1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
|
.. |join| replace:: :func:`~astropy.table.join`
.. _table_operations:
Table Operations
****************
In this section we describe high-level operations that can be used to generate
a new table from one or more input tables. This includes:
=======================
.. list-table::
:header-rows: 1
:widths: 28 52 20
* - Documentation
- Description
- Function
* - `Grouped operations`_
- Group tables and columns by keys
- :func:`~astropy.table.Table.group_by`
* - `Binning`_
- Binning tables
- :func:`~astropy.table.Table.group_by`
* - `Stack vertically`_
- Concatenate input tables along rows
- :func:`~astropy.table.vstack`
* - `Stack horizontally`_
- Concatenate input tables along columns
- :func:`~astropy.table.hstack`
* - `Join`_
- Database-style join of two tables
- |join|
* - `Unique rows`_
- Unique table rows by keys
- :func:`~astropy.table.unique`
* - `Set difference`_
- Set difference of two tables
- :func:`~astropy.table.setdiff`
* - `Table diff`_
- Generic difference of two simple tables
- :func:`~astropy.utils.diff.report_diff_values`
.. _grouped-operations:
Grouped Operations
------------------
.. EXAMPLE START: Grouped Operations in Tables
Sometimes in a table or table column there are natural groups within the dataset
for which it makes sense to compute some derived values. A minimal example is a
list of objects with photometry from various observing runs::
>>> from astropy.table import Table
>>> obs = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 17.5
... M31 2012-01-02 17.1 17.4
... M101 2012-01-02 15.1 13.5
... M82 2012-02-14 16.2 14.5
... M31 2012-02-14 16.9 17.3
... M82 2012-02-14 15.2 15.5
... M101 2012-02-14 15.0 13.6
... M82 2012-03-26 15.7 16.5
... M101 2012-03-26 15.1 13.5
... M101 2012-03-26 14.8 14.3
... """, format='ascii')
>>> # Make sure magnitudes are printed with one digit after the decimal point
>>> obs['mag_b'].info.format = '{:.1f}'
>>> obs['mag_v'].info.format = '{:.1f}'
.. EXAMPLE END
Table Groups
^^^^^^^^^^^^
Now suppose we want the mean magnitudes for each object. We first group the data
by the ``name`` column with the :func:`~astropy.table.Table.group_by` method.
This returns a new table sorted by ``name`` which has a ``groups`` property
specifying the unique values of ``name`` and the corresponding table rows::
>>> obs_by_name = obs.group_by('name')
>>> print(obs_by_name) # doctest: +SKIP
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5 << First group (index=0, key='M101')
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
M31 2012-01-02 17.0 17.5 << Second group (index=4, key='M31')
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
M82 2012-02-14 16.2 14.5 << Third group (index=7, key='M83')
M82 2012-02-14 15.2 15.5
M82 2012-03-26 15.7 16.5
<< End of groups (index=10)
>>> print(obs_by_name.groups.keys)
name
----
M101
M31
M82
>>> print(obs_by_name.groups.indices)
[ 0 4 7 10]
The ``groups`` property is the portal to all grouped operations with tables and
columns. It defines how the table is grouped via an array of the unique row key
values and the indices of the group boundaries for those key values. The groups
here correspond to the row slices ``0:4``, ``4:7``, and ``7:10`` in the
``obs_by_name`` table.
The output grouped table has two important properties:
- The groups in the order of the lexically sorted key values (``M101``, ``M31``,
``M82`` in our example).
- The rows within each group are in the same order as they appear in the
original table.
The initial argument (``keys``) for the :func:`~astropy.table.Table.group_by`
function can take a number of input data types:
- Single string value with a table column name (as shown above)
- List of string values with table column names
- Another |Table| or |Column| with same length as table
- ``numpy`` structured array with same length as table
- ``numpy`` homogeneous array with same length as table
In all cases the corresponding row elements are considered as a :class:`tuple`
of values which form a key value that is used to sort the original table and
generate the required groups.
As an example, to get the average magnitudes for each object on each observing
night, we would first group the table on both ``name`` and ``obs_date`` as
follows::
>>> print(obs.group_by(['name', 'obs_date']).groups.keys)
name obs_date
---- ----------
M101 2012-01-02
M101 2012-02-14
M101 2012-03-26
M31 2012-01-02
M31 2012-02-14
M82 2012-02-14
M82 2012-03-26
Manipulating Groups
^^^^^^^^^^^^^^^^^^^
.. EXAMPLE START: Manipulating Groups in Tables
Once you have applied grouping to a table then you can access the individual
groups or subsets of groups. In all cases this returns a new grouped table.
For instance, to get the subtable which corresponds to the second group
(index=1) do::
>>> print(obs_by_name.groups[1])
name obs_date mag_b mag_v
---- ---------- ----- -----
M31 2012-01-02 17.0 17.5
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
To get the first and second groups together use a :class:`slice`::
>>> groups01 = obs_by_name.groups[0:2]
>>> print(groups01)
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
M31 2012-01-02 17.0 17.5
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
>>> print(groups01.groups.keys)
name
----
M101
M31
You can also supply a ``numpy`` array of indices or a boolean mask to select
particular groups, for example::
>>> mask = obs_by_name.groups.keys['name'] == 'M101'
>>> print(obs_by_name.groups[mask])
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
You can iterate over the group subtables and corresponding keys with::
>>> for key, group in zip(obs_by_name.groups.keys, obs_by_name.groups):
... print(f'****** {key["name"]} *******')
... print(group)
... print('')
...
