1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
.. note that if this is changed from the default approach of using an *include*
(in index.rst) to a separate performance page, the header needs to be changed
from === to ***, the filename extension needs to be changed from .inc.rst to
.rst, and a link needs to be added in the subpackage toctree
.. _astropy-coordinates-performance:
Performance Tips
================
If you are using |SkyCoord| for many different coordinates, you will see much
better performance if you create a single |SkyCoord| with arrays of coordinates
as opposed to creating individual |SkyCoord| objects for each individual
coordinate::
>>> coord = SkyCoord(ra_array, dec_array, unit='deg') # doctest: +SKIP
Frame attributes can be arrays too, as long as the coordinate data and all of
the frame attributes have shapes that are compatible according to
:doc:`Numpy broadcasting rules <numpy:user/basics.broadcasting>`:
.. testsetup::
>>> from astropy.coordinates import FK4
>>> from astropy import units as u
::
>>> coord = FK4(1 * u.deg, 2 * u.deg, obstime=["J2000", "J2001"])
>>> coord.shape
(2,)
In addition, looping over a |SkyCoord| object can be slow. If you need to
transform the coordinates to a different frame, it is much faster to transform a
single |SkyCoord| with arrays of values as opposed to looping over the
|SkyCoord| and transforming them individually.
Finally, for more advanced users, note that you can use broadcasting to
transform |SkyCoord| objects into frames with vector properties.
..
EXAMPLE START
Performance Tips for Transforming SkyCoord Objects
To use broadcasting to transform |SkyCoord| objects into frames with vector
properties::
>>> from astropy.coordinates import SkyCoord, EarthLocation
>>> from astropy import coordinates as coord
>>> from astropy.coordinates import golden_spiral_grid
>>> from astropy.time import Time
>>> from astropy import units as u
>>> import numpy as np
>>> # 1000 locations in a grid on the sky
>>> coos = SkyCoord(golden_spiral_grid(size=1000))
>>> # 300 times over the space of 10 hours
>>> times = Time.now() + np.linspace(-5, 5, 300)*u.hour
>>> # note the use of broadcasting so that 300 times are broadcast against 1000 positions
>>> lapalma = EarthLocation.from_geocentric(5327448.9957829, -1718665.73869569, 3051566.90295403, unit='m')
>>> aa_frame = coord.AltAz(obstime=times[:, np.newaxis], location=lapalma)
>>> # calculate alt-az of each object at each time.
>>> aa_coos = coos.transform_to(aa_frame) # doctest: +REMOTE_DATA +IGNORE_WARNINGS
..
EXAMPLE END
Broadcasting Over Frame Data and Attributes
-------------------------------------------
..
EXAMPLE START
Broadcasting Over Frame Data and Attributes
Frames in `astropy.coordinates` support
:doc:`Numpy broadcasting rules <numpy:user/basics.broadcasting>` over both
frame data and frame attributes. This makes it easy and fast to do positional
astronomy calculations and transformations on sweeps of parameters.
Where this really shines is doing fast observability calculations over arrays.
The following example constructs an `~astropy.coordinates.EarthLocation` array
of length :samp:`{L}`, a `~astropy.coordinates.SkyCoord` array of length
:samp:`{M}`, and a `~astropy.time.Time` array of length :samp:`N`. It uses
Numpy broadcasting rules to evaluate a boolean array of shape
:samp:`({L}, {M}, {N})` that is `True` for those observing locations, times,
and sky coordinates, for which the target is above an altitude limit::
>>> from astropy.coordinates import EarthLocation, AltAz, SkyCoord
>>> from astropy.coordinates.angles import uniform_spherical_random_surface
>>> from astropy.time import Time
>>> from astropy import units as u
>>> import numpy as np
>>> L = 25
>>> M = 100
>>> N = 50
>>> # Earth locations of length L
>>> c = uniform_spherical_random_surface(L)
>>> locations = EarthLocation.from_geodetic(c.lon, c.lat)
>>> # Celestial coordinates of length M
>>> coords = SkyCoord(uniform_spherical_random_surface(M))
>>> # Observation times of length N
>>> obstimes = Time('2023-08-04') + np.linspace(0, 24, N) * u.hour
>>> # AltAz coordinates of shape (L, M, N)
>>> frame = AltAz(
... location=locations[:, np.newaxis, np.newaxis],
... obstime=obstimes[np.newaxis, np.newaxis, :])
>>> altaz = coords[np.newaxis, :, np.newaxis].transform_to(frame) # doctest: +REMOTE_DATA
>>> min_altitude = 30 * u.deg
>>> is_above_altitude_limit = (altaz.alt > min_altitude) # doctest: +REMOTE_DATA
>>> is_above_altitude_limit.shape # doctest: +REMOTE_DATA
(25, 100, 50)
..
EXAMPLE END
Improving Performance for Arrays of ``obstime``
-----------------------------------------------
The most expensive operations when transforming between observer-dependent coordinate
frames (e.g. ``AltAz``) and sky-fixed frames (e.g. ``ICRS``) are the calculation
of the orientation and position of Earth.
If |SkyCoord| instances are transformed for a large number of closely spaced ``obstime``,
these calculations can be sped up by factors up to 100, whilst still keeping micro-arcsecond precision,
by utilizing interpolation instead of calculating Earth orientation parameters for each individual point.
