1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
Fitting with constraints
========================
`~astropy.modeling.fitting` support constraints, however, different fitters support
different types of constraints. The `~astropy.modeling.fitting.Fitter.supported_constraints`
attribute shows the type of constraints supported by a specific fitter::
>>> from astropy.modeling import fitting
>>> fitting.LinearLSQFitter.supported_constraints
['fixed']
>>> fitting.TRFLSQFitter.supported_constraints
['fixed', 'tied', 'bounds']
>>> fitting.SLSQPLSQFitter.supported_constraints
['bounds', 'eqcons', 'ineqcons', 'fixed', 'tied']
Fixed Parameter Constraint
--------------------------
All fitters support fixed (frozen) parameters through the ``fixed`` argument
to models or setting the `~astropy.modeling.Parameter.fixed`
attribute directly on a parameter.
For linear fitters, freezing a polynomial coefficient means that the
corresponding term will be subtracted from the data before fitting a
polynomial without that term to the result. For example, fixing ``c0`` in a
polynomial model will fit a polynomial with the zero-th order term missing
to the data minus that constant. The fixed coefficients and corresponding terms
are restored to the fit polynomial and this is the polynomial returned from the fitter::
>>> import numpy as np
>>> rng = np.random.default_rng(seed=12345)
>>> from astropy.modeling import models, fitting
>>> x = np.arange(1, 10, .1)
>>> p1 = models.Polynomial1D(2, c0=[1, 1], c1=[2, 2], c2=[3, 3],
... n_models=2)
>>> p1 # doctest: +FLOAT_CMP
<Polynomial1D(2, c0=[1., 1.], c1=[2., 2.], c2=[3., 3.], n_models=2)>
>>> y = p1(x, model_set_axis=False)
>>> n = (rng.standard_normal(y.size)).reshape(y.shape)
>>> p1.c0.fixed = True
>>> pfit = fitting.LinearLSQFitter()
>>> new_model = pfit(p1, x, y + n) # doctest: +IGNORE_WARNINGS
>>> print(new_model) # doctest: +SKIP
Model: Polynomial1D
Inputs: ('x',)
Outputs: ('y',)
Model set size: 2
Degree: 2
Parameters:
c0 c1 c2
--- ------------------ ------------------
1.0 2.072116176718454 2.99115839177437
1.0 1.9818866652726403 3.0024208951927585
The syntax to fix the same parameter ``c0`` using an argument to the model
instead of ``p1.c0.fixed = True`` would be::
>>> p1 = models.Polynomial1D(2, c0=[1, 1], c1=[2, 2], c2=[3, 3],
... n_models=2, fixed={'c0': True})
Bounded Constraints
-------------------
Bounded fitting is supported through the ``bounds`` arguments to models or by
setting `~astropy.modeling.Parameter.min` and `~astropy.modeling.Parameter.max`
attributes on a parameter. The following fitters support bounds internally:
* `~astropy.modeling.fitting.TRFLSQFitter`
* `~astropy.modeling.fitting.DogBoxLSQFitter`
* `~astropy.modeling.fitting.SLSQPLSQFitter`
The `~astropy.modeling.fitting.LevMarLSQFitter` algorithm uses an unsophisticated
method of handling bounds and is no longer recommended (see
:ref:`modeling-getting-started-nonlinear-notes` for more details).
.. _tied:
Tied Constraints
----------------
The `~astropy.modeling.Parameter.tied` constraint is often useful with
:ref:`Compound models <compound-models-intro>`. In this example we will
read a spectrum from a file called ``spec.txt`` and simultaneously fit
Gaussians to the emission lines while linking their wavelengths and
linking the flux of the [OIII] λ4959 line to the [OIII] λ5007 line.
.. plot::
:include-source:
import numpy as np
from astropy.io import ascii
from astropy.modeling import fitting, models
from astropy.utils.data import get_pkg_data_filename
from matplotlib import pyplot as plt
fname = get_pkg_data_filename("data/spec.txt", package="astropy.modeling.tests")
spec = ascii.read(fname)
wave = spec["lambda"]
flux = spec["flux"]
# Use the (vacuum) rest wavelengths of known lines as initial values
# for the fit.
Hbeta = 4862.721
O3_4959 = 4960.295
O3_5007 = 5008.239
# Create Gaussian1D models for each of the H-beta and [OIII] lines.
hbeta_broad = models.Gaussian1D(amplitude=15, mean=Hbeta, stddev=20)
hbeta_narrow = models.Gaussian1D(amplitude=20, mean=Hbeta, stddev=2)
o3_4959 = models.Gaussian1D(amplitude=70, mean=O3_4959, stddev=2)
o3_5007 = models.Gaussian1D(amplitude=180, mean=O3_5007, stddev=2)
# Create a polynomial model to fit the continuum.
mean_flux = flux.mean()
cont = np.where(flux > mean_flux, mean_flux, flux)
linfitter = fitting.LinearLSQFitter()
poly_cont = linfitter(models.Polynomial1D(1), wave, cont)
# Create a compound model for the four emission lines and the continuum.
model = hbeta_broad + hbeta_narrow + o3_4959 + o3_5007 + poly_cont
# Tie the ratio of the intensity of the two [OIII] lines.
def tie_o3_ampl(model):
return model.amplitude_3 / 2.98
o3_4959.amplitude.tied = tie_o3_ampl
# Tie the wavelengths of the two [OIII] lines
def tie_o3_wave(model):
return model.mean_3 * O3_4959 / O3_5007
o3_4959.mean.tied = tie_o3_wave
# Tie the wavelengths of the two (narrow and broad) H-beta lines
def tie_hbeta_wave1(model):
return model.mean_1
hbeta_broad.mean.tied = tie_hbeta_wave1
# Tie the wavelengths of the H-beta lines to the [OIII] 5007 line
def tie_hbeta_wave2(model):
return model.mean_3 * Hbeta / O3_5007
hbeta_narrow.mean.tied = tie_hbeta_wave2
# Simultaneously fit all the emission lines and continuum.
fitter = fitting.TRFLSQFitter()
fitted_model = fitter(model, wave, flux)
fitted_lines = fitted_model(wave)
# Plot the data and the fitted model
fig = plt.figure(figsize=(9, 6))
plt.plot(wave, flux, label="Data")
plt.plot(wave, fitted_lines, color="C1", label="Fitted Model")
plt.legend(loc="upper left")
plt.xlabel("Wavelength (Angstrom)")
plt.ylabel("Flux")
plt.text(4860, 45, r"$H\beta$ (broad + narrow)", rotation=90)
plt.text(4958, 68, r"[OIII] $\lambda 4959$", rotation=90)
plt.text(4995, 140, r"[OIII] $\lambda 5007$", rotation=90)
plt.xlim(4700, 5100)
plt.show()
|