****** M101 *******
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3
****** M31 *******
name obs_date mag_b mag_v
---- ---------- ----- -----
M31 2012-01-02 17.0 17.5
M31 2012-01-02 17.1 17.4
M31 2012-02-14 16.9 17.3
****** M82 *******
name obs_date mag_b mag_v
---- ---------- ----- -----
M82 2012-02-14 16.2 14.5
M82 2012-02-14 15.2 15.5
M82 2012-03-26 15.7 16.5
.. EXAMPLE END
Column Groups
^^^^^^^^^^^^^
Like |Table| objects, |Column| objects can also be grouped for subsequent
manipulation with grouped operations. This can apply both to columns within a
|Table| or bare |Column| objects.
As for |Table|, the grouping is generated with the
:func:`~astropy.table.Table.group_by` method. The difference here is that
there is no option of providing one or more column names since that
does not make sense for a |Column|.
Examples
~~~~~~~~
.. EXAMPLE START: Grouping Column Objects in Tables
To generate grouping in columns::
>>> from astropy.table import Column
>>> import numpy as np
>>> c = Column([1, 2, 3, 4, 5, 6], name='a')
>>> key_vals = np.array(['foo', 'bar', 'foo', 'foo', 'qux', 'qux'])
>>> cg = c.group_by(key_vals)
>>> for key, group in zip(cg.groups.keys, cg.groups):
... print(f'****** {key} *******')
... print(group)
... print('')
...
****** bar *******
a
---
2
****** foo *******
a
---
1
3
4
****** qux *******
a
---
5
6
.. EXAMPLE END
Aggregation
^^^^^^^^^^^
Aggregation is the process of applying a specified reduction function to the
values within each group for each non-key column. This function must accept a
|ndarray| as the first argument and return a single scalar value. Common
function examples are :func:`numpy.sum`, :func:`numpy.mean`, and
:func:`numpy.std`.
For the example grouped table ``obs_by_name`` from above, we compute the group
means with the :meth:`~astropy.table.groups.TableGroups.aggregate` method::
>>> obs_mean = obs_by_name.groups.aggregate(np.mean) # doctest: +SHOW_WARNINGS
AstropyUserWarning: Cannot aggregate column 'obs_date' with type '<U10': ...
>>> print(obs_mean)
name mag_b mag_v
---- ----- -----
M101 15.0 13.7
M31 17.0 17.4
M82 15.7 15.5
It seems the magnitude values were successfully averaged, but what about the
:class:`~astropy.utils.exceptions.AstropyUserWarning`? Since the ``obs_date``
column is a string-type array, the :func:`numpy.mean` function failed and
raised an exception ``cannot perform reduceat with flexible type``. Any time this happens
:meth:`~astropy.table.groups.TableGroups.aggregate` will issue a warning and
then drop that column from the output result. Note that the ``name`` column is
one of the ``keys`` used to determine the grouping so it is automatically
ignored from aggregation.
.. EXAMPLE START: Performing Aggregation on Grouped Tables
From a grouped table it is possible to select one or more columns on which
to perform the aggregation::
>>> print(obs_by_name['mag_b'].groups.aggregate(np.mean))
mag_b
-----
15.0
17.0
15.7
The order of the columns can be specified too::
>>> print(obs_by_name['name', 'mag_v', 'mag_b'].groups.aggregate(np.mean))
name mag_v mag_b
---- ----- -----
M101 13.7 15.0
M31 17.4 17.0
M82 15.5 15.7
A single column of data can be aggregated as well::
>>> c = Column([1, 2, 3, 4, 5, 6], name='a')
>>> key_vals = np.array(['foo', 'bar', 'foo', 'foo', 'qux', 'qux'])
>>> cg = c.group_by(key_vals)
>>> cg_sums = cg.groups.aggregate(np.sum)
>>> for key, cg_sum in zip(cg.groups.keys, cg_sums):
... print(f'Sum for {key} = {cg_sum}')
...
Sum for bar = 2
Sum for foo = 8
Sum for qux = 11
.. EXAMPLE END
If the specified function has a :meth:`numpy.ufunc.reduceat` method, this will
be called instead. This can improve the performance by a factor of 10 to 100
(or more) for large unmasked tables or columns with many relatively small
groups. It also allows for the use of certain ``numpy`` functions which
normally take more than one input array but also work as reduction functions,
like `numpy.add`. The ``numpy`` functions which should take advantage of using
:meth:`numpy.ufunc.reduceat` include:
- `numpy.add`
- `numpy.arctan2`
- `numpy.bitwise_and`
- `numpy.bitwise_or`
- `numpy.bitwise_xor`
- `numpy.copysign`
- `numpy.divide`
- `numpy.equal`
- `numpy.floor_divide`
- `numpy.fmax`
- `numpy.fmin`
- `numpy.fmod`
- `numpy.greater_equal`
- `numpy.greater`
- `numpy.hypot`
- `numpy.left_shift`
- `numpy.less_equal`
- `numpy.less`
- `numpy.logaddexp2`
- `numpy.logaddexp`
- `numpy.logical_and`
- `numpy.logical_or`
- `numpy.logical_xor`
- `numpy.maximum`
- `numpy.minimum`
- `numpy.mod`
- `numpy.multiply`
- `numpy.not_equal`
- `numpy.power`
- `numpy.remainder`
- `numpy.right_shift`
- `numpy.subtract`
- `numpy.true_divide`
In special cases, :func:`numpy.sum` and :func:`numpy.mean` are substituted with
their respective ``reduceat`` methods.
