1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
.. _timeseries-initializing:
Creating Time Series
********************
Initializing a Time Series
==========================
The first type of time series that we will look at here is a |TimeSeries|
object, which can be used for a time series which samples a continuous variable
at discrete, instantaneous times. Initializing a |TimeSeries| object can be done
in the same ways as initializing a |Table| object (see :ref:`Data Tables
<astropy-table>`), but additional arguments related to the times should be
specified.
Evenly Sampled Time Series
--------------------------
.. EXAMPLE START: Constructing an Evenly Sampled TimeSeries
The most convenient way to construct an evenly sampled |TimeSeries| is to
specify the start time, the time interval, and the number of samples::
>>> from astropy import units as u
>>> from astropy.timeseries import TimeSeries
>>> ts1 = TimeSeries(time_start='2016-03-22T12:30:31',
... time_delta=3 * u.s,
... n_samples=5)
>>> ts1
<TimeSeries length=5>
time
Time
-----------------------
2016-03-22T12:30:31.000
2016-03-22T12:30:34.000
2016-03-22T12:30:37.000
2016-03-22T12:30:40.000
2016-03-22T12:30:43.000
The ``time`` keyword argument can be set to anything that can be passed to the
|Time| class (see also :ref:`Time and Dates <astropy-time>`) or |Time| objects
directly. Note that the ``n_samples`` argument is only needed if you are not
also passing in data during initialization (see `Passing Data During
Initialization`_).
.. EXAMPLE END
Arbitrarily Sampled Time Series
-------------------------------
.. EXAMPLE START: Constructing an Arbitrarily Sampled TimeSeries
To construct a sampled time series with samples at arbitrary times, you can
pass multiple times to the ``time`` argument::
>>> ts2 = TimeSeries(time=['2016-03-22T12:30:31',
... '2016-03-22T12:30:38',
... '2016-03-22T12:34:40'])
>>> ts2
<TimeSeries length=3>
time
Time
-----------------------
2016-03-22T12:30:31.000
2016-03-22T12:30:38.000
2016-03-22T12:34:40.000
You can also specify a vector |Time| object directly as the ``time=`` argument,
or a vector |TimeDelta| argument or a quantity array to the ``time_delta=``
argument.::
>>> TimeSeries(time_start="2011-01-01T00:00:00",
... time_delta=[0.1, 0.2, 0.1, 0.3, 0.2]*u.s)
<TimeSeries length=5>
time
Time
-----------------------
2011-01-01T00:00:00.000
2011-01-01T00:00:00.100
2011-01-01T00:00:00.300
2011-01-01T00:00:00.400
2011-01-01T00:00:00.700
.. EXAMPLE END
.. _timeseries-binned-initializing:
Initializing a Binned Time Series
=================================
The |BinnedTimeSeries| can be used to represent time series where each entry
corresponds to measurements taken over a range in time — for instance, a light
curve constructed by binning X-ray photon events. This class supports equal-size
or uneven bins, and contiguous and non-contiguous bins. As for |TimeSeries|,
initializing a |BinnedTimeSeries| can be done in the same ways as initializing a
|Table| object (see :ref:`Data Tables <astropy-table>`), but additional
arguments related to the times should be specified as described below.
Equal-Sized Contiguous Bins
---------------------------
.. EXAMPLE START: Initializing a Binned Time Series with Equal Contiguous Bins
To create a binned time series with equal-size contiguous bins, it is sufficient
to specify a start time as well as a bin size::
>>> from astropy.timeseries import BinnedTimeSeries
>>> ts3 = BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31',
... time_bin_size=3 * u.s, n_bins=10)
>>> ts3
<BinnedTimeSeries length=10>
time_bin_start time_bin_size
s
Time float64
----------------------- -------------
2016-03-22T12:30:31.000 3.0
2016-03-22T12:30:34.000 3.0
2016-03-22T12:30:37.000 3.0
2016-03-22T12:30:40.000 3.0
2016-03-22T12:30:43.000 3.0
2016-03-22T12:30:46.000 3.0
2016-03-22T12:30:49.000 3.0
2016-03-22T12:30:52.000 3.0
2016-03-22T12:30:55.000 3.0
2016-03-22T12:30:58.000 3.0
Note that the ``n_bins`` argument is only needed if you are not also passing in
data during initialization (see `Passing Data During Initialization`_).
