1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
.. _new_fitter:
Defining New Fitter Classes
***************************
This section describes how to add a new nonlinear fitting algorithm to this
package or write a user-defined fitter. In short, one needs to define an error
function and a ``__call__`` method and define the types of constraints which
work with this fitter (if any).
The details are described below using scipy's SLSQP algorithm as an example.
The base class for all fitters is `~astropy.modeling.fitting.Fitter`::
class SLSQPFitter(Fitter):
supported_constraints = ['bounds', 'eqcons', 'ineqcons', 'fixed',
'tied']
def __init__(self):
# Most currently defined fitters take no arguments in their
# __init__, but the option certainly exists for custom fitters
super().__init__()
All fitters take a model (their ``__call__`` method modifies the model's
parameters) as their first argument.
Next, the error function takes a list of parameters returned by an iteration of
the fitting algorithm and input coordinates, evaluates the model with them and
returns some type of a measure for the fit. In the example the sum of the
squared residuals is used as a measure of fitting.::
def objective_function(self, fps, *args):
model = args[0]
meas = args[-1]
model.fitparams(fps)
res = self.model(*args[1:-1]) - meas
return np.sum(res**2)
The ``__call__`` method performs the fitting. As a minimum it takes all
coordinates as separate arguments. Additional arguments are passed as
necessary::
def __call__(self, model, x, y , maxiter=MAXITER, epsilon=EPS):
if model.linear:
raise ModelLinearityException(
'Model is linear in parameters; '
'non-linear fitting methods should not be used.')
model_copy = model.copy()
init_values, _ = model_to_fit_params(model_copy)
self.fitparams = optimize.fmin_slsqp(self.errorfunc, p0=init_values,
args=(y, x),
bounds=self.bounds,
eqcons=self.eqcons,
ineqcons=self.ineqcons)
return model_copy
Defining a Plugin Fitter
========================
`astropy.modeling` includes a plugin mechanism which allows fitters
defined outside of astropy's core to be inserted into the
`astropy.modeling.fitting` namespace through the use of entry points.
Entry points are references to importable objects. A tutorial on defining
entry points can be found in `setuptools' documentation <https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins>`_.
Plugin fitters must to extend from the `~astropy.modeling.fitting.Fitter`
base class. For the fitter to be discovered and inserted into
`astropy.modeling.fitting` the entry points must be inserted into
the `astropy.modeling` entry point group
.. doctest-skip::
setup(
# ...
entry_points = {'astropy.modeling': 'PluginFitterName = fitter_module:PlugFitterClass'}
)
This would allow users to import the ``PlugFitterName`` through `astropy.modeling.fitting` by
.. doctest-skip::
from astropy.modeling.fitting import PlugFitterName
One project which uses this functionality is `Saba <https://saba.readthedocs.io/>`_
and be can be used as a reference.
Using a Custom Statistic Function
=================================
This section describes how to write a new fitter with a user-defined statistic
function. The example below shows a specialized class which fits a straight
line with uncertainties in both variables.
The following import statements are needed::
import numpy as np
from astropy.modeling.fitting import (_validate_model,
fitter_to_model_params,
model_to_fit_params, Fitter,
_convert_input)
from astropy.modeling.optimizers import Simplex
First one needs to define a statistic. This can be a function or a callable
class.::
def chi_line(measured_vals, updated_model, x_sigma, y_sigma, x):
"""
Chi^2 statistic for fitting a straight line with uncertainties in x and
y.
Parameters
----------
measured_vals : array
updated_model : `~astropy.modeling.ParametricModel`
model with parameters set by the current iteration of the optimizer
x_sigma : array
uncertainties in x
y_sigma : array
uncertainties in y
"""
model_vals = updated_model(x)
if x_sigma is None and y_sigma is None:
return np.sum((model_vals - measured_vals) ** 2)
elif x_sigma is not None and y_sigma is not None:
weights = 1 / (y_sigma ** 2 + updated_model.parameters[1] ** 2 *
x_sigma ** 2)
return np.sum((weights * (model_vals - measured_vals)) ** 2)
else:
if x_sigma is not None:
weights = 1 / x_sigma ** 2
else:
weights = 1 / y_sigma ** 2
return np.sum((weights * (model_vals - measured_vals)) ** 2)
In general, to define a new fitter, all one needs to do is provide a statistic
function and an optimizer. In this example we will let the optimizer be an
optional argument to the fitter and will set the statistic to ``chi_line``
above::
class LineFitter(Fitter):
"""
Fit a straight line with uncertainties in both variables
Parameters
----------
optimizer : class or callable
one of the classes in optimizers.py (default: Simplex)
"""
def __init__(self, optimizer=Simplex):
self.statistic = chi_line
super().__init__(optimizer, statistic=self.statistic)
The last thing to define is the ``__call__`` method::
def __call__(self, model, x, y, x_sigma=None, y_sigma=None, **kwargs):
"""
Fit data to this model.
Parameters
----------
model : `~astropy.modeling.core.ParametricModel`
model to fit to x, y
x : array
input coordinates
y : array
input coordinates
x_sigma : array
uncertainties in x
y_sigma : array
uncertainties in y
kwargs : dict
optional keyword arguments to be passed to the optimizer
Returns
------
model_copy : `~astropy.modeling.core.ParametricModel`
a copy of the input model with parameters set by the fitter
"""
model_copy = _validate_model(model,
self._opt_method.supported_constraints)
farg = _convert_input(x, y)
farg = (model_copy, x_sigma, y_sigma) + farg
p0, _, _ = model_to_fit_params(model_copy)
fitparams, self.fit_info = self._opt_method(
self.objective_function, p0, farg, **kwargs)
fitter_to_model_params(model_copy, fitparams)
return model_copy
|