Filtering
^^^^^^^^^
Table groups can be filtered by means of the
:meth:`~astropy.table.groups.TableGroups.filter` method. This is done by
supplying a function which is called for each group. The function
which is passed to this method must accept two arguments:
- ``table`` : |Table| object
- ``key_colnames`` : list of columns in ``table`` used as keys for grouping
It must then return either `True` or `False`.
Example
~~~~~~~
.. EXAMPLE START: Filtering Table Groups
The following will select all table groups with only positive values in the non-
key columns::
>>> def all_positive(table, key_colnames):
... colnames = [name for name in table.colnames if name not in key_colnames]
... for colname in colnames:
... if np.any(table[colname] <= 0):
... return False
... return True
An example of using this function is::
>>> t = Table.read(""" a b c
... -2 7.0 2
... -2 5.0 1
... 1 3.0 -5
... 1 -2.0 -6
... 1 1.0 7
... 0 4.0 4
... 3 3.0 5
... 3 -2.0 6
... 3 1.0 7""", format='ascii')
>>> tg = t.group_by('a')
>>> t_positive = tg.groups.filter(all_positive)
>>> for group in t_positive.groups:
... print(group)
... print('')
...
a b c
--- --- ---
-2 7.0 2
-2 5.0 1
<BLANKLINE>
a b c
--- --- ---
0 4.0 4
As can be seen only the groups with ``a == -2`` and ``a == 0`` have all
positive values in the non-key columns, so those are the ones that are selected.
Likewise a grouped column can be filtered with the
:meth:`~astropy.table.groups.ColumnGroups.filter`, method but in this case the
filtering function takes only a single argument which is the column group. It
still must return either `True` or `False`. For example::
def all_positive(column):
return np.all(column > 0)
.. EXAMPLE END
.. _table_binning:
Binning
-------
A common tool in analysis is to bin a table based on some reference value.
Examples:
- Photometry of a binary star in several bands taken over a
span of time which should be binned by orbital phase.
- Reducing the sampling density for a table by combining
100 rows at a time.
- Unevenly sampled historical data which should binned to
four points per year.
All of these examples of binning a table can be accomplished using
`grouped operations`_. The examples in that section are focused on the
case of discrete key values such as the name of a source. In this
section we show a concise yet powerful way of applying grouped operations to
accomplish binning on key values such as time, phase, or row number.
The common theme in all of these cases is to convert the key value array into
a new float- or int-valued array whose values are identical for rows in the same
output bin.
Example
^^^^^^^
.. EXAMPLE START: Binning a Table using Grouped Operations
As an example, we generate a fake light curve::
>>> year = np.linspace(2000.0, 2010.0, 200) # 200 observations over 10 years
>>> period = 1.811
>>> y0 = 2005.2
>>> mag = 14.0 + 1.2 * np.sin(2 * np.pi * (year - y0) / period)
>>> phase = ((year - y0) / period) % 1.0
>>> dat = Table([year, phase, mag], names=['year', 'phase', 'mag'])
Now we make an array that will be used for binning the data by 0.25 year
intervals::
>>> year_bin = np.trunc(year / 0.25)
This has the property that all samples in each 0.25 year bin have the same
value of ``year_bin``. Think of ``year_bin`` as the bin number for ``year``.
Then do the binning by grouping and immediately aggregating with
:func:`numpy.mean`.
>>> dat_grouped = dat.group_by(year_bin)
>>> dat_binned = dat_grouped.groups.aggregate(np.mean)
We can plot the results with ``plt.plot(dat_binned['year'], dat_binned['mag'],
'.')``. Alternately, we could bin into 10 phase bins::
>>> phase_bin = np.trunc(phase / 0.1)
>>> dat_grouped = dat.group_by(phase_bin)
>>> dat_binned = dat_grouped.groups.aggregate(np.mean)
This time, try plotting with ``plt.plot(dat_binned['phase'],
dat_binned['mag'])``.
.. EXAMPLE END
.. _stack-vertically:
Stack Vertically
----------------
The |Table| class supports stacking tables vertically with the
:func:`~astropy.table.vstack` function. This process is also commonly known as
concatenating or appending tables in the row direction. It corresponds roughly
to the :func:`numpy.vstack` function.
Examples
^^^^^^^^
.. EXAMPLE START: Stacking (or Concatenating) Tables Vertically
Suppose we have two tables of observations with several column names in
common::
>>> from astropy.table import Table, vstack
>>> obs1 = Table.read("""name obs_date mag_b logLx
... M31 2012-01-02 17.0 42.5
... M82 2012-10-29 16.2 43.5
... M101 2012-10-31 15.1 44.5""", format='ascii')
>>> obs2 = Table.read("""name obs_date logLx
... NGC3516 2011-11-11 42.1
... M31 1999-01-05 43.1
... M82 2012-10-30 45.0""", format='ascii')
Now we can stack these two tables::
>>> print(vstack([obs1, obs2]))
name obs_date mag_b logLx
------- ---------- ----- -----
M31 2012-01-02 17.0 42.5
M82 2012-10-29 16.2 43.5
M101 2012-10-31 15.1 44.5
NGC3516 2011-11-11 -- 42.1
M31 1999-01-05 -- 43.1
M82 2012-10-30 -- 45.0
Notice that the ``obs2`` table is missing the ``mag_b`` column, so in the
stacked output table those values are marked as missing. This is the default
behavior and corresponds to ``join_type='outer'``. There are two other allowed
values for the ``join_type`` argument, ``'inner'`` and ``'exact'``::
>>> print(vstack([obs1, obs2], join_type='inner'))
name obs_date logLx
------- ---------- -----
M31 2012-01-02 42.5
M82 2012-10-29 43.5
M101 2012-10-31 44.5
NGC3516 2011-11-11 42.1
M31 1999-01-05 43.1
M82 2012-10-30 45.0
>>> print(vstack([obs1, obs2], join_type='exact')) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TableMergeError: Inconsistent columns in input arrays (use 'inner'
or 'outer' join_type to allow non-matching columns)
In the case of ``join_type='inner'``, only the common columns (the intersection)
are present in the output table. When ``join_type='exact'`` is specified, then
:func:`~astropy.table.vstack` requires that all of the input tables have
exactly the same column names.
