1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
.. _doc_standard_units:
Standard Units
**************
Standard units are defined in the `astropy.units` package as object
instances.
All units are defined in terms of basic "irreducible" units. The
irreducible units include:
- Length (meter)
- Time (second)
- Mass (kilogram)
- Current (ampere)
- Temperature (Kelvin)
- Angular distance (radian)
- Solid angle (steradian)
- Luminous intensity (candela)
- Stellar magnitude (mag)
- Amount of substance (mole)
- Photon count (photon)
(There are also some more obscure base units required by the `FITS Standard
<https://fits.gsfc.nasa.gov/fits_standard.html>`_ that are no longer
recommended for use.)
Units that involve combinations of fundamental units are instances of
`~astropy.units.CompositeUnit`. In most cases, you do not need
to worry about the various kinds of unit classes unless you want to
design a more complex case.
There are many units already predefined in the module. You may use the
:meth:`~astropy.units.core.UnitBase.find_equivalent_units` method to list
all of the existing predefined units of a given type::
>>> from astropy import units as u
>>> u.g.find_equivalent_units()
Primary name | Unit definition | Aliases
[
M_e | 9.10938e-31 kg | ,
M_p | 1.67262e-27 kg | ,
earthMass | 5.97217e+24 kg | M_earth, Mearth ,
g | 0.001 kg | gram ,
jupiterMass | 1.89812e+27 kg | M_jup, Mjup, M_jupiter, Mjupiter ,
kg | irreducible | kilogram ,
solMass | 1.98841e+30 kg | M_sun, Msun ,
t | 1000 kg | tonne ,
u | 1.66054e-27 kg | Da, Dalton ,
]
Prefixes
========
Most units can be used with prefixes, with both the standard `SI
<https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf>`_ prefixes
and the `IEEE 1514-2002
<https://ieeexplore.ieee.org/servlet/opac?punumber=5254929>`_ binary prefixes
(for ``bit`` and ``byte``) supported:
+------------------------------+
| Available decimal prefixes |
+--------+-------------+-------+
| Symbol | Prefix | Value |
+========+=============+=======+
| Q | quetta- | 1e30 |
+--------+-------------+-------+
| R | ronna- | 1e27 |
+--------+-------------+-------+
| Y | yotta- | 1e24 |
+--------+-------------+-------+
| Z | zetta- | 1e21 |
+--------+-------------+-------+
| E | exa- | 1e18 |
+--------+-------------+-------+
| P | peta- | 1e15 |
+--------+-------------+-------+
| T | tera- | 1e12 |
+--------+-------------+-------+
| G | giga- | 1e9 |
+--------+-------------+-------+
| M | mega- | 1e6 |
+--------+-------------+-------+
| k | kilo- | 1e3 |
+--------+-------------+-------+
| h | hecto- | 1e2 |
+--------+-------------+-------+
| da | deka-, deca | 1e1 |
+--------+-------------+-------+
| d | deci- | 1e-1 |
+--------+-------------+-------+
| c | centi- | 1e-2 |
+--------+-------------+-------+
| m | milli- | 1e-3 |
+--------+-------------+-------+
| u | micro- | 1e-6 |
+--------+-------------+-------+
| n | nano- | 1e-9 |
+--------+-------------+-------+
| p | pico- | 1e-12 |
+--------+-------------+-------+
| f | femto- | 1e-15 |
+--------+-------------+-------+
| a | atto- | 1e-18 |
+--------+-------------+-------+
| z | zepto- | 1e-21 |
+--------+-------------+-------+
| y | yocto- | 1e-24 |
+--------+-------------+-------+
| r | ronto- | 1e-27 |
+--------+-------------+-------+
| q | quecto- | 1e-30 |
+--------+-------------+-------+
+---------------------------+
| Available binary prefixes |
+--------+--------+---------+
| Symbol | Prefix | Value |
+========+========+=========+
| Ki | kibi- | 2 ** 10 |
+--------+--------+---------+
| Mi | mebi- | 2 ** 20 |
+--------+--------+---------+
| Gi | gibi- | 2 ** 30 |
+--------+--------+---------+
| Ti | tebi- | 2 ** 40 |
+--------+--------+---------+
| Pi | pebi- | 2 ** 50 |
+--------+--------+---------+
| Ei | exbi- | 2 ** 60 |
+--------+--------+---------+
.. _doc_dimensionless_unit:
The Dimensionless Unit
======================
In addition to these units, `astropy.units` includes the concept of
the dimensionless unit, used to indicate quantities that do not have a
physical dimension. This is distinct in concept from a unit that is
equal to `None`: that indicates that no unit was specified in the data
or by the user.
