1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
.. _stats-lombscargle:
*************************
Lomb-Scargle Periodograms
*************************
The Lomb-Scargle periodogram (after Lomb [1]_, and Scargle [2]_) is a commonly
used statistical tool designed to detect periodic signals in unevenly spaced
observations. The :class:`~astropy.timeseries.LombScargle` class is a unified
interface to several implementations of the Lomb-Scargle periodogram, including
a fast *O[NlogN]* implementation following the algorithm presented by Press &
Rybicki [3]_.
The code here is adapted from the `astroml`_ package ([4]_, [5]_) and the
`gatspy`_ package ([6]_, [7]_). For a detailed practical discussion of the
Lomb-Scargle periodogram, with code examples based on ``astropy``, see
*Understanding the Lomb-Scargle Periodogram* [11]_, with associated code at
https://github.com/jakevdp/PracticalLombScargle/.
.. _gatspy: https://www.astroml.org/gatspy/
.. _astroml: https://www.astroml.org/
Basic Usage
===========
.. Note::
All frequencies in :class:`~astropy.timeseries.LombScargle` are **not**
angular frequencies, but rather frequencies of oscillation (i.e., number of
cycles per unit time).
The Lomb-Scargle periodogram is designed to detect periodic signals in
unevenly spaced observations.
Example
-------
.. EXAMPLE START: Using the Lomb-Scargle Periodogram to Detect Periodic Signals
To detect periodic signals in unevenly spaced observations, consider the
following data:
>>> import numpy as np
>>> rand = np.random.default_rng(42)
>>> t = 100 * rand.random(100)
>>> y = np.sin(2 * np.pi * t) + 0.1 * rand.standard_normal(100)
These are 100 noisy measurements taken at irregular times, with a frequency
of 1 cycle per unit time.
The Lomb-Scargle periodogram, evaluated at frequencies chosen
automatically based on the input data, can be computed as follows
using the :class:`~astropy.timeseries.LombScargle` class:
>>> from astropy.timeseries import LombScargle
>>> frequency, power = LombScargle(t, y).autopower()
Plotting the result with Matplotlib gives:
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> plt.plot(frequency, power) # doctest: +SKIP
.. plot::
from astropy.timeseries import LombScargle
import numpy as np
import matplotlib.pyplot as plt
rand = np.random.default_rng(42)
t = 100 * rand.random(100)
y = np.sin(2 * np.pi * t) + 0.1 * rand.standard_normal(100)
frequency, power = LombScargle(t, y).autopower()
fig = plt.figure(figsize=(6, 4.5))
plt.plot(frequency, power)
The periodogram shows a clear spike at a frequency of 1 cycle per unit time,
as we would expect from the data we constructed.
.. EXAMPLE END
Measurement Uncertainties
-------------------------
The :class:`~astropy.timeseries.LombScargle` interface can also handle data with
measurement uncertainties.
Example
^^^^^^^
.. EXAMPLE START: Using the Lomb-Scargle Periodogram with Measurement Uncertainties
If all uncertainties are the same, you can pass a scalar:
>>> dy = 0.1
>>> frequency, power = LombScargle(t, y, dy).autopower()
If uncertainties vary from observation to observation, you can pass them as
an array:
>>> dy = 0.1 * (1 + rand.random(100))
>>> y = np.sin(2 * np.pi * t) + dy * rand.standard_normal(100)
>>> frequency, power = LombScargle(t, y, dy).autopower()
Gaussian uncertainties are assumed, and ``dy`` here specifies the standard
deviation (not the variance).
.. EXAMPLE END
Periodograms and Units
----------------------
The :class:`~astropy.timeseries.LombScargle` interface properly handles
:class:`~astropy.units.Quantity` objects with units attached,
and will validate the inputs to make sure units are appropriate.