More than two tables can be stacked by supplying a longer list of tables::
>>> obs3 = Table.read("""name obs_date mag_b logLx
... M45 2012-02-03 15.0 40.5""", format='ascii')
>>> print(vstack([obs1, obs2, obs3]))
name obs_date mag_b logLx
------- ---------- ----- -----
M31 2012-01-02 17.0 42.5
M82 2012-10-29 16.2 43.5
M101 2012-10-31 15.1 44.5
NGC3516 2011-11-11 -- 42.1
M31 1999-01-05 -- 43.1
M82 2012-10-30 -- 45.0
M45 2012-02-03 15.0 40.5
See also the sections on `Merging metadata`_ and `Merging column attributes`_
for details on how these characteristics of the input tables are merged in the
single output table. Note also that you can use a single table |Row| instead of
a full table as one of the inputs.
.. EXAMPLE END
.. _stack-horizontally:
Stack Horizontally
------------------
The |Table| class supports stacking tables horizontally (in the column-wise
direction) with the :func:`~astropy.table.hstack` function. It corresponds
roughly to the :func:`numpy.hstack` function.
Examples
^^^^^^^^
.. EXAMPLE START: Stacking (or Concatenating) Tables Horizontally
Suppose we have the following two tables::
>>> from astropy.table import Table, hstack
>>> t1 = Table.read("""a b c
... 1 foo 1.4
... 2 bar 2.1
... 3 baz 2.8""", format='ascii')
>>> t2 = Table.read("""d e
... ham eggs
... spam toast""", format='ascii')
Now we can stack these two tables horizontally::
>>> print(hstack([t1, t2]))
a b c d e
--- --- --- ---- -----
1 foo 1.4 ham eggs
2 bar 2.1 spam toast
3 baz 2.8 -- --
As with :func:`~astropy.table.vstack`, there is an optional ``join_type``
argument that can take values ``'inner'``, ``'exact'``, and ``'outer'``. The
default is ``'outer'``, which effectively takes the union of available rows and
masks out any missing values. This is illustrated in the example above. The
other options give the intersection of rows, where ``'exact'`` requires that
all tables have exactly the same number of rows::
>>> print(hstack([t1, t2], join_type='inner'))
a b c d e
--- --- --- ---- -----
1 foo 1.4 ham eggs
2 bar 2.1 spam toast
>>> print(hstack([t1, t2], join_type='exact')) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
TableMergeError: Inconsistent number of rows in input arrays (use 'inner' or
'outer' join_type to allow non-matching rows)
More than two tables can be stacked by supplying a longer list of tables. The
example below also illustrates the behavior when there is a conflict in the
input column names (see the section on `Column renaming`_ for details)::
>>> t3 = Table.read("""a b
... M45 2012-02-03""", format='ascii')
>>> print(hstack([t1, t2, t3]))
a_1 b_1 c d e a_3 b_3
--- --- --- ---- ----- --- ----------
1 foo 1.4 ham eggs M45 2012-02-03
2 bar 2.1 spam toast -- --
3 baz 2.8 -- -- -- --
The metadata from the input tables is merged by the process described in the
`Merging metadata`_ section. Note also that you can use a single table |Row|
instead of a full table as one of the inputs.
.. EXAMPLE END
.. _stack-depthwise:
Stack Depth-Wise
----------------
The |Table| class supports stacking columns within tables depth-wise using the
:func:`~astropy.table.dstack` function. It corresponds roughly to running the
:func:`numpy.dstack` function on the individual columns matched by name.
Examples
^^^^^^^^
.. EXAMPLE START: Stacking (or Concatenating) Tables Depth-Wise
Suppose we have tables of data for sources giving information on the enclosed
source counts for different PSF fractions::
>>> from astropy.table import Table, dstack
>>> src1 = Table.read("""psf_frac counts
... 0.10 45.
... 0.50 90.
... 0.90 120.
... """, format='ascii')
>>> src2 = Table.read("""psf_frac counts
... 0.10 200.
... 0.50 300.
... 0.90 350.
... """, format='ascii')
Now we can stack these two tables depth-wise to get a single table with the
characteristics of both sources::
>>> srcs = dstack([src1, src2])
>>> print(srcs)
psf_frac counts
---------- --------------
0.1 .. 0.1 45.0 .. 200.0
0.5 .. 0.5 90.0 .. 300.0
0.9 .. 0.9 120.0 .. 350.0
In this case the counts for the first source are accessible as
``srcs['counts'][:, 0]``, and likewise the second source counts are
``srcs['counts'][:, 1]``.
For this function the length of all input tables must be the same. This
function can accept ``join_type`` and ``metadata_conflicts`` just like the
:func:`~astropy.table.vstack` function. The ``join_type`` argument controls how
to handle mismatches in the columns of the input table.
