File: access_table.rst

package info (click to toggle)
astropy 7.0.1-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 35,328 kB
  • sloc: python: 233,437; ansic: 55,264; javascript: 17,680; lex: 8,621; sh: 3,317; xml: 2,287; makefile: 191
file content (1005 lines) | stat: -rw-r--r-- 34,052 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
.. _access_table:

Accessing a Table
*****************

Accessing table properties and data is generally consistent with the basic
interface for ``numpy`` `structured arrays
<https://numpy.org/doc/stable/user/basics.rec.html>`_.

Basics
======

For a quick overview, the code below shows the basics of accessing table data.
Where relevant, there is a comment about what sort of object is returned.
Except where noted, table access returns objects that can be modified in order
to update the original table data or properties. See also the section on
:ref:`copy_versus_reference` to learn more about this topic.

**Make a table**
::

  from astropy.table import Table
  import numpy as np

  arr = np.arange(15).reshape(5, 3)
  t = Table(arr, names=('a', 'b', 'c'), meta={'keywords': {'key1': 'val1'}})

**Table properties**
::

  t.columns   # Dict of table columns (access by column name, index, or slice)
  t.colnames  # List of column names
  t.meta      # Dict of meta-data
  len(t)      # Number of table rows

**Access table data**
::

  t['a']       # Column 'a'
  t['a'][1]    # Row 1 of column 'a'
  t[1]         # Row 1
  t[1]['a']    # Column 'a' of row 1
  t[1][1:]     # Row 1, columns b and c
  t[2:5]       # Table object with rows 2:5
  t[[1, 3, 4]]  # Table object with rows 1, 3, 4 (copy)
  t[np.array([1, 3, 4])]  # Table object with rows 1, 3, 4 (copy)
  t[[]]        # Same table definition but with no rows of data
  t['a', 'c']  # Table with cols 'a', 'c' (copy)
  dat = np.array(t)  # Copy table data to numpy structured array object
  t['a'].quantity  # an astropy.units.Quantity for Column 'a'
  t['a'].to('km')  # an astropy.units.Quantity for Column 'a' in units of kilometers
  t.columns[1]  # Column 1 (which is the 'b' column)
  t.columns[0:2]  # New table with columns 0 and 1

.. Note::
   Although they appear nearly equivalent, there is a factor of two performance
   difference between ``t[1]['a']`` (slower, because an intermediate |Row|
   object gets created) versus ``t['a'][1]`` (faster). Always use the latter
   when possible.

**Print table or column**
::

  print(t)     # Print formatted version of table to the screen
  t.pprint()   # Same as above
  t.pprint(show_unit=True)  # Show column unit
  t.pprint(show_name=False)  # Do not show column names
  t.pprint_all() # Print full table no matter how long / wide it is (same as t.pprint(max_lines=-1, max_width=-1))

  t.more()  # Interactively scroll through table like Unix "more"

  print(t['a'])    # Formatted column values
  t['a'].pprint()  # Same as above, with same options as Table.pprint()
  t['a'].more()    # Interactively scroll through column
  t['a', 'c'].pprint()  # Print columns 'a' and 'c' of table

  lines = t.pformat()  # Formatted table as a list of lines (same options as pprint)
  lines = t['a'].pformat()  # Formatted column values as a list


Details
=======

For all of the following examples it is assumed that the table has been created
as follows::

  >>> from astropy.table import Table, Column
  >>> import numpy as np
  >>> import astropy.units as u

  >>> arr = np.arange(15, dtype=np.int32).reshape(5, 3)
  >>> t = Table(arr, names=('a', 'b', 'c'), meta={'keywords': {'key1': 'val1'}})
  >>> t['a'].format = "{:.3f}"  # print with 3 digits after decimal point
  >>> t['a'].unit = 'm sec^-1'
  >>> t['a'].description = 'unladen swallow velocity'
  >>> print(t)
       a      b   c
    m sec^-1
    -------- --- ---
       0.000   1   2
       3.000   4   5
       6.000   7   8
       9.000  10  11
      12.000  13  14

.. Note::

   In the example above the ``format``, ``unit``, and ``description``
   attributes of the |Column| were set directly. For :ref:`mixin_columns` like
   |Quantity| you must set via the ``info`` attribute, for example,
   ``t['a'].info.format = "{:.3f}"``. You can use the ``info`` attribute with
   |Column| objects as well, so the general solution that works with any table
   column is to set via the ``info`` attribute. See :ref:`mixin_attributes` for
   more information.