Example
^^^^^^^
.. EXAMPLE START: Using the LombScargle Class with Quantity Objects
To use the :class:`~astropy.timeseries.LombScargle` for
:class:`~astropy.units.Quantity` objects with units attached:
>>> import astropy.units as u
>>> t_days = t * u.day
>>> y_mags = y * u.mag
>>> dy_mags = y * u.mag
>>> frequency, power = LombScargle(t_days, y_mags, dy_mags).autopower()
>>> frequency.unit
Unit("1 / d")
>>> power.unit
Unit(dimensionless)
We see that the output is dimensionless, which is always the case for the
standard normalized periodogram (for more on normalizations,
see :ref:`lomb-scargle-normalization` below). If you include arguments to
autopower such as ``minimum_frequency`` or ``maximum_frequency``, make sure to
specify units as well:
>>> frequency, power = LombScargle(t_days, y_mags, dy_mags).autopower(minimum_frequency=1e-5*u.Hz)
.. EXAMPLE END
Specifying the Frequency
------------------------
With the :func:`~astropy.timeseries.LombScargle.autopower` method used above, a
heuristic is applied to select a suitable frequency grid. By default, the
heuristic assumes that the width of peaks is inversely proportional to the
observation baseline, and that the maximum frequency is a factor of five larger
than the so-called "average Nyquist frequency," with computation based on the
average observation spacing.
This heuristic is not universally useful, as the frequencies probed by
irregularly sampled data can be much higher than the average Nyquist frequency.
For this reason, the heuristic can be tuned through keywords passed to the
:func:`~astropy.timeseries.LombScargle.autopower` method.
Example
^^^^^^^
.. EXAMPLE START: Specifying the Frequency with the LombScargle.autopower method
To tune the heuristic using keywords passed to the
:func:`~astropy.timeseries.LombScargle.autopower` method:
>>> frequency, power = LombScargle(t, y, dy).autopower(nyquist_factor=2)
>>> len(frequency), frequency.min(), frequency.max() # doctest: +FLOAT_CMP
(500, np.float64(0.0010327803641893758), np.float64(1.0317475838251864))
Here the highest frequency is two times the average Nyquist frequency.
If we increase the ``nyquist_factor``, we can probe higher frequencies:
>>> frequency, power = LombScargle(t, y, dy).autopower(nyquist_factor=10)
>>> len(frequency), frequency.min(), frequency.max() # doctest: +FLOAT_CMP
(2500, np.float64(0.0010327803641893758), np.float64(5.16286904058269))
Alternatively, we can use the :func:`~astropy.timeseries.LombScargle.power`
method to evaluate the periodogram at a user-specified set of frequencies:
>>> frequency = np.linspace(0.5, 1.5, 1000)
>>> power = LombScargle(t, y, dy).power(frequency)
Note that the fastest Lomb-Scargle implementation requires regularly spaced
frequencies; if frequencies are irregularly spaced, a slower method will be
used instead.
.. EXAMPLE END
Frequency Grid Spacing
^^^^^^^^^^^^^^^^^^^^^^
One common issue with user-specified frequencies is inadvertently choosing
too coarse a grid, such that significant peaks lie between grid points and
are missed entirely.
Example
"""""""
.. EXAMPLE START: Frequency Grid Spacing in Periodograms
Imagine you chose to evaluate your periodogram at 100 points:
>>> frequency = np.linspace(0.1, 1.9, 100)
>>> power = LombScargle(t, y, dy).power(frequency)
>>> plt.plot(frequency, power) # doctest: +SKIP
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.timeseries import LombScargle
rand = np.random.default_rng(42)
t = 100 * rand.random(100)
dy = 0.1
y = np.sin(2 * np.pi * t) + dy * rand.standard_normal(100)
frequency = np.linspace(0.1, 1.9, 100)
power = LombScargle(t, y, dy).power(frequency)
plt.figure(figsize=(6, 4.5))
plt.plot(frequency, power)
plt.xlabel('frequency')
plt.ylabel('Lomb-Scargle Power')
plt.ylim(0, 1)
From this plot alone, you might conclude that no clear periodic signal exists in
the data. But this conclusion is in error: there is in fact a strong periodic
signal, but the periodogram peak falls in the gap between the chosen grid
points!
