-01-01 00:00:00.000'
.. EXAMPLE END
.. EXAMPLE START: Customizing the TimeFormat Class with Time Since an Epoch
Another special case that is relatively common is a format that represents the
time since a particular epoch. The classic example is Unix time which is the
number of seconds since 1970-01-01 00:00:00 UTC, not counting leap seconds. What
if we wanted that value but **do** want to count leap seconds. This would be
done by using the TAI scale instead of the UTC scale. In this case we inherit
from the `~astropy.time.TimeFromEpoch` class and define a few class attributes::
>>> from astropy.time.formats import erfa, TimeFromEpoch
>>> class TimeUnixLeap(TimeFromEpoch):
... """
... Seconds from 1970-01-01 00:00:00 TAI. Similar to Unix time
... but this includes leap seconds.
... """
... name = 'unix_leap'
... unit = 1.0 / erfa.DAYSEC # in days (1 day == 86400 seconds)
... epoch_val = '1970-01-01 00:00:00'
... epoch_val2 = None
... epoch_scale = 'tai' # Scale for epoch_val class attribute
... epoch_format = 'iso' # Format for epoch_val class attribute
>>> t = Time('2000-01-01')
>>> t.unix_leap
946684832.0
>>> t.unix_leap - t.unix
32.0
.. EXAMPLE END
Going beyond this will probably require looking at the ``astropy`` code for more
guidance, but if you get stuck, the ``astropy`` developers are more than happy
to help. If you write a format class that is widely useful we might want to
include it in the core!
Timezones
---------
When a `~astropy.time.Time` object is constructed from a timezone-aware
`~datetime.datetime`, no timezone information is saved in the
`~astropy.time.Time` object. However, `~astropy.time.Time` objects can be
converted to timezone-aware datetime objects.
Example
^^^^^^^
.. EXAMPLE START: Timezones in Time Objects
To convert a |Time| object to a timezone-aware datetime object::
>>> from datetime import datetime
>>> from astropy.time import Time, TimezoneInfo
>>> import astropy.units as u
>>> utc_plus_one_hour = TimezoneInfo(utc_offset=1*u.hour)
>>> dt_aware = datetime(2000, 1, 1, 0, 0, 0, tzinfo=utc_plus_one_hour)
>>> t = Time(dt_aware) # Loses timezone info, converts to UTC
>>> print(t) # will return UTC
1999-12-31 23:00:00
>>> print(t.to_datetime(timezone=utc_plus_one_hour)) # to timezone-aware datetime
2000-01-01 00:00:00+01:00
Timezone database packages, like `pytz <https://pythonhosted.org/pytz/>`_
for example, may be more convenient to use to create `~datetime.tzinfo`
objects used to specify timezones rather than the `~astropy.time.TimezoneInfo`
object.
.. EXAMPLE END
Example
^^^^^^^
.. EXAMPLE START: Initializing From a Timezone-aware Date
Using the `dateutil <https://dateutil.readthedocs.io/en/stable/index.html>`_ package,
you can parse times in a wide variety of supported formats to generate a
`datetime.datetime` object which can then be used to initialize a |Time| object::
>>> from dateutil.parser import parse # doctest: +SKIP
>>> dtime = parse('2020-10-29T08:20:46.950+1100') # doctest: +SKIP
>>> Time(dtime) # doctest: +SKIP
<Time object: scale='utc' format='datetime' value=2020-10-28 21:20:46.950000>
.. EXAMPLE END
Custom String Formats with ``strftime`` and ``strptime``
--------------------------------------------------------
The `~astropy.time.Time` object supports output string representation
using the format specification language defined in the Python standard library
for `time.strftime`. This can be done using the `~astropy.time.Time.strftime`
method.
Examples
^^^^^^^^
.. EXAMPLE START: Custom String Formats with ``strftime`` and ``strptime``
To get output string representation using the `~astropy.time.Time.strftime`
method::
>>> from astropy.time import Time
>>> t = Time('2018-01-01T10:12:58')
>>> t.strftime('%H:%M:%S %d %b %Y')
'10:12:58 01 Jan 2018'
Conversely, to create a `~astropy.time.Time` object from a custom date string
that can be parsed with Python standard library `time.strptime` (using the same
format language linked above), use the `~astropy.time.Time.strptime` class
method::
>>> from astropy.time import Time
>>> t = Time.strptime('23:59:60 30 June 2015', '%H:%M:%S %d %B %Y')
>>> t
<Time object: scale='utc' format='isot' value=2015-06-30T23:59:60.000>
.. EXAMPLE END
.. note that if this section gets too long, it should be moved to a separate
doc page - see the top of performance.inc.rst for the instructions on how to do
that
.. include:: performance.inc.rst
Reference/API
=============
.. automodapi:: astropy.time
:inherited-members:
Acknowledgments and Licenses
============================
This package makes use of the PyERFA_ wrappers of the ERFA_ ANSI C library. The copyright of the ERFA_
software belongs to the NumFOCUS Foundation. The library is made available
under the terms of the "BSD-three clauses" license.
The ERFA_ library is derived, with permission, from the International
Astronomical Union's "Standards of Fundamental Astronomy" (SOFA_) library,
available from http://www.iausofa.org.
|