.. _table-summary-information:

Summary Information
-------------------

You can get summary information about the table as follows::

  >>> t.info
  <Table length=5>
  name dtype   unit   format       description
  ---- ----- -------- ------ ------------------------
     a int32 m sec^-1 {:.3f} unladen swallow velocity
     b int32
     c int32

If called as a function then you can supply an ``option`` that specifies
the type of information to return. The built-in ``option`` choices are
``'attributes'`` (column attributes, which is the default) or ``'stats'``
(basic column statistics). The ``option`` argument can also be a list
of available options::

  >>> t.info('stats')  # doctest: +FLOAT_CMP
  <Table length=5>
  name mean   std   min max
  ---- ---- ------- --- ---
     a    6 4.24264   0  12
     b    7 4.24264   1  13
     c    8 4.24264   2  14

  >>> t.info(['attributes', 'stats'])  # doctest: +FLOAT_CMP
  <Table length=5>
  name dtype   unit   format       description        mean   std   min max
  ---- ----- -------- ------ ------------------------ ---- ------- --- ---
     a int32 m sec^-1 {:.3f} unladen swallow velocity    6 4.24264   0  12
     b int32                                             7 4.24264   1  13
     c int32                                             8 4.24264   2  14

Columns also have an ``info`` property that has the same behavior and
arguments, but provides information about a single column::

  >>> t['a'].info
  name = a
  dtype = int32
  unit = m sec^-1
  format = {:.3f}
  description = unladen swallow velocity
  class = Column
  n_bad = 0
  length = 5

  >>> t['a'].info('stats')  # doctest: +FLOAT_CMP
  name = a
  mean = 6
  std = 4.24264
  min = 0
  max = 12
  n_bad = 0
  length = 5


Accessing Properties
--------------------

The code below shows accessing the table columns as a |TableColumns| object,
getting the column names, table metadata, and number of table rows. The table
metadata is a :class:`dict` by default.
::

  >>> t.columns
  <TableColumns names=('a','b','c')>

  >>> t.colnames
  ['a', 'b', 'c']

  >>> t.meta  # Dict of meta-data
  {'keywords': {'key1': 'val1'}}

  >>> len(t)
  5


Accessing Data
--------------

As expected you can access a table column by name and get an element from that
column with a numerical index::

  >>> t['a']  # Column 'a'
  <Column name='a' dtype='int32' unit='m sec^-1' format='{:.3f}' description='unladen swallow velocity' length=5>
   0.000
   3.000
   6.000
   9.000
  12.000


  >>> t['a'][1]  # Row 1 of column 'a'
  np.int32(3)

When a table column is printed, it is formatted according to the ``format``
attribute (see :ref:`table_format_string`). Note the difference between the
column representation above and how it appears via ``print()`` or ``str()``::

  >>> print(t['a'])
     a
  m sec^-1
  --------
     0.000
     3.000
     6.000
     9.000
    12.000

Likewise a table row and a column from that row can be selected::

  >>> t[1]  # Row object corresponding to row 1
  <Row index=1>
     a       b     c
  m sec^-1
   int32   int32 int32
  -------- ----- -----
     3.000     4     5

  >>> t[1]['a']  # Column 'a' of row 1
  np.int32(3)

A |Row| object has the same columns and metadata as its parent table::

  >>> t[1].columns
  <TableColumns names=('a','b','c')>

  >>> t[1].meta
  {'keywords': {'key1': 'val1'}}

Slicing a table returns a new table object with references to the original
data within the slice region (See :ref:`copy_versus_reference`). The table
metadata and column definitions are copied.
::

  >>> t[2:5]  # Table object with rows 2:5 (reference)
  <Table length=3>
     a       b     c
  m sec^-1
   int32   int32 int32
  -------- ----- -----
     6.000     7     8
     9.000    10    11
    12.000    13    14

It is possible to select table rows with an array of indexes or by specifying
multiple column names. This returns a copy of the original table for the
selected rows or columns.  ::

  >>> print(t[[1, 3, 4]])  # Table object with rows 1, 3, 4 (copy)
       a      b   c
    m sec^-1
    -------- --- ---
       3.000   4   5
       9.000  10  11
      12.000  13  14


  >>> print(t[np.array([1, 3, 4])])  # Table object with rows 1, 3, 4 (copy)
       a      b   c
    m sec^-1
    -------- --- ---
       3.000   4   5
       9.000  10  11
      12.000  13  14