A more reliable approach is to use the frequency heuristic to decide on the
appropriate grid spacing, optionally passing a minimum and maximum frequency to
the :func:`~astropy.timeseries.LombScargle.autopower` method:
>>> frequency, power = LombScargle(t, y, dy).autopower(minimum_frequency=0.1,
... maximum_frequency=1.9)
>>> len(frequency)
872
>>> plt.plot(frequency, power) # doctest: +SKIP
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.timeseries import LombScargle
rand = np.random.default_rng(42)
t = 100 * rand.random(100)
dy = 0.1
y = np.sin(2 * np.pi * t) + dy * rand.standard_normal(100)
frequency, power = LombScargle(t, y, dy).autopower(minimum_frequency=0.1,
maximum_frequency=1.9)
plt.figure(figsize=(6, 4.5))
plt.plot(frequency, power)
plt.xlabel('frequency')
plt.ylabel('Lomb-Scargle Power')
plt.ylim(0, 1)
With a finer grid (here 884 points between 0.1 and 1.9),
it is clear that there is a very strong periodic signal in the data.
.. EXAMPLE END
By default, the heuristic aims to have roughly five grid points across each
significant periodogram peak; this can be increased by changing the
``samples_per_peak`` argument:
>>> frequency, power = LombScargle(t, y, dy).autopower(minimum_frequency=0.1,
... maximum_frequency=1.9,
... samples_per_peak=10)
>>> len(frequency)
1744
Keep in mind that the width of the peak scales inversely with the baseline of
the observations (i.e., the difference between the maximum and minimum time),
and the required number of grid points will scale linearly with the size of
the baseline.
The Lomb-Scargle Model
----------------------
The Lomb-Scargle periodogram fits a sinusoidal model to the data at each
frequency, with a larger power reflecting a better fit. With this in mind, it is
often helpful to plot the best-fit sinusoid over the phased data.
Example
^^^^^^^
.. EXAMPLE START: Computing a Best-Fit Sinusoid Using the LombScargle Class
This best-fit sinusoid can be computed using the
:func:`~astropy.timeseries.LombScargle.model` method of the
:class:`~astropy.timeseries.LombScargle` object:
>>> best_frequency = frequency[np.argmax(power)]
>>> t_fit = np.linspace(0, 1)
>>> ls = LombScargle(t, y, dy)
>>> y_fit = ls.model(t_fit, best_frequency)
We can then phase the data and plot the Lomb-Scargle model fit:
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.timeseries import LombScargle
rand = np.random.default_rng(42)
t = 100 * rand.random(100)
dy = 0.1
y = np.sin(2 * np.pi * t) + dy * rand.standard_normal(100)
frequency, power = LombScargle(t, y, dy).autopower(minimum_frequency=0.1,
maximum_frequency=1.9)
best_frequency = frequency[np.argmax(power)]
phase_fit = np.linspace(0, 1)
y_fit = LombScargle(t, y, dy).model(t=phase_fit / best_frequency,
frequency=best_frequency)
phase = (t * best_frequency) % 1
fig, ax = plt.subplots(figsize=(6, 4.5))
ax.errorbar(phase, y, dy, fmt='o', mew=0, capsize=0, elinewidth=1.5)
ax.plot(phase_fit, y_fit, color='black')
ax.invert_yaxis()
ax.set(xlabel='phase',
ylabel='magnitude',
title=f'phased data at frequency={best_frequency:.2f}')
The best-fit model parameters can be computed with the
:func:`~astropy.timeseries.LombScargle.model_parameters` method of the
:class:`~astropy.timeseries.LombScargle` object at a given frequency:
>>> theta = ls.model_parameters(best_frequency)
>>> theta.round(2)
array([-0.01, 0.99, 0.11])
These parameters :math:`\vec{\theta}` are fit using the following model:
.. math::
y(t; f, \vec{\theta}) = \theta_0 + \sum_{n=1}^{\tt nterms} [\theta_{2n-1}\sin(2\pi n f t) + \theta_{2n}\cos(2\pi n f t)]
The model can be constructed from these parameters by computing the associated
:func:`~astropy.timeseries.LombScargle.offset`, which accounts for the
