1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
.. _nddata_slicing:
Slicing and Indexing NDData
***************************
Introduction
============
This page only deals with peculiarities that apply to
`~astropy.nddata.NDData`-like classes. For a tutorial about slicing/indexing see the
`python documentation <https://docs.python.org/3/tutorial/introduction.html#lists>`_
and `numpy documentation <https://numpy.org/doc/stable/reference/routines.indexing.html>`_.
.. warning::
`~astropy.nddata.NDData` and `~astropy.nddata.NDDataRef` enforce almost no
restrictions on the properties, so it might happen that some **valid but
unusual** combinations of properties always result in an IndexError or
incorrect results. In this case, see :ref:`nddata_subclassing` on how to
customize slicing for a particular property.
Slicing NDDataRef
=================
Unlike `~astropy.nddata.NDData` the class `~astropy.nddata.NDDataRef`
implements slicing or indexing. The result will be wrapped inside the same
class as the sliced object.
Getting one element::
>>> import numpy as np
>>> from astropy.nddata import NDDataRef
>>> data = np.array([1, 2, 3, 4])
>>> ndd = NDDataRef(data)
>>> ndd[1]
NDDataRef(2)
Getting a sliced portion of the original::
>>> ndd[1:3] # Get element 1 (inclusive) to 3 (exclusive)
NDDataRef([2, 3])
This will return a reference (and as such **not a copy**) of the original
properties, so changing a slice will affect the original::
>>> ndd_sliced = ndd[1:3]
>>> ndd_sliced.data[0] = 5
>>> ndd_sliced
NDDataRef([5, 3])
>>> ndd
NDDataRef([1, 5, 3, 4])
But only the one element that was indexed is affected (for example,
``ndd_sliced = ndd[1]``). The element is a scalar and changes will not
propagate to the original.
Slicing NDDataRef Including Attributes
======================================
In the case that a ``mask``, or ``uncertainty`` is present, this
attribute will be sliced too::
>>> from astropy.nddata import StdDevUncertainty
>>> data = np.array([1, 2, 3, 4])
>>> mask = data > 2
>>> uncertainty = StdDevUncertainty(np.sqrt(data))
>>> ndd = NDDataRef(data, mask=mask, uncertainty=uncertainty)
>>> ndd_sliced = ndd[1:3]
>>> ndd_sliced.data
array([2, 3])
>>> ndd_sliced.mask
array([False, True]...)
>>> ndd_sliced.uncertainty # doctest: +FLOAT_CMP
StdDevUncertainty([1.41421356, 1.73205081])
``unit`` and ``meta``, however, will be unaffected.
If any of the attributes are set but do not implement slicing, an info will be
printed and the property will be kept as is::
>>> data = np.array([1, 2, 3, 4])
>>> mask = False
>>> uncertainty = StdDevUncertainty(0)
>>> ndd = NDDataRef(data, mask=mask, uncertainty=uncertainty)
>>> ndd_sliced = ndd[1:3]
INFO: uncertainty cannot be sliced. [astropy.nddata.mixins.ndslicing]
INFO: mask cannot be sliced. [astropy.nddata.mixins.ndslicing]
>>> ndd_sliced.mask
False
Slicing NDData with World Coordinates
-------------------------------------
If ``wcs`` is set, it must be either implement
`~astropy.wcs.wcsapi.BaseLowLevelWCS` or `~astropy.wcs.wcsapi.BaseHighLevelWCS`.
This means that only integer or range slices without a step are supported. So
slices like ``[::10]`` or array or boolean based slices will not work.
If you want to slice an ``NDData`` object called ``ndd`` without the WCS you can remove the
WCS from the ``NDData`` object by running:
>>> ndd.wcs = None
Removing Masked Data
--------------------
.. warning::
If ``wcs`` is set this will **NOT** be possible. But you can work around
this by setting the wcs attribute to `None` with ``ndd.wcs = None`` before slicing.
By convention, the ``mask`` attribute indicates if a point is valid or invalid.
So we are able to get all valid data points by slicing with the mask.
Examples
^^^^^^^^
..
EXAMPLE START
Removing Masked Data in NDDataRef
To get all of the valid data points by slicing with the mask::
>>> data = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> mask = np.array([[0,1,0],[1,1,1],[0,0,1]], dtype=bool)
>>> uncertainty = StdDevUncertainty(np.sqrt(data))
>>> ndd = NDDataRef(data, mask=mask, uncertainty=uncertainty)
>>> # don't forget that ~ or you'll get the invalid points
>>> ndd_sliced = ndd[~ndd.mask]
>>> ndd_sliced
NDDataRef([1, 3, 7, 8])
>>> ndd_sliced.mask
array([False, False, False, False]...)
>>> ndd_sliced.uncertainty # doctest: +FLOAT_CMP
StdDevUncertainty([1. , 1.73205081, 2.64575131, 2.82842712])
Or all invalid points::
>>> ndd_sliced = ndd[ndd.mask] # without the ~ now!
>>> ndd_sliced
NDDataRef([—, —, —, —, —])
>>> ndd_sliced.mask
array([ True, True, True, True, True]...)
>>> ndd_sliced.uncertainty # doctest: +FLOAT_CMP
StdDevUncertainty([1.41421356, 2. , 2.23606798, 2.44948974, 3. ])
.. note::
The result of this kind of indexing (boolean indexing) will always be
one-dimensional!
..
EXAMPLE END
|