  >>> print(t['a', 'c'])  # or t[['a', 'c']] or t[('a', 'c')]
  ...                     # Table with cols 'a', 'c' (copy)
       a      c
    m sec^-1
    -------- ---
       0.000   2
       3.000   5
       6.000   8
       9.000  11
      12.000  14

We can select rows from a table using conditionals to create boolean masks. A
table indexed with a boolean array will only return rows where the mask array
element is `True`. Different conditionals can be combined using the bitwise
operators.  ::

  >>> mask = (t['a'] > 4) & (t['b'] > 8)  # Table rows where column a > 4
  >>> print(t[mask])                      # and b > 8
  ...
       a      b   c
    m sec^-1
    -------- --- ---
       9.000  10  11
      12.000  13  14

Finally, you can access the underlying table data as a native ``numpy``
structured array by creating a copy or reference with :func:`numpy.array`::

  >>> data = np.array(t)  # copy of data in t as a structured array
  >>> data = np.array(t, copy=False)  # reference to data in t


Possibly missing columns
^^^^^^^^^^^^^^^^^^^^^^^^

In some cases it might not be guaranteed that a column is present in a table,
but there does exist a good default value that can be used if it is not. The
columns of a |Table| can be represented as a :class:`dict` subclass instance
through the ``columns`` attribute, which means that a replacement for missing
columns can be provided using the :meth:`dict.get` method::

    >>> t.columns.get("b", np.zeros(len(t)))
    <Column name='b' dtype='int32' length=5>
     1
     4
     7
    10
    13
    >>> t.columns.get("x", np.zeros(len(t)))
    array([0., 0., 0., 0., 0.])

In case of a single |Row| it is possible to use its
:meth:`~astropy.table.Row.get` method without having to go through
``columns``::

    >>> row = t[2]
    >>> row.get("c", -1)
    np.int32(8)
    >>> row.get("y", -1)
    -1


Table Equality
--------------

We can check table data equality using two different methods:

- The ``==`` comparison operators. In the general case, this returns a 1D array
  with ``dtype=bool`` mapping each row to ``True`` if and only if the *entire row*
  matches. For incomparable data (different ``dtype`` or unbroacastable lengths),
  a boolean ``False`` is returned.
  This is in contrast to the behavior of ``numpy`` where trying to compare
  structured arrays might raise exceptions.
- Table :meth:`~astropy.table.Table.values_equal` to compare table values
  element-wise. This returns a boolean `True` or `False` for each table
  *element*, so you get a `~astropy.table.Table` of values.

.. note:: both methods will report equality *after* broadcasting, which
  matches ``numpy`` array comparison.

Examples
^^^^^^^^

.. EXAMPLE START: Checking Table Equality

To check table equality::

  >>> t1 = Table(rows=[[1, 2, 3],
  ...                  [4, 5, 6],
  ...                  [7, 7, 9]], names=['a', 'b', 'c'])
  >>> t2 = Table(rows=[[1, 2, -1],
  ...                  [4, -1, 6],
  ...                  [7, 7, 9]], names=['a', 'b', 'c'])

  >>> t1 == t2
  array([False, False,  True])

  >>> t1.values_equal(t2)  # Compare to another table
  <Table length=3>
   a     b     c
  bool  bool  bool
  ---- ----- -----
  True  True False
  True False  True
  True  True  True

  >>> t1.values_equal([2, 4, 7])  # Compare to an array column-wise
  <Table length=3>
    a     b     c
   bool  bool  bool
  ----- ----- -----
  False  True False
   True False False
   True  True False

  >>> t1.values_equal(7)  # Compare to a scalar column-wise
  <Table length=3>
    a     b     c
   bool  bool  bool
  ----- ----- -----
  False False False
  False False False
   True  True False

.. EXAMPLE END

Formatted Printing
------------------

The values in a table or column can be printed or retrieved as a formatted
table using one of several methods:

- `print()` function.
- `Table.more() <astropy.table.Table.more>` or `Column.more()
  <astropy.table.Column.more>` methods to interactively scroll through
  table values.
- `Table.pprint() <astropy.table.Table.pprint>` or `Column.pprint()
  <astropy.table.Column.pprint>` methods to print a formatted version of
  the table to the screen.
- `Table.pformat() <astropy.table.Table.pformat>` or `Column.pformat()
  <astropy.table.Column.pformat>` methods to return the formatted table
  or column as a list of fixed-width strings. This could be used as a quick way
  to save a table.