For convenience, there is a unit that is both dimensionless and
unscaled: the ``dimensionless_unscaled`` object::
>>> u.dimensionless_unscaled
Unit(dimensionless)
Dimensionless quantities are often defined as products or ratios of
quantities that are not dimensionless, but whose dimensions cancel out
when their powers are multiplied.
Examples
--------
.. EXAMPLE START: Dimensionless Units
To use the ``dimensionless_unscaled`` object::
>>> u.m / u.m
Unit(dimensionless)
For compatibility with the :ref:`astropy-units-format`, this is
equivalent to ``Unit('')`` and ``Unit(1)``, though using
``u.dimensionless_unscaled`` in Python code is preferred for
readability::
>>> u.dimensionless_unscaled == u.Unit('')
True
>>> u.dimensionless_unscaled == u.Unit(1)
True
Note that in many cases, a dimensionless unit may also have a scale.
For example::
>>> (u.km / u.m).decompose()
Unit(dimensionless with a scale of 1000.0)
>>> (u.km / u.m).decompose() == u.dimensionless_unscaled
False
As an example of why you might want to create a scaled dimensionless
quantity, say you will be doing many calculations with some big
unit-less number, ``big_unitless_num = 20000000 # 20 million``,
but you want all of your answers to be in multiples of a million. This
can be done by dividing ``big_unitless_num`` by ``1e6``, but this
requires you to remember that this scaling factor has been applied,
which may be difficult to do after many calculations. Instead, create
a scaled dimensionless quantity by multiplying a value by ``Unit(scale)``
to keep track of the scaling factor. For example::
>>> scale = 1e6
>>> big_unitless_num = 20 * u.Unit(scale) # 20 million
>>> some_measurement = 5.0 * u.cm
>>> some_measurement * big_unitless_num # doctest: +FLOAT_CMP
<Quantity 100. 1e+06 cm>
To determine if a unit is dimensionless (but regardless of the scale),
use the `~astropy.units.core.UnitBase.physical_type` property::
>>> (u.km / u.m).physical_type
PhysicalType('dimensionless')
>>> # This also has a scale, so it is not the same as u.dimensionless_unscaled
>>> (u.km / u.m) == u.dimensionless_unscaled
False
>>> # However, (u.m / u.m) has a scale of 1.0, so it is the same
>>> (u.m / u.m) == u.dimensionless_unscaled
True
.. EXAMPLE END
.. _enabling-other-units:
Enabling Other Units
====================
By default, only the "default" units are searched by
:meth:`~astropy.units.core.UnitBase.find_equivalent_units` and similar methods
that do searching. This includes `SI
<https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf>`_, `CGS
<https://en.wikipedia.org/wiki/Centimetre-gram-second_system_of_units>`_, and
astrophysical units. However, you may wish to enable the `Imperial
<https://en.wikipedia.org/wiki/Imperial_units>`_ or other user-defined units.
Example
-------
.. EXAMPLE START: Enabling Other Units
To enable Imperial units, do::
>>> from astropy.units import imperial
>>> imperial.enable()
<astropy.units.core._UnitContext object at ...>
>>> u.m.find_equivalent_units()
Primary name | Unit definition | Aliases
[
AU | 1.49598e+11 m | au, astronomical_unit ,
Angstrom | 1e-10 m | AA, angstrom ,
cm | 0.01 m | centimeter ,
earthRad | 6.3781e+06 m | R_earth, Rearth ,
ft | 0.3048 m | foot ,
fur | 201.168 m | furlong ,
inch | 0.0254 m | ,
jupiterRad | 7.1492e+07 m | R_jup, Rjup, R_jupiter, Rjupiter ,
lsec | 2.99792e+08 m | lightsecond ,
lyr | 9.46073e+15 m | lightyear ,
m | irreducible | meter ,
mi | 1609.34 m | mile ,
micron | 1e-06 m | ,
mil | 2.54e-05 m | thou ,
nmi | 1852 m | nauticalmile, NM ,
pc | 3.08568e+16 m | parsec ,
solRad | 6.957e+08 m | R_sun, Rsun ,
yd | 0.9144 m | yard ,
]
This may also be used with the `Python "with" statement
<https://docs.python.org/3/reference/compound_stmts.html#with>`_, to
temporarily enable additional units::
>>> with imperial.enable():
... print(u.m.find_equivalent_units())
Primary name | Unit definition | Aliases
...
To enable only specific units, use :func:`~astropy.units.add_enabled_units`::
>>> with u.add_enabled_units([imperial.knot]):
... print(u.m.find_equivalent_units())
Primary name | Unit definition | Aliases
...
.. EXAMPLE END
|