See also the sections on `Merging metadata`_ and `Merging column attributes`_
for details on how these characteristics of the input tables are merged in the
single output table. Note also that you can use a single table |Row| instead of
a full table as one of the inputs.
.. EXAMPLE END
.. _table-join:
Join
----
The |Table| class supports the `database join
<https://en.wikipedia.org/wiki/Join_(SQL)>`_ operation. This provides a flexible
and powerful way to combine tables based on the values in one or more key
columns.
Examples
^^^^^^^^
.. EXAMPLE START: Combining Tables using the Database Join Operation
Suppose we have two tables of observations, the first with B and V magnitudes
and the second with X-ray luminosities of an overlapping (but not identical)
sample::
>>> from astropy.table import Table, join
>>> optical = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 16.0
... M82 2012-10-29 16.2 15.2
... M101 2012-10-31 15.1 15.5""", format='ascii')
>>> xray = Table.read(""" name obs_date logLx
... NGC3516 2011-11-11 42.1
... M31 1999-01-05 43.1
... M82 2012-10-29 45.0""", format='ascii')
The |join| method allows you to merge these two tables into a single table based
on matching values in the "key columns". By default, the key columns are the set
of columns that are common to both tables. In this case the key columns are
``name`` and ``obs_date``. We can find all of the observations of the same
object on the same date as follows::
>>> opt_xray = join(optical, xray)
>>> print(opt_xray)
name obs_date mag_b mag_v logLx
---- ---------- ----- ----- -----
M82 2012-10-29 16.2 15.2 45.0
We can perform the match by ``name`` only by providing the ``keys`` argument,
which can be either a single column name or a list of column names::
>>> print(join(optical, xray, keys='name'))
name obs_date_1 mag_b mag_v obs_date_2 logLx
---- ---------- ----- ----- ---------- -----
M31 2012-01-02 17.0 16.0 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 2012-10-29 45.0
This output table has all of the observations that have both optical and X-ray
data for an object (M31 and M82). Notice that since the ``obs_date`` column
occurs in both tables, it has been split into two columns, ``obs_date_1`` and
``obs_date_2``. The values are taken from the "left" (``optical``) and "right"
(``xray``) tables, respectively.
.. EXAMPLE END
Different Join Options
^^^^^^^^^^^^^^^^^^^^^^
The table joins so far are known as "inner" joins and represent the strict
intersection of the two tables on the key columns.
.. EXAMPLE START: Table Join Options
If you want to make a new table which has *every* row from the left table and
includes matching values from the right table when available, this is known as a
left join::
>>> print(join(optical, xray, join_type='left'))
name obs_date mag_b mag_v logLx
---- ---------- ----- ----- -----
M101 2012-10-31 15.1 15.5 --
M31 2012-01-02 17.0 16.0 --
M82 2012-10-29 16.2 15.2 45.0
Two of the observations do not have X-ray data, as indicated by the ``--`` in
the table. You might be surprised that there is no X-ray data for M31 in the
output. Remember that the default matching key includes both ``name`` and
``obs_date``. Specifying the key as only the ``name`` column gives::
>>> print(join(optical, xray, join_type='left', keys='name'))
name obs_date_1 mag_b mag_v obs_date_2 logLx
---- ---------- ----- ----- ---------- -----
M101 2012-10-31 15.1 15.5 -- --
M31 2012-01-02 17.0 16.0 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 2012-10-29 45.0
Likewise you can construct a new table with every row of the right table and
matching left values (when available) using ``join_type='right'``.
To make a table with the union of rows from both tables do an "outer" join::
>>> print(join(optical, xray, join_type='outer'))
name obs_date mag_b mag_v logLx
------- ---------- ----- ----- -----
M101 2012-10-31 15.1 15.5 --
M31 1999-01-05 -- -- 43.1
M31 2012-01-02 17.0 16.0 --
M82 2012-10-29 16.2 15.2 45.0
NGC3516 2011-11-11 -- -- 42.1
In all the above cases the output join table will be sorted by the key
column(s) and in general will not preserve the row order of the input tables.
Finally, you can do a "Cartesian" join, which is the Cartesian product of all
available rows. In this case there are no key columns (and supplying the
``keys`` argument is an error)::
>>> print(join(optical, xray, join_type='cartesian'))
name_1 obs_date_1 mag_b mag_v name_2 obs_date_2 logLx
------ ---------- ----- ----- ------- ---------- -----
M31 2012-01-02 17.0 16.0 NGC3516 2011-11-11 42.1
M31 2012-01-02 17.0 16.0 M31 1999-01-05 43.1
M31 2012-01-02 17.0 16.0 M82 2012-10-29 45.0
M82 2012-10-29 16.2 15.2 NGC3516 2011-11-11 42.1
M82 2012-10-29 16.2 15.2 M31 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 M82 2012-10-29 45.0
M101 2012-10-31 15.1 15.5 NGC3516 2011-11-11 42.1
M101 2012-10-31 15.1 15.5 M31 1999-01-05 43.1
M101 2012-10-31 15.1 15.5 M82 2012-10-29 45.0
.. EXAMPLE END
Non-Identical Key Column Names
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. EXAMPLE START: Joining Tables with Unique Key Column Names
To use the |join| function with non-identical key column names, use the
``keys_left`` and ``keys_right`` arguments. In the following example one table
has a ``'name'`` column while the other has an ``'obj_id'`` column::
>>> optical = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 16.0
... M82 2012-10-29 16.2 15.2
... M101 2012-10-31 15.1 15.5""", format='ascii')
>>> xray_1 = Table.read("""obj_id obs_date logLx
... NGC3516 2011-11-11 42.1
... M31 1999-01-05 43.1
... M82 2012-10-29 45.0""", format='ascii')
In order to perform a match based on the names of the objects, do the
following::
>>> print(join(optical, xray_1, keys_left='name', keys_right='obj_id'))
name obs_date_1 mag_b mag_v obj_id obs_date_2 logLx
---- ---------- ----- ----- ------ ---------- -----
M31 2012-01-02 17.0 16.0 M31 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 M82 2012-10-29 45.0
The ``keys_left`` and ``keys_right`` arguments can also take a list of column
names or even a list of column-like objects. The latter case allows specifying
the matching key column values independent of the tables being joined.