These methods use :ref:`table_format_string`
if available and strive to make the output readable.
By default, table and column printing will
not print the table larger than the available interactive screen size. If the
screen size cannot be determined (in a non-interactive environment or on
Windows) then a default size of 25 rows by 80 columns is used. If a table is
too large, then rows and/or columns are cut from the middle so it fits.

Example
^^^^^^^

.. EXAMPLE START: Printing Formatted Tables

To print a formatted table::

  >>> arr = np.arange(3000).reshape(100, 30)  # 100 rows x 30 columns array
  >>> t = Table(arr)
  >>> print(t)
  col0 col1 col2 col3 col4 col5 col6 ... col23 col24 col25 col26 col27 col28 col29
  ---- ---- ---- ---- ---- ---- ---- ... ----- ----- ----- ----- ----- ----- -----
     0    1    2    3    4    5    6 ...    23    24    25    26    27    28    29
    30   31   32   33   34   35   36 ...    53    54    55    56    57    58    59
    60   61   62   63   64   65   66 ...    83    84    85    86    87    88    89
    90   91   92   93   94   95   96 ...   113   114   115   116   117   118   119
   120  121  122  123  124  125  126 ...   143   144   145   146   147   148   149
   150  151  152  153  154  155  156 ...   173   174   175   176   177   178   179
   180  181  182  183  184  185  186 ...   203   204   205   206   207   208   209
   210  211  212  213  214  215  216 ...   233   234   235   236   237   238   239
   240  241  242  243  244  245  246 ...   263   264   265   266   267   268   269
   270  271  272  273  274  275  276 ...   293   294   295   296   297   298   299
   ...  ...  ...  ...  ...  ...  ... ...   ...   ...   ...   ...   ...   ...   ...
  2700 2701 2702 2703 2704 2705 2706 ...  2723  2724  2725  2726  2727  2728  2729
  2730 2731 2732 2733 2734 2735 2736 ...  2753  2754  2755  2756  2757  2758  2759
  2760 2761 2762 2763 2764 2765 2766 ...  2783  2784  2785  2786  2787  2788  2789
  2790 2791 2792 2793 2794 2795 2796 ...  2813  2814  2815  2816  2817  2818  2819
  2820 2821 2822 2823 2824 2825 2826 ...  2843  2844  2845  2846  2847  2848  2849
  2850 2851 2852 2853 2854 2855 2856 ...  2873  2874  2875  2876  2877  2878  2879
  2880 2881 2882 2883 2884 2885 2886 ...  2903  2904  2905  2906  2907  2908  2909
  2910 2911 2912 2913 2914 2915 2916 ...  2933  2934  2935  2936  2937  2938  2939
  2940 2941 2942 2943 2944 2945 2946 ...  2963  2964  2965  2966  2967  2968  2969
  2970 2971 2972 2973 2974 2975 2976 ...  2993  2994  2995  2996  2997  2998  2999
  Length = 100 rows

.. EXAMPLE END

more() method
^^^^^^^^^^^^^

In order to browse all rows of a table or column use the `Table.more()
<astropy.table.Table.more>` or `Column.more() <astropy.table.Column.more>`
methods. These let you interactively scroll through the rows much like the Unix
``more`` command. Once part of the table or column is displayed the supported
navigation keys are:

|  **f, space** : forward one page
|  **b** : back one page
|  **r** : refresh same page
|  **n** : next row
|  **p** : previous row
|  **<** : go to beginning
|  **>** : go to end
|  **q** : quit browsing
|  **h** : print this help

pprint() method
^^^^^^^^^^^^^^^

In order to fully control the print output use the `Table.pprint()
<astropy.table.Table.pprint>` or `Column.pprint()
<astropy.table.Column.pprint>` methods. These have keyword arguments
``max_lines``, ``max_width``, ``show_name``, ``show_unit``, and
``show_dtype``, with meanings as shown below::

  >>> arr = np.arange(3000, dtype=float).reshape(100, 30)
  >>> t = Table(arr)
  >>> t['col0'].format = '%e'
  >>> t['col0'].unit = 'km**2'
  >>> t['col29'].unit = 'kg sec m**-2'

  >>> t.pprint(max_lines=8, max_width=40)
      col0     ...    col29
      km2      ... kg sec m**-2
  ------------ ... ------------
  0.000000e+00 ...         29.0
           ... ...          ...
  2.940000e+03 ...       2969.0
  2.970000e+03 ...       2999.0
  Length = 100 rows