pre-centering of data (i.e., the ``center_data`` argument), and
:func:`~astropy.timeseries.LombScargle.design_matrix`, which computes the sine
and cosine terms for you:
>>> offset = ls.offset()
>>> design_matrix = ls.design_matrix(best_frequency, t_fit)
>>> np.allclose(y_fit, offset + design_matrix.dot(theta))
True
.. EXAMPLE END
Additional Arguments
--------------------
On initialization, :class:`~astropy.timeseries.LombScargle` takes a few
additional arguments which control the model for the data:
- ``center_data`` (``True`` by default) controls whether the ``y`` values are
pre-centered before the algorithm fits the data. The only time it is really
warranted to change the default is if you are computing the periodogram of a
sequence of constant values to, for example, estimate the window power
spectrum for a series of observations.
- ``fit_mean`` (``True`` by default) controls whether the model fits for the
mean of the data, rather than assuming the mean is zero. When
``fit_mean=True``, the periodogram is more robust than the original
Lomb-Scargle formalism, particularly in the case of smaller sample sizes
and/or data with nontrivial selection bias. In the literature, this model has
variously been called the *date-compensated discrete Fourier transform*, the
*floating-mean periodogram*, the *generalized Lomb-Scargle method*, and likely
other names as well.
- ``nterms`` (``1`` by default) controls how many Fourier terms are used in the
model. As seen above, the standard Lomb-Scargle periodogram is equivalent to
a single-term sinusoidal fit to the data at each frequency; the
generalization is to expand this to a truncated Fourier series with multiple
frequencies. While this can be very useful in some cases, in others the
additional model complexity can lead to spurious periodogram peaks that
outweigh the benefit of the more flexible model.
.. _lomb-scargle-normalization:
Periodogram Normalizations
==========================
There are several normalizations of the Lomb-Scargle periodogram found in the
literature. :class:`~astropy.timeseries.LombScargle` makes four options
available via the ``normalization`` argument: ``normalization='standard'`` (the
default), ``normalization='model'``, ``normalization='log'``, and
``normalization='psd'``. These normalizations can be thought of in terms of
least-squares fits around a constant reference model :math:`M_{ref}` and a
periodic model :math:`M(f)` at each frequency, with best-fit sum of residuals
that we will denote by :math:`\chi^2_{ref}` and :math:`\chi^2(f)` respectively.
Standard Normalization
----------------------
The default, the standard normalized periodogram is normalized by the residuals
of the data around the constant reference model:
.. math::
P_{standard}(f) = \frac{\chi^2_{ref} - \chi^2(f)}{\chi^2_{ref}}
This form of the normalization (``normalization='standard'``) is the default
choice used in :class:`~astropy.timeseries.LombScargle`. The resulting power
*P* is a dimensionless quantity that lies in the range *0 ≤ P ≤ 1*.
Model Normalization
-------------------
Alternatively, the periodogram is sometimes normalized instead by the residuals
around the periodic model:
.. math::
P_{model}(f) = \frac{\chi^2_{ref} - \chi^2(f)}{\chi^2(f)}
This form of the normalization can be specified with ``normalization='model'``.
As above, the resulting power is a dimensionless quantity that lies in the
range *0 ≤ P ≤ ∞*.
Logarithmic Normalization
-------------------------
Another form of normalization is to scale the periodogram logarithmically:
.. math::
P_{log}(f) = \log \frac{\chi^2_{ref}}{\chi^2(f)}
This normalization can be specified with ``normalization='log'``, and the
resulting power is a dimensionless quantity in the range *0 ≤ P ≤ ∞*.