.. EXAMPLE END
Identical Key Values
^^^^^^^^^^^^^^^^^^^^
.. EXAMPLE START: Joining Tables with Identical Key Values
The |Table| join operation works even if there are multiple rows with identical
key values. For example, the following tables have multiple rows for the column
``'key'``::
>>> from astropy.table import Table, join
>>> left = Table([[0, 1, 1, 2], ['L1', 'L2', 'L3', 'L4']], names=('key', 'L'))
>>> right = Table([[1, 1, 2, 4], ['R1', 'R2', 'R3', 'R4']], names=('key', 'R'))
>>> print(left)
key L
--- ---
0 L1
1 L2
1 L3
2 L4
>>> print(right)
key R
--- ---
1 R1
1 R2
2 R3
4 R4
Doing an outer join on these tables shows that what is really happening is a
`Cartesian product <https://en.wikipedia.org/wiki/Cartesian_product>`_. For
each matching key, every combination of the left and right tables is
represented. When there is no match in either the left or right table, the
corresponding column values are designated as missing::
>>> print(join(left, right, join_type='outer'))
key L R
--- --- ---
0 L1 --
1 L2 R1
1 L2 R2
1 L3 R1
1 L3 R2
2 L4 R3
4 -- R4
An inner join is the same but only returns rows where there is a key match in
both the left and right tables::
>>> print(join(left, right, join_type='inner'))
key L R
--- --- ---
1 L2 R1
1 L2 R2
1 L3 R1
1 L3 R2
2 L4 R3
Conflicts in the input table names are handled by the process described in the
section on `Column renaming`_. See also the sections on `Merging metadata`_ and
`Merging column attributes`_ for details on how these characteristics of the
input tables are merged in the single output table.
.. EXAMPLE END
Merging Details
---------------
When combining two or more tables there is the need to merge certain
characteristics in the inputs and potentially resolve conflicts. This
section describes the process.
Column Renaming
^^^^^^^^^^^^^^^
In cases where the input tables have conflicting column names, there
is a mechanism to generate unique output column names. There are two
keyword arguments that control the renaming behavior:
``table_names``
List of strings that provide names for the tables being joined.
By default this is ``['1', '2', ...]``, where the numbers correspond to
the input tables.
``uniq_col_name``
String format specifier with a default value of ``'{col_name}_{table_name}'``.
This is best understood by example using the ``optical`` and ``xray`` tables
in the |join| example defined previously::
>>> print(join(optical, xray, keys='name',
... table_names=['OPTICAL', 'XRAY'],
... uniq_col_name='{table_name}_{col_name}'))
name OPTICAL_obs_date mag_b mag_v XRAY_obs_date logLx
---- ---------------- ----- ----- ------------- -----
M31 2012-01-02 17.0 16.0 1999-01-05 43.1
M82 2012-10-29 16.2 15.2 2012-10-29 45.0
.. _merging_metadata:
Merging Metadata
^^^^^^^^^^^^^^^^
|Table| objects can have associated metadata:
- ``Table.meta``: table-level metadata as an ordered dictionary
- ``Column.meta``: per-column metadata as an ordered dictionary
The table operations described here handle the task of merging the metadata in
the input tables into a single output structure. Because the metadata can be
arbitrarily complex there is no unique way to do the merge. The current
implementation uses a recursive algorithm with four rules:
- :class:`dict` elements are merged by keys.
- Conflicting :class:`list` or :class:`tuple` elements are concatenated.
- Conflicting :class:`dict` elements are merged by recursively calling the
merge function.
- Conflicting elements that are not :class:`list`, :class:`tuple`, or
:class:`dict` will follow the following rules:
- If both metadata values are identical, the output is set to this value.
- If one of the conflicting metadata values is `None`, the other value is
picked.
- If both metadata values are different and neither is `None`, the one for
the last table in the list is picked.
By default, a warning is emitted in the last case (both metadata values are not
`None`). The warning can be silenced or made into an exception using the
``metadata_conflicts`` argument to :func:`~astropy.table.hstack`,
:func:`~astropy.table.vstack`, or
:func:`~astropy.table.join`. The ``metadata_conflicts`` option can be set to:
- ``'silent'`` – no warning is emitted, the value for the last table is silently
picked.
- ``'warn'`` – a warning is emitted, the value for the last table is picked.
- ``'error'`` – an exception is raised.
The default strategies for merging metadata can be augmented or customized by
defining subclasses of the `~astropy.utils.metadata.MergeStrategy` base class.
In most cases you will also use
:func:`~astropy.utils.metadata.enable_merge_strategies` for enabling the custom
strategies. The linked documentation strings provide details.
Merging Column Attributes
^^^^^^^^^^^^^^^^^^^^^^^^^
In addition to the table and column ``meta`` attributes, the column attributes
``unit``, ``format``, and ``description`` are merged by going through the input
tables in order and taking the last value which is defined (i.e., is not
`None`).