  >>> t.pprint(max_lines=8, max_width=40, show_unit=False)
      col0     ... col29
  ------------ ... ------
  0.000000e+00 ...   29.0
           ... ...    ...
  2.940000e+03 ... 2969.0
  2.970000e+03 ... 2999.0
  Length = 100 rows

  >>> t.pprint(max_lines=8, max_width=40, show_name=False)
      km2      ... kg sec m**-2
  ------------ ... ------------
  0.000000e+00 ...         29.0
  3.000000e+01 ...         59.0
           ... ...          ...
  2.940000e+03 ...       2969.0
  2.970000e+03 ...       2999.0
  Length = 100 rows

  >>> t.pprint(max_lines=8, max_width=40, show_dtype=True)
      col0       col1  ...    col29
      km2              ... kg sec m**-2
    float64    float64 ...   float64
  ------------ ------- ... ------------
  0.000000e+00     1.0 ...         29.0
           ...     ... ...          ...
  2.970000e+03  2971.0 ...       2999.0
  Length = 100 rows

In order to force printing all values regardless of the output length or width
use :meth:`~astropy.table.Table.pprint_all`, which is equivalent to setting
``max_lines`` and ``max_width`` to ``-1`` in :meth:`~astropy.table.Table.pprint`.
:meth:`~astropy.table.Table.pprint_all` takes the same arguments as :meth:`~astropy.table.Table.pprint`.
For the wide table in this example you see six lines of wrapped output like the
following::

  >>> t.pprint_all(max_lines=8)  # doctest: +SKIP
      col0         col1     col2   col3   col4   col5   col6   col7   col8   col9  col10  col11  col12  col13  col14  col15  col16  col17  col18  col19  col20  col21  col22  col23  col24  col25  col26  col27  col28     col29
      km2                                                                                                                                                                                                               kg sec m**-2
  ------------ ----------- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------------
  0.000000e+00    1.000000    2.0    3.0    4.0    5.0    6.0    7.0    8.0    9.0   10.0   11.0   12.0   13.0   14.0   15.0   16.0   17.0   18.0   19.0   20.0   21.0   22.0   23.0   24.0   25.0   26.0   27.0   28.0         29.0
           ...         ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...          ...
  2.940000e+03 2941.000000 2942.0 2943.0 2944.0 2945.0 2946.0 2947.0 2948.0 2949.0 2950.0 2951.0 2952.0 2953.0 2954.0 2955.0 2956.0 2957.0 2958.0 2959.0 2960.0 2961.0 2962.0 2963.0 2964.0 2965.0 2966.0 2967.0 2968.0       2969.0
  2.970000e+03 2971.000000 2972.0 2973.0 2974.0 2975.0 2976.0 2977.0 2978.0 2979.0 2980.0 2981.0 2982.0 2983.0 2984.0 2985.0 2986.0 2987.0 2988.0 2989.0 2990.0 2991.0 2992.0 2993.0 2994.0 2995.0 2996.0 2997.0 2998.0       2999.0
  Length = 100 rows

For columns, the syntax and behavior of :func:`~astropy.table.Column.pprint` is
the same except that there is no ``max_width`` keyword argument::

  >>> t['col3'].pprint(max_lines=8)
   col3
  ------
     3.0
    33.0
     ...
  2943.0
  2973.0
  Length = 100 rows

Column alignment
^^^^^^^^^^^^^^^^

Individual columns have the ability to be aligned in a number of different
ways for an enhanced viewing experience::

  >>> t1 = Table()
  >>> t1['long column name 1'] = [1, 2, 3]
  >>> t1['long column name 2'] = [4, 5, 6]
  >>> t1['long column name 3'] = [7, 8, 9]
  >>> t1['long column name 4'] = [700000, 800000, 900000]
  >>> t1['long column name 2'].info.format = '<'
  >>> t1['long column name 3'].info.format = '0='
  >>> t1['long column name 4'].info.format = '^'
  >>> t1.pprint()
   long column name 1 long column name 2 long column name 3 long column name 4
  ------------------ ------------------ ------------------ ------------------
                   1 4                  000000000000000007       700000
                   2 5                  000000000000000008       800000
                   3 6                  000000000000000009       900000

Conveniently, alignment can be handled another way — by passing a list to the
keyword argument ``align``::

  >>> t1 = Table()
  >>> t1['column1'] = [1, 2, 3]
  >>> t1['column2'] = [2, 4, 6]
  >>> t1.pprint(align=['<', '0='])
  column1 column2
  ------- -------
  1       0000002
  2       0000004
  3       0000006