PSD Normalization (Unnormalized)
--------------------------------
Finally, it is sometimes useful to compute an unnormalized periodogram
(``normalization='psd'``):
.. math::
P_{psd}(f) = \frac{1}{2}\left(\chi^2_{ref} - \chi^2(f)\right)
Which, in the case of no-uncertainty, will have units ``y.unit ** 2``.
This normalization is constructed to be comparable to the standard Fourier
power spectral density (PSD):
>>> ls = LombScargle(t_days, y_mags, normalization='psd')
>>> frequency, power = ls.autopower()
>>> power.unit
Unit("mag2")
Note, however, that the ``normalization='psd'`` result only has these units
*if uncertainties are not specified*. In the presence of uncertainties,
even the unnormalized PSD periodogram will be dimensionless; this is due to
the scaling of data by uncertainty within the Lomb-Scargle computation:
>>> # with uncertainties, PSD power is unitless
>>> ls = LombScargle(t_days, y_mags, dy_mags, normalization='psd')
>>> frequency, power = ls.autopower()
>>> power.unit
Unit(dimensionless)
The equivalence of the PSD-normalized periodogram and the Fourier PSD
in the unnormalized, no-uncertainty case can be confirmed by comparing
results directly for uniformly sampled inputs.
We will first define a convenience function to compute the basic
Fourier periodogram for uniformly sampled quantities:
>>> def fourier_periodogram(t, y):
... N = len(t)
... frequency = np.fft.fftfreq(N, t[1] - t[0])
... y_fft = np.fft.fft(y.value) * y.unit
... positive = (frequency > 0)
... return frequency[positive], (1. / N) * abs(y_fft[positive]) ** 2
Next we compute the two versions of the PSD from uniformly sampled data:
>>> t_days = np.arange(100) * u.day
>>> y_mags = rand.standard_normal(100) * u.mag
>>> frequency, PSD_fourier = fourier_periodogram(t_days, y_mags)
>>> ls = LombScargle(t_days, y_mags, normalization='psd')
>>> PSD_LS = ls.power(frequency)
Examining the results, we see that the two outputs match:
>>> u.allclose(PSD_fourier, PSD_LS)
True
This equivalence is one reason that the Lomb-Scargle periodogram is considered
to be an extension of the Fourier PSD.
For more information on the statistical properties of these normalizations,
see, for example, Baluev 2008 [8]_.
Peak Significance and False Alarm Probabilities
===============================================
.. Note::
Interpretation of Lomb-Scargle peak significance via false alarm
probabilities is a subtle subject, and the quantities computed below are
commonly misinterpreted or misused. For a detailed discussion of periodogram
peak significance, see [11]_.
When using the Lomb-Scargle periodogram to decide whether a signal contains a
periodic component, an important consideration is the significance of the
periodogram peak. This significance is usually expressed in terms of a
false alarm probability, which encodes the probability of measuring a
peak of a given height (or higher) conditioned on the assumption that
the data consists of Gaussian noise with no periodic component.
Example
-------
.. EXAMPLE START: Lomb-Scargle Peak Significance via False Alarm Probabilities
To use the Lomb-Scargle periodogram to decide if our signal contains a periodic
component, we can start by simulating 60 observations of a sine wave with noise:
>>> t = 100 * rand.random(60)
>>> dy = 1.0
>>> y = np.sin(2 * np.pi * t) + dy * rand.standard_normal(60)
>>> ls = LombScargle(t, y, dy)
>>> freq, power = ls.autopower()
>>> print(power.max()) # doctest: +FLOAT_CMP
0.29154492887882927
The peak of the periodogram has a value of 0.33, but how significant is
this peak? We can address this question using the
:func:`~astropy.timeseries.LombScargle.false_alarm_probability` method:
.. doctest-requires:: scipy
>>> ls.false_alarm_probability(power.max()) # doctest: +FLOAT_CMP
np.float64(0.028959671719328808)
What this tells us is that under the assumption that there is no periodic
signal in the data, we will observe a peak this high or higher approximately
0.4% of the time, which gives a strong indication that a periodic signal is
present in the data.