Example
~~~~~~~
.. EXAMPLE START: Merging Column Attributes in a Table
To merge column attributes ``unit``, ``format``, or ``description``::
>>> from astropy.table import Column, Table, vstack
>>> col1 = Column([1], name='a')
>>> col2 = Column([2], name='a', unit='cm')
>>> col3 = Column([3], name='a', unit='m')
>>> t1 = Table([col1])
>>> t2 = Table([col2])
>>> t3 = Table([col3])
>>> out = vstack([t1, t2, t3]) # doctest: +SHOW_WARNINGS
MergeConflictWarning: In merged column 'a' the 'unit' attribute does
not match (cm != m). Using m for merged output
>>> out['a'].unit
Unit("m")
The rules for merging are the same as for `Merging metadata`_, and the
``metadata_conflicts`` option also controls the merging of column attributes.
.. EXAMPLE END
.. _astropy-table-join-functions:
Joining Coordinates and Custom Join Functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Source catalogs that have |SkyCoord| coordinate columns can be joined using
cross-matching of the coordinates with a specified distance threshold. This is
a special case of a more general problem of "fuzzy" matching of key column
values, where instead of an exact match we require only an approximate match.
This is supported using the ``join_funcs`` argument.
.. warning::
The coordinate and distance table joins discussed in this section are most
applicable in the case where the relevant entries in at least one of the
tables are all separated from one another by more than twice the join
distance. If this is not satisfied then the join results may be unexpected.
This is a consequence of the algorithm which effectively finds clusters of
nearby points (an "equivalence class") and assigns a unique cluster
identifier to each entry in both tables. This assumes the join matching
function is a transitive relation where ``join_func(A, B)`` and
``join_func(B, C)`` implies ``join_func(A, C)``. With multiple matches on
both left and right sides it is possible for the cluster of points having a
single cluster identifier to expand in size beyond the distance threshold.
Users should be especially aware of this issue if additional join keys
are provided beyond the ``join_funcs``. The code does not do a "pre-join"
on the other keys, so the possibility of having overlaps within the distance
in both tables is higher.
Example
~~~~~~~
.. EXAMPLE START: Joining a Table on Coordinates
To join two tables on a |SkyCoord| key column we use the ``join_funcs`` keyword
to supply a :class:`dict` of functions that specify how to match a particular
key column by name. In the example below we are joining on the ``sc`` column,
so we provide the following argument::
join_funcs={'sc': join_skycoord(0.2 * u.deg)}
This tells |join| to match the ``sc`` key column using the join function
:func:`~astropy.table.join_skycoord` with a matching distance threshold of 0.2
deg. Under the hood this calls
:meth:`~astropy.coordinates.SkyCoord.search_around_sky` or
:meth:`~astropy.coordinates.SkyCoord.search_around_3d` to do the
cross-matching. The default is to use
:meth:`~astropy.coordinates.SkyCoord.search_around_sky` (angle) matching, but
:meth:`~astropy.coordinates.SkyCoord.search_around_3d` (length or
dimensionless) is also available. This is specified using the ``distance_func``
argument of :func:`~astropy.table.join_skycoord`, which can also be a function
that matches the input and output API of
:meth:`~astropy.coordinates.SkyCoord.search_around_sky`.
Now we show the whole process:
.. doctest-requires:: scipy
>>> from astropy.coordinates import SkyCoord
>>> import astropy.units as u
>>> from astropy.table import Table, join, join_skycoord
.. doctest-requires:: scipy
>>> sc1 = SkyCoord([0, 1, 1.1, 2], [0, 0, 0, 0], unit='deg')
>>> sc2 = SkyCoord([1.05, 0.5, 2.1], [0, 0, 0], unit='deg')
.. doctest-requires:: scipy
>>> t1 = Table([sc1, [0, 1, 2, 3]], names=['sc', 'idx'])
>>> t2 = Table([sc2, [0, 1, 2]], names=['sc', 'idx'])
.. doctest-requires:: scipy
>>> t12 = join(t1, t2, keys='sc', join_funcs={'sc': join_skycoord(0.2 * u.deg)})
>>> print(t12)
sc_id sc_1 idx_1 sc_2 idx_2
deg,deg deg,deg
----- ------- ----- -------- -----
1 1.0,0.0 1 1.05,0.0 0
1 1.1,0.0 2 1.05,0.0 0
2 2.0,0.0 3 2.1,0.0 2
The joined table has matched the sources within 0.2 deg and created a new
column ``sc_id`` with a unique identifier for each source.
.. EXAMPLE END
You might be wondering what is happening in the join function defined above,
especially if you are interested in defining your own such function. This could
be done in order to allow fuzzy word matching of tables, for example joining
tables of people by name where the names do not always match exactly.
The first thing to note here is that the :func:`~astropy.table.join_skycoord`
function actually returns a function itself. This allows specifying a variable
match distance via a function enclosure. The requirement of the join function
is that it accepts two arguments corresponding to the two key columns, and
returns a tuple of ``(ids1, ids2)``. These identifiers correspond to the
identification of each column entry with a unique matched source.
.. doctest-requires:: scipy
>>> join_func = join_skycoord(0.2 * u.deg)
>>> join_func(sc1, sc2) # Associate each coordinate with unique source ID
(array([3, 1, 1, 2]), array([1, 4, 2]))
If you would like to write your own fuzzy matching function, we suggest starting
from the source code for :func:`~astropy.table.join_skycoord` or
:func:`~astropy.table.join_distance`.