.. EXAMPLE END
Uneven Contiguous Bins
----------------------
.. EXAMPLE START: Initializing a Binned Time Series with Uneven Contiguous Bins
When creating a binned time series with uneven contiguous bins, the bin size can
be changed to give multiple values (note that in this case ``n_bins`` is not
required)::
>>> ts4 = BinnedTimeSeries(time_bin_start='2016-03-22T12:30:31',
... time_bin_size=[3, 3, 2, 3] * u.s)
>>> ts4
<BinnedTimeSeries length=4>
time_bin_start time_bin_size
s
Time float64
----------------------- -------------
2016-03-22T12:30:31.000 3.0
2016-03-22T12:30:34.000 3.0
2016-03-22T12:30:37.000 2.0
2016-03-22T12:30:39.000 3.0
Alternatively, you can create the same time series by giving an array of start
times as well as a single end time::
>>> ts5 = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31',
... '2016-03-22T12:30:34',
... '2016-03-22T12:30:37',
... '2016-03-22T12:30:39'],
... time_bin_end='2016-03-22T12:30:42')
>>> ts5 # doctest: +FLOAT_CMP
<BinnedTimeSeries length=4>
time_bin_start time_bin_size
s
Time float64
----------------------- -----------------
2016-03-22T12:30:31.000 3.0
2016-03-22T12:30:34.000 3.0
2016-03-22T12:30:37.000 2.0
2016-03-22T12:30:39.000 3.0
.. EXAMPLE END
Uneven Non-Contiguous Bins
--------------------------
.. EXAMPLE START: Initializing a Binned Time Series with Uneven Non-Contiguous
Bins
To create a binned time series with non-contiguous bins, you can either
specify an array of start times and bin widths::
>>> ts6 = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31',
... '2016-03-22T12:30:38',
... '2016-03-22T12:34:40'],
... time_bin_size=[5, 100, 2]*u.s)
>>> ts6
<BinnedTimeSeries length=3>
time_bin_start time_bin_size
s
Time float64
----------------------- -------------
2016-03-22T12:30:31.000 5.0
2016-03-22T12:30:38.000 100.0
2016-03-22T12:34:40.000 2.0
Or in the most general case, you can also specify multiple times for
``time_bin_start`` and ``time_bin_end``::
>>> ts7 = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31',
... '2016-03-22T12:30:33',
... '2016-03-22T12:30:40'],
... time_bin_end=['2016-03-22T12:30:32',
... '2016-03-22T12:30:35',
... '2016-03-22T12:30:41'])
>>> ts7 # doctest: +FLOAT_CMP
<BinnedTimeSeries length=3>
time_bin_start time_bin_size
s
Time float64
----------------------- ------------------
2016-03-22T12:30:31.000 1.0
2016-03-22T12:30:33.000 2.0
2016-03-22T12:30:40.000 1.0
.. EXAMPLE END
Adding Data to the Time Series
==============================
The above examples show how to initialize |TimeSeries| objects, but these do not
include any data aside from the times. There are different ways of adding data,
as with the |Table| class.
Passing Data During Initialization
----------------------------------
.. EXAMPLE START: Adding Data to a TimeSeries Object During Initialization
It is possible to pass data during the initialization of a |TimeSeries|
object, as for |Table| objects. For instance::
>>> ts8 = BinnedTimeSeries(time_bin_start=['2016-03-22T12:30:31',
... '2016-03-22T12:30:34',
... '2016-03-22T12:30:37',
... '2016-03-22T12:30:39'],
... time_bin_end='2016-03-22T12:30:42',
... data={'flux': [1., 4., 5., 6.] * u.mJy})
>>> ts8 # doctest: +FLOAT_CMP
<BinnedTimeSeries length=4>
time_bin_start time_bin_size flux
s mJy
Time float64 float64
----------------------- ----------------- -------
2016-03-22T12:30:31.000 3.0 1.0
2016-03-22T12:30:34.000 3.0 4.0
2016-03-22T12:30:37.000 2.0 5.0
2016-03-22T12:30:39.000 3.0 6.0
.. EXAMPLE END
Adding Data After Initialization
--------------------------------
.. EXAMPLE START: Adding Data to a TimeSeries Object After Initialization
Once a |TimeSeries| object is initialized, you can add columns/fields to it as
you would for a |Table| object::
>>> from astropy import units as u
>>> ts1['flux'] = [1., 4., 5., 6., 4.] * u.mJy
>>> ts1
<TimeSeries length=5>
time flux
mJy
Time float64
----------------------- -------
2016-03-22T12:30:31.000 1.0
2016-03-22T12:30:34.000 4.0
2016-03-22T12:30:37.000 5.0
2016-03-22T12:30:40.000 6.0
2016-03-22T12:30:43.000 4.0
.. EXAMPLE END
Adding Rows
-----------
.. EXAMPLE START: Adding Rows to a TimeSeries or BinnedTimeSeries
Adding rows to |TimeSeries| or |BinnedTimeSeries| can be done using the
:meth:`~astropy.table.Table.add_row` method, as for |Table| and |QTable|. This
method takes a dictionary where the keys are column names::
>>> ts8.add_row({'time_bin_start': '2016-03-22T12:30:44.000',
... 'time_bin_size': 2 * u.s,
... 'flux': 3 * u.mJy})
>>> ts8 # doctest: +FLOAT_CMP
<BinnedTimeSeries length=5>
time_bin_start time_bin_size flux
s mJy
Time float64 float64
----------------------- ----------------- -------
2016-03-22T12:30:31.000 3.0 1.0
2016-03-22T12:30:34.000 3.0 4.0
2016-03-22T12:30:37.000 2.0 5.0
2016-03-22T12:30:39.000 3.0 6.0
2016-03-22T12:30:44.000 2.0 3.0
If you want to be able to skip some values when adding rows, you should make
sure that masking is enabled — see :ref:`timeseries-masking` for more details.
.. EXAMPLE END
|