.. Note::
Users must interpret this probability carefully: it is a measurement
conditioned on the assumption of the null hypothesis of no signal; in symbols,
you might write :math:`P({\rm data} \mid {\rm noise-only})`.
Although it may seem like this quantity could be interpreted with a statement
such as "there is an 0.4% chance that this data is noise only," this is *not*
a correct statement; in symbols, this statement describes the quantity
:math:`P({\rm noise-only} \mid {\rm data})`, and in general :math:`P(A\mid B)
\ne P(B\mid A)`.
See [11]_ for a more detailed discussion of such caveats.
We might also wish to compute the required peak height to attain any given
false alarm probability, which can be done with the
:func:`~astropy.timeseries.LombScargle.false_alarm_level` method:
.. doctest-requires:: scipy
>>> probabilities = [0.1, 0.05, 0.01]
>>> ls.false_alarm_level(probabilities) # doctest: +FLOAT_CMP
array([0.25681381, 0.27663466, 0.31928202])
This tells us that to attain a 10% false alarm probability requires the highest
periodogram peak to be approximately 0.25; 5% requires 0.27, and 1% requires
0.32.
.. EXAMPLE END
False Alarm Approximations
--------------------------
Although the false alarm probability at any particular frequency is analytically
computable, there is no closed-form analytic expression for the more relevant
quantity of the false alarm level of the *highest* peak in a particular
periodogram. This must be either determined through bootstrap simulations, or
approximated by various means.
``astropy`` provides four options for approximating the false alarm probability,
which can be chosen using the ``method`` keyword:
- ``method="baluev"`` (the default) implements the approximation proposed by
Baluev 2008 [8]_, which employs extreme value statistics to compute an upper
bound of the false alarm probability for the alias-free case. Experiments show
that the bound is also useful even for highly aliased observing patterns.
.. doctest-requires:: scipy
>>> ls.false_alarm_probability(power.max(), method='baluev') # doctest: +FLOAT_CMP
np.float64(0.028959671719328808)
- ``method="bootstrap"`` implements a bootstrap simulation: effectively it
computes many Lomb-Scargle periodograms on simulated data at the same
observation times. The bootstrap approach can very accurately determine
the false alarm probability, but is very computationally expensive.
To estimate the level corresponding to a false alarm probability
:math:`P_{false}`, it requires on order :math:`n_{boot} \approx 10/P_{false}`
individual periodograms to be computed for the dataset.
.. doctest-requires:: scipy
>>> ls.false_alarm_probability(power.max(), method='bootstrap') # doctest: +SKIP
np.float64(0.0030000000000000027)
- ``method="davies"`` is related to the Baluev method, but loses accuracy
at large false alarm probabilities.
.. doctest-requires:: scipy
>>> ls.false_alarm_probability(power.max(), method='davies') # doctest: +FLOAT_CMP
np.float64(0.029387277355227746)
- ``method="naive"`` is a basic method based on the assumption that
well-separated areas in the periodogram are independent. In general, it
provides a very poor estimate of the false alarm probability and should
not be used in practice, but is included for completeness.