It is also possible to set the alignment of all columns with a single
string value::

  >>> t1.pprint(align='^')
  column1 column2
  ------- -------
     1       2
     2       4
     3       6

The fill character for justification can be set as a prefix to the
alignment character (see `Format Specification Mini-Language
<https://docs.python.org/3/library/string.html#format-specification-mini-language>`_
for additional explanation). This can be done both in the ``align`` argument
and in the column ``format`` attribute. Note the interesting interaction below::

  >>> t1 = Table([[1.0, 2.0], [1, 2]], names=['column1', 'column2'])

  >>> t1['column1'].format = '#^.2f'
  >>> t1.pprint()
  column1 column2
  ------- -------
  ##1.00#       1
  ##2.00#       2

Now if we set a global align, it seems like our original column format
got lost::

  >>> t1.pprint(align='!<')
  column1 column2
  ------- -------
  1.00!!! 1!!!!!!
  2.00!!! 2!!!!!!

The way to avoid this is to explicitly specify the alignment strings
for every column and use `None` where the column format should be
used::

  >>> t1.pprint(align=[None, '!<'])
  column1 column2
  ------- -------
  ##1.00# 1!!!!!!
  ##2.00# 2!!!!!!

pformat() method
^^^^^^^^^^^^^^^^

In order to get the formatted output for manipulation or writing to a file use
the `Table.pformat() <astropy.table.Table.pformat>` or `Column.pformat()
<astropy.table.Column.pformat>` methods. These behave just as for
:meth:`~astropy.table.Table.pprint` but return a list corresponding to each
formatted line in the :meth:`~astropy.table.Table.pprint` output. The
:meth:`~astropy.table.Table.pformat_all` method can be used to return a list
for all lines in the |Table|.

  >>> lines = t['col3'].pformat(max_lines=8)

Hiding columns
^^^^^^^^^^^^^^

The |Table| class has functionality to selectively show or hide certain columns
within the table when using any of the print methods. This can be useful for
columns that are very wide or else "uninteresting" for various reasons. The
specification of which columns are outputted is associated with the table itself
so that it persists through slicing, copying, and serialization (e.g. saving to
:ref:`ecsv_format`). One use case is for specialized table subclasses that
contain auxiliary columns that are not typically useful to the user.

The specification of which columns to include when printing is handled through
two complementary |Table| attributes:

- `~astropy.table.Table.pprint_include_names`: column names to include, where
  the default value of `None` implies including all columns.
- `~astropy.table.Table.pprint_exclude_names`: column names to exclude, where
  the default value of `None` implies excluding no columns.

Typically you should use just one of the two attributes at a time. However,
both can be set at once and the set of columns that actually gets printed
is conceptually expressed in this pseudo-code::

  include_names = (set(table.pprint_include_names() or table.colnames)
                   - set(table.pprint_exclude_names() or ())

Examples
""""""""
Let's start with defining a simple table with one row and six columns::

  >>> from astropy.table.table_helpers import simple_table
  >>> t = simple_table(size=1, cols=6)
  >>> print(t)
  a   b   c   d   e   f
  --- --- --- --- --- ---
  1 1.0   c   4 4.0   f

Now you can get the value of the ``pprint_include_names`` attribute by calling
it as a function, and then include some names for printing::

  >>> print(t.pprint_include_names())
  None
  >>> t.pprint_include_names = ('a', 'c', 'e')
  >>> print(t.pprint_include_names())
  ('a', 'c', 'e')
  >>> print(t)
   a   c   e
  --- --- ---
    1   c 4.0

Now you can instead exclude some columns from printing. Note that for both
include and exclude, you can add column names that do not exist in the table.
This allows pre-defining the attributes before the table has been fully
constructed.
::

  >>> t.pprint_include_names = None  # Revert to printing all columns
  >>> t.pprint_exclude_names = ('a', 'c', 'e', 'does-not-exist')
  >>> print(t)
   b   d   f
  --- --- ---
  1.0   4   f

Next you can ``add`` or ``remove`` names from the attribute::

  >>> t = simple_table(size=1, cols=6)  # Start with a fresh table
  >>> t.pprint_exclude_names.add('b')  # Single name
  >>> t.pprint_exclude_names.add(['d', 'f'])  # List or tuple of names
  >>> t.pprint_exclude_names.remove('f')  # Single name or list/tuple of names
  >>> t.pprint_exclude_names()
  ('b', 'd')