..
EXAMPLE START
Improving performance for obstime arrays
To use interpolation for the astrometric values in coordinate transformation, use::
>>> from astropy.coordinates import SkyCoord, EarthLocation, AltAz
>>> from astropy.coordinates.erfa_astrom import erfa_astrom, ErfaAstromInterpolator
>>> from astropy.time import Time
>>> from time import perf_counter
>>> import numpy as np
>>> import astropy.units as u
>>> # array with 10000 obstimes
>>> obstime = Time('2010-01-01T20:00') + np.linspace(0, 6, 10000) * u.hour
>>> location = EarthLocation(lon=-17.89 * u.deg, lat=28.76 * u.deg, height=2200 * u.m)
>>> frame = AltAz(obstime=obstime, location=location)
>>> crab = SkyCoord(ra='05h34m31.94s', dec='22d00m52.2s')
>>> # transform with default transformation and print duration
>>> t0 = perf_counter()
>>> crab_altaz = crab.transform_to(frame) # doctest:+IGNORE_WARNINGS +REMOTE_DATA
>>> print(f'Transformation took {perf_counter() - t0:.2f} s') # doctest:+IGNORE_OUTPUT
Transformation took 1.77 s
>>> # transform with interpolating astrometric values
>>> t0 = perf_counter()
>>> with erfa_astrom.set(ErfaAstromInterpolator(300 * u.s)): # doctest:+REMOTE_DATA
... crab_altaz_interpolated = crab.transform_to(frame) # doctest:+IGNORE_WARNINGS +REMOTE_DATA
>>> print(f'Transformation took {perf_counter() - t0:.2f} s') # doctest:+IGNORE_OUTPUT
Transformation took 0.03 s
>>> err = crab_altaz.separation(crab_altaz_interpolated) # doctest:+IGNORE_WARNINGS +REMOTE_DATA
>>> print(f'Mean error of interpolation: {err.to(u.microarcsecond).mean():.4f}') # doctest:+ELLIPSIS +REMOTE_DATA
Mean error of interpolation: 0.0... uarcsec
>>> # To set erfa_astrom for a whole session, use it without context manager:
>>> erfa_astrom.set(ErfaAstromInterpolator(300 * u.s)) # doctest:+SKIP
..
EXAMPLE END
Here, we look into choosing an appropriate ``time_resolution``.
We will transform a single sky coordinate for lots of observation times from
``ICRS`` to ``AltAz`` and evaluate precision and runtime for different values
for ``time_resolution`` compared to the non-interpolating, default approach.
.. plot::
:include-source:
:context: reset
from time import perf_counter
import numpy as np
import matplotlib.pyplot as plt
from astropy.coordinates.erfa_astrom import erfa_astrom, ErfaAstromInterpolator
from astropy.coordinates import SkyCoord, EarthLocation, AltAz
from astropy.time import Time
import astropy.units as u
rng = np.random.default_rng(1337)
# 100_000 times randomly distributed over 12 hours
t = Time('2020-01-01T20:00:00') + rng.uniform(0, 1, 10_000) * u.hour
location = EarthLocation(
lon=-17.89 * u.deg, lat=28.76 * u.deg, height=2200 * u.m
)
# A celestial object in ICRS
crab = SkyCoord.from_name("Crab Nebula")
# target horizontal coordinate frame
altaz = AltAz(obstime=t, location=location)
# the reference transform using no interpolation
t0 = perf_counter()
no_interp = crab.transform_to(altaz)
reference = perf_counter() - t0
print(f'No Interpolation took {reference:.4f} s')
# now the interpolating approach for different time resolutions
resolutions = 10.0**np.arange(-1, 5) * u.s
times = []
seps = []
for resolution in resolutions:
with erfa_astrom.set(ErfaAstromInterpolator(resolution)):
t0 = perf_counter()
interp = crab.transform_to(altaz)
duration = perf_counter() - t0
print(
f'Interpolation with {resolution.value: 9.1f} {str(resolution.unit)}'
f' resolution took {duration:.4f} s'
f' ({reference / duration:5.1f}x faster) '
)
seps.append(no_interp.separation(interp))
times.append(duration)
seps = u.Quantity(seps)
fig = plt.figure()
ax1, ax2 = fig.subplots(2, 1, gridspec_kw={'height_ratios': [2, 1]}, sharex=True)
ax1.plot(
resolutions.to_value(u.s),
seps.mean(axis=1).to_value(u.microarcsecond),
'o', label='mean',
)
for p in [25, 50, 75, 95]:
ax1.plot(
resolutions.to_value(u.s),
np.percentile(seps.to_value(u.microarcsecond), p, axis=1),
'o', label=f'{p}%', color='C1', alpha=p / 100,
)
ax1.set_title('Transformation of SkyCoord with 100.000 obstimes over 12 hours')
ax1.legend()
ax1.set_xscale('log')
ax1.set_yscale('log')
ax1.set_ylabel('Angular distance to no interpolation / µas')
ax2.plot(resolutions.to_value(u.s), reference / np.array(times), 's')
ax2.set_yscale('log')
ax2.set_ylabel('Speedup')
ax2.set_xlabel('time resolution / s')
ax2.yaxis.grid()
fig.tight_layout()
|