.. doctest-requires:: scipy
>>> ls.false_alarm_probability(power.max(), method='naive') # doctest: +FLOAT_CMP
np.float64(0.00810080828660202)
The following figure compares these false alarm estimates at a range of
peak heights for 100 observations with a heavily aliased observing pattern:
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.timeseries import LombScargle
rng = np.random.default_rng(42)
N = 100
t = 5 * rng.random(N)
t -= 0.5 * (t % 1) # create alias-inducing structure in the window function
dy = 0.5 * (1 + rng.random(N))
y = dy * rng.standard_normal(N)
ls = LombScargle(t, y, dy, normalization='standard')
z = np.linspace(1E-3, 0.15, 1000)
def false_alarm(method):
return ls.false_alarm_probability(z, method=method, maximum_frequency=5)
fa_boot = ls.false_alarm_probability(z, method='bootstrap',
maximum_frequency=5,
method_kwds=dict(random_seed=42))
fig, ax = plt.subplots(figsize=(6, 4.5))
ax.plot(z, false_alarm('naive'), label='naive estimate')
ax.plot(z, false_alarm('baluev'), label='Baluev estimate')
ax.plot(z, false_alarm('davies'), ':k', label='Davies bound')
ax.plot(z, fa_boot, '-k', label='bootstrap estimate')
ax.legend(loc='lower left')
ax.set(yscale='log',
title='False Alarm Estimates (N=100)',
xlim=(0, 0.15), ylim=(0.01, 1.5),
xlabel='Value of Highest Periodogram Peak',
ylabel='False Alarm Probability');
In general, users should use the bootstrap approach when computationally
feasible, and the Baluev approach otherwise.
In all of this, it is important to keep in mind a few caveats:
- False alarm probabilities are computed relative to a particular set of
observing times, and a particular choice of frequency grid.
- False alarm probabilities are conditioned upon the null hypothesis of
data with no periodic component, and in particular say nothing
quantitative about whether the data are actually consistent with a
periodic model.
- False alarm probabilities are not related to the question of whether the
highest peak in a periodogram is the *correct* peak, and in particular
are not especially useful in the case of observations with a strong
aliasing pattern.
For a detailed discussion of these caveats and others when computing and
interpreting false alarm probabilities, please refer to [11]_.
Periodogram Algorithms
======================
The :class:`~astropy.timeseries.LombScargle` class makes available
several complementary implementations of the Lomb-Scargle periodogram,
which can be selected using the ``method`` keyword of the Lomb-Scargle power.
By design all methods will return the same results (some approximate),
and each has its advantages and disadvantages.
For example, to compute a periodogram using the Fast Chi-squared method
of Palmer (2009) [9]_, you can specify ``method='fastchi2'``:
>>> frequency, power = LombScargle(t, y).autopower(method='fastchi2')
There are currently six methods available in the package:
``method='auto'``
-----------------
The ``auto`` method is the default, and will attempt to select the best option
from the following methods using heuristics driven by the input data.
``method='slow'``
-----------------
The ``slow`` method is a pure Python implementation of the original Lomb-Scargle
periodogram ([1]_, [2]_), enhanced to account for observational noise,
and to allow a floating mean (sometimes called the *generalized periodogram*;
see [10]_). The method is not particularly fast, scaling approximately
as :math:`O[NM]` for :math:`N` data points and :math:`M` frequencies.
``method='cython'``
-------------------
The ``cython`` method is a Cython implementation of the same algorithm used for
``method='slow'``. It is slightly faster than the pure Python implementation,
but much more memory-efficient as the size of the inputs grow. The computational
scaling is approximately :math:`O[NM]` for :math:`N` data points and
:math:`M` frequencies.
``method='scipy'``
------------------
The ``scipy`` method wraps the C implementation of the original Lomb-Scargle
periodogram which is available in :func:`scipy.signal.lombscargle`. This is
slightly faster than the ``slow`` method, but does not allow for errors in
data or extensions such as the floating mean. The scaling is approximately
:math:`O[NM]` for :math:`N` data points and :math:`M` frequencies.
``method='fast'``
-----------------
The ``fast`` method is a pure Python implementation of the fast periodogram of
Press & Rybicki [3]_. It uses an *extrapolation* approach to approximate the
periodogram frequencies using a fast Fourier transform. As with the ``slow``
method, it can handle data errors and floating mean. The scaling is
approximately :math:`O[N\log M]` for :math:`N` data points and :math:`M`
frequencies. The fast algorithm trades accuracy for speed, and produces a close
approximation to the true periodogram. In particular, you may observe powers
less than zero in some cases.