Finally, you can temporarily set the attributes within a `context manager
<https://docs.python.org/3/reference/datamodel.html#context-managers>`_. For
example::

  >>> t = simple_table(size=1, cols=6)
  >>> t.pprint_include_names = ('a', 'b')
  >>> print(t)
   a   b
  --- ---
    1 1.0

  >>> # Show all (for pprint_include_names the value of None => all columns)
  >>> with t.pprint_include_names.set(None):
  ...     print(t)
   a   b   c   d   e   f
  --- --- --- --- --- ---
    1 1.0   c   4 4.0   f

The specification of names for these attributes can include Unix-style globs
like ``*`` and ``?``. See `fnmatch` for details (and in particular how to
escape those characters if needed). For example::

  >>> t = Table()
  >>> t.pprint_exclude_names = ['boring*']
  >>> t['a'] = [1]
  >>> t['b'] = ['b']
  >>> t['boring_ra'] = [122.0]
  >>> t['boring_dec'] = [89.9]
  >>> print(t)
   a   b
  --- ---
    1   b

Multidimensional columns
^^^^^^^^^^^^^^^^^^^^^^^^

If a column has more than one dimension then each element of the column is
itself an array. In the example below there are three rows, each of which is a
``2 x 2`` array. The formatted output for such a column shows only the first
and last value of each row element and indicates the array dimensions in the
column name header::

  >>> t = Table()
  >>> arr = [ np.array([[ 1.,  2.],
  ...                   [10., 20.]]),
  ...         np.array([[ 3.,  4.],
  ...                   [30., 40.]]),
  ...         np.array([[ 5.,  6.],
  ...                   [50., 60.]]) ]
  >>> t['a'] = arr
  >>> t['a'].shape
  (3, 2, 2)
  >>> t.pprint()
       a
  -----------
  1.0 .. 20.0
  3.0 .. 40.0
  5.0 .. 60.0

In order to see all of the data values for a multidimensional column use the
column representation. This uses the standard ``numpy`` mechanism for printing
any array::

  >>> t['a'].data
  array([[[ 1.,  2.],
          [10., 20.]],
         [[ 3.,  4.],
          [30., 40.]],
         [[ 5.,  6.],
          [50., 60.]]])

.. _format_stuctured_array_columns:

Structured array columns
^^^^^^^^^^^^^^^^^^^^^^^^

.. EXAMPLE START: Creating a formatted Astropy Table with a Structured Column

For columns which are structured arrays, the format string must be a a string
that uses `"new style" format strings
<https://docs.python.org/3/library/string.html#format-string-syntax>`_  with
parameter substitutions corresponding to the field names in the structured
array. Consider the example below including a column of parameters values where
the value, min and max are stored in the in the column as fields named ``val``,
``min``, and ``max``. By default the field values are shown as a tuple::

    >>> pars = np.array(
    ...   [(1.2345678, -20, 3),
    ...    (12.345678, 4.5678, 33)],
    ...   dtype=[('val', 'f8'), ('min', 'f8'), ('max', 'f8')]
    ... )
    >>> t = Table()
    >>> t['a'] = [1, 2]
    >>> t['par'] = pars
    >>> print(t)
     a     par [val, min, max]
    --- -------------------------
      1   (1.2345678, -20.0, 3.0)
      2 (12.345678, 4.5678, 33.0)


However, setting the format string appropriately allows formatting each of the
field values and controlling the overall output::

    >>> t['par'].info.format = '{val:6.2f} ({min:5.1f}, {max:5.1f})'
    >>> print(t)
     a   par [val, min, max]
    --- ---------------------
      1   1.23 (-20.0,   3.0)
      2  12.35 (  4.6,  33.0)

.. EXAMPLE END

.. _columns_with_units:

Columns with Units
^^^^^^^^^^^^^^^^^^

.. note::

  |Table| and |QTable| instances handle entries with units differently. The
  following describes |Table|. :ref:`quantity_and_qtable` explains how a
  |QTable| differs from a |Table|.