Join on Distance
~~~~~~~~~~~~~~~~
The example above focused on joining on a |SkyCoord|, but you can also join on
a generic distance between column values using the
:func:`~astropy.table.join_distance` join function. This can apply to 1D or 2D
(vector) columns. This will look very similar to the coordinates example, but
here there is a bit more flexibility. The matching is done using
:class:`scipy.spatial.KDTree` and
:meth:`scipy.spatial.KDTree.query_ball_tree`, and the behavior of these can be
controlled via the ``kdtree_args`` and ``query_args`` arguments, respectively.
.. _unique-rows:
Unique Rows
-----------
Sometimes it makes sense to use only rows with unique key columns or even
fully unique rows from a table. This can be done using the above described
:meth:`~astropy.table.Table.group_by` method and ``groups`` attribute, or with
the :func:`~astropy.table.unique` convenience function. The
:func:`~astropy.table.unique` function returns a sorted table containing the
first row for each unique ``keys`` column value. If no ``keys`` is provided, it
returns a sorted table containing all of the fully unique rows.
Example
^^^^^^^
.. EXAMPLE START: Grouping Unique Rows in Tables
An example of a situation where you might want to use rows with unique key
columns is a list of objects with photometry from various observing
runs. Using ``'name'`` as the only ``keys``, it returns with the first
occurrence of each of the three targets::
>>> from astropy import table
>>> obs = table.Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 17.5
... M82 2012-02-14 16.2 14.5
... M101 2012-01-02 15.1 13.5
... M31 2012-01-02 17.1 17.4
... M101 2012-01-02 15.1 13.5
... M82 2012-02-14 16.2 14.5
... M31 2012-02-14 16.9 17.3
... M82 2012-02-14 15.2 15.5
... M101 2012-02-14 15.0 13.6
... M82 2012-03-26 15.7 16.5
... M101 2012-03-26 15.1 13.5
... M101 2012-03-26 14.8 14.3
... """, format='ascii')
>>> unique_by_name = table.unique(obs, keys='name')
>>> print(unique_by_name)
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M31 2012-01-02 17.0 17.5
M82 2012-02-14 16.2 14.5
Using multiple columns as ``keys``::
>>> unique_by_name_date = table.unique(obs, keys=['name', 'obs_date'])
>>> print(unique_by_name_date)
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M31 2012-01-02 17.0 17.5
M31 2012-02-14 16.9 17.3
M82 2012-02-14 16.2 14.5
M82 2012-03-26 15.7 16.5
.. EXAMPLE END
.. _set-difference:
Set Difference
--------------
A set difference will tell you the elements that are contained in the first set
but not in the other. This concept can be applied to rows of a table by using
the :func:`~astropy.table.setdiff` function. You provide the function with two
input tables and it will return all rows in the first table which do not occur
in the second table.
The optional ``keys`` parameter specifies the names of columns that are used to
match table rows. This can be a subset of the full list of columns, but both
the first and second tables must contain all columns specified by ``keys``.
If not provided, then ``keys`` defaults to all column names in the first table.
If no different rows are found, the :func:`~astropy.table.setdiff` function
will return an empty table.
Example
^^^^^^^
.. EXAMPLE START: Using Set Difference in Tables
The example below illustrates finding the set difference of two observation
lists using a common subset of the columns in two tables.::
>>> from astropy.table import Table, setdiff
>>> cat_1 = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 16.0
... M82 2012-10-29 16.2 15.2
... M101 2012-10-31 15.1 15.5""", format='ascii')
>>> cat_2 = Table.read(""" name obs_date logLx
... NGC3516 2011-11-11 42.1
... M31 2012-01-02 43.1
... M82 2012-10-29 45.0""", format='ascii')
>>> sdiff = setdiff(cat_1, cat_2, keys=['name', 'obs_date'])
>>> print(sdiff)
name obs_date mag_b mag_v
---- ---------- ----- -----
M101 2012-10-31 15.1 15.5
In this example there is a column in the first table that is not
present in the second table, so the ``keys`` parameter must be used to specify
the desired column names.
.. EXAMPLE END
.. _table-diff:
Table Diff
----------
To compare two tables, you can use
:func:`~astropy.utils.diff.report_diff_values`, which would produce a report
identical to :ref:`FITS diff <io-fits-differs>`.
Example
^^^^^^^
.. EXAMPLE START: Using Table Diff to Compare Tables
The example below illustrates finding the difference between two tables::
>>> from astropy.table import Table
>>> from astropy.utils.diff import report_diff_values
>>> import sys
>>> cat_1 = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 16.0
... M82 2012-10-29 16.2 15.2
... M101 2012-10-31 15.1 15.5""", format='ascii')
>>> cat_2 = Table.read("""name obs_date mag_b mag_v
... M31 2012-01-02 17.0 16.5
... M82 2012-10-29 16.2 15.2
... M101 2012-10-30 15.1 15.5
... NEW 2018-05-08 nan 9.0""", format='ascii')
>>> identical = report_diff_values(cat_1, cat_2, fileobj=sys.stdout)
name obs_date mag_b mag_v
---- ---------- ----- -----
a> M31 2012-01-02 17.0 16.0
? ^
b> M31 2012-01-02 17.0 16.5
? ^
M82 2012-10-29 16.2 15.2
a> M101 2012-10-31 15.1 15.5
? ^
b> M101 2012-10-30 15.1 15.5
? ^
b> NEW 2018-05-08 nan 9.0
>>> identical
False
.. EXAMPLE END
|