A |Column| object with units within a standard |Table| has certain
quantity-related conveniences available. To begin with, it can be converted
explicitly to a |Quantity| object via the
:attr:`~astropy.table.Column.quantity` property and the
:meth:`~astropy.table.Column.to` method::

  >>> data = [[1., 2., 3.], [40000., 50000., 60000.]]
  >>> t = Table(data, names=('a', 'b'))
  >>> t['a'].unit = u.m
  >>> t['b'].unit = 'km/s'
  >>> t['a'].quantity  # doctest: +FLOAT_CMP
  <Quantity [1., 2., 3.] m>
  >>> t['b'].to(u.kpc/u.Myr)  # doctest: +FLOAT_CMP
  <Quantity [40.9084866 , 51.13560825, 61.3627299 ] kpc / Myr>

Note that the :attr:`~astropy.table.Column.quantity` property is actually
a *view* of the data in the column, not a copy. Hence, you can set the
values of a column in a way that respects units by making in-place
changes to the :attr:`~astropy.table.Column.quantity` property::

  >>> t['b']
  <Column name='b' dtype='float64' unit='km / s' length=3>
  40000.0
  50000.0
  60000.0

  >>> t['b'].quantity[0] = 45000000*u.m/u.s
  >>> t['b']
  <Column name='b' dtype='float64' unit='km / s' length=3>
  45000.0
  50000.0
  60000.0

Even without explicit conversion, columns with units can be treated like a
|Quantity| in *some* arithmetic expressions (see the warning below for caveats
to this)::

  >>> t['a'] + .005*u.km  # doctest: +FLOAT_CMP
  <Quantity [6., 7., 8.] m>
  >>> from astropy.constants import c
  >>> (t['b'] / c).decompose()  # doctest: +FLOAT_CMP
  <Quantity [0.15010384, 0.16678205, 0.20013846]>

.. warning::

  |Table| columns do *not* always behave the same as |Quantity|. |Table|
  columns act more like regular ``numpy`` arrays unless either explicitly
  converted to a |Quantity| or combined with a |Quantity| using an arithmetic
  operator. For example, the following does not work in the way you would
  expect::

    >>> data = [[30, 90]]
    >>> t = Table(data, names=('angle',))
    >>> t['angle'].unit = 'deg'
    >>> np.sin(t['angle'])  # doctest: +FLOAT_CMP
    <Column name='angle' dtype='float64' unit='deg' length=2>
    -0.988031624093
     0.893996663601

  This is wrong both in that it says the result is in degrees, *and*
  `~numpy.sin` treated the values as radians rather than degrees. If at all in
  doubt that you will get the right result, the safest choice is to either use
  |QTable| or to explicitly convert to |Quantity|::

    >>> np.sin(t['angle'].quantity)  # doctest: +FLOAT_CMP
    <Quantity [0.5, 1. ]>

.. _bytestring-columns-python-3:

Bytestring Columns
^^^^^^^^^^^^^^^^^^

Using bytestring columns (``numpy`` ``'S'`` dtype) is possible
with ``astropy`` tables since they can be compared with the natural
Python string (``str``) type. See `The bytes/str dichotomy in Python 3
<https://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3>`_
for a very brief overview of the difference.

The standard method of representing strings in ``numpy`` is via the
unicode ``'U'`` dtype. The problem is that this requires 4 bytes per
character, and if you have a very large number of strings this could
fill memory and impact performance. A very common use case is that these
strings are actually ASCII and can be represented with 1 byte per character.
In ``astropy`` it is possible to work directly and conveniently with
bytestring data in |Table| and |Column| operations.

Note that the bytestring issue is a particular problem when dealing with HDF5
files, where character data are read as bytestrings (``'S'`` dtype) when using
the :ref:`table_io`. Since HDF5 files are frequently used to store very large
datasets, the memory bloat associated with conversion to ``'U'`` dtype is
unacceptable.


Examples
""""""""

.. EXAMPLE START: Bytestring Data in Astropy Tables

The examples below illustrate dealing with bytestring data in ``astropy``::

    >>> t = Table([['abc', 'def']], names=['a'], dtype=['S'])

    >>> t['a'] == 'abc'  # Gives expected answer
    array([ True, False])

    >>> t['a'] == b'abc'  # Still gives expected answer
    array([ True, False])

    >>> t['a'][0] == 'abc'  # Expected answer
    True

    >>> t['a'][0] == b'abc'  # Cannot compare to bytestring
    False

    >>> t['a'][0] = 'bä'
    >>> t
    <Table length=2>
      a
    bytes3
    ------
       def

    >>> t['a'] == 'bä'
    array([ True, False])

.. doctest-skip::

    >>> # Round trip unicode strings through HDF5
    >>> t.write('test.hdf5', format='hdf5', path='data', overwrite=True)
    >>> t2 = Table.read('test.hdf5', format='hdf5', path='data')
    >>> t2
    <Table length=2>
     col0
    bytes3
    ------
       def

.. EXAMPLE END