``method='chi2'``
-----------------
The ``chi2`` method is a pure Python implementation based on matrix algebra
(see [7]_). It utilizes the fact that the Lomb-Scargle periodogram at
each frequency is equivalent to the least-squares fit of a sinusoid to the
data. The advantage of the ``chi2`` method is that it allows extensions of
the periodogram to multiple Fourier terms, specified by the ``nterms``
parameter. For the standard problem, it is slightly slower than
``method='slow'`` and scales as :math:`O[n_fNM]` for :math:`N` data points,
:math:`M` frequencies, and :math:`n_f` Fourier terms.
``method='fastchi2'``
---------------------
The Fast Chi-squared method of Palmer (2009) [9]_ is equivalent to the ``chi2``
method, but the matrices are constructed using an FFT-based approach similar to
that of the ``fast`` method. The result is a relatively efficient periodogram
(though not nearly as efficient as the ``fast`` method) which can be extended to
multiple terms. The scaling is approximately :math:`O[n_f(M + N\log M)]` for
:math:`N` data points, :math:`M` frequencies, and :math:`n_f` Fourier terms.
Summary
-------
The following table summarizes the features of the above algorithms:
============== ============================ ============= =============== ========
Method Computational Observational Bias Term Multiple
Scaling Uncertainties (Floating Mean) Terms
============== ============================ ============= =============== ========
``"slow"`` :math:`O[NM]` Yes Yes No
``"cython"`` :math:`O[NM]` Yes Yes No
``"scipy"`` :math:`O[NM]` No No No
``"fast"`` :math:`O[N\log M]` Yes Yes No
``"chi2"`` :math:`O[n_fNM]` Yes Yes Yes
``"fastchi2"`` :math:`O[n_f(M + N\log M)]` Yes Yes Yes
============== ============================ ============= =============== ========
In the Computational Scaling column, :math:`N` is the number of data points,
:math:`M` is the number of frequencies, and :math:`n_f` is the number of
Fourier terms for a multi-term fit.
.. _lomb-scargle-example:
RR Lyrae Example
================
.. EXAMPLE START: Computing a Periodogram for RR Lyrae Data
An example of computing the periodogram for a more realistic dataset is shown in
the following figure. The data here consists of 50 nightly observations of a
simulated RR Lyrae-like variable star, with a lightcurve shape that is more
complicated than a simple sine wave:
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from astropy.timeseries import LombScargle
def simulated_data(N, rseed=2, period=0.41, phase=0.0):
"""Simulate data based from a pre-computed empirical fit"""
# coefficients from a 5-term Fourier fit to SDSS object 1019544
coeffs = [-0.0191, 0.1375, -0.1968, 0.0959, 0.075,
-0.0686, 0.0307, -0.0045, -0.0421, 0.0216, 0.0041]
rand = np.random.default_rng(rseed)
t = phase + np.arange(N, dtype=float)
t += 0.1 * rand.standard_normal(N)
dmag = 0.01 + 0.03 * rand.random(N)
omega = 2 * np.pi / period
n = np.arange(1 + len(coeffs) // 2)[:, None]
mag = (15 + dmag * rand.standard_normal(N)
+ np.dot(coeffs[::2], np.cos(n * omega * t)) +
+ np.dot(coeffs[1::2], np.sin(n[1:] * omega * t)))
return t, mag, dmag
# generate data and compute the periodogram
t, mag, dmag = simulated_data(50)
ls = LombScargle(t, mag, dmag, normalization='standard')
freq, PLS = ls.autopower(minimum_frequency=1 / 1.2,
maximum_frequency=1 / 0.2)
best_freq = freq[np.argmax(PLS)]
phase = (t * best_freq) % 1
# compute the best-fit model
phase_fit = np.linspace(0, 1)
mag_fit = ls.model(t=phase_fit / best_freq,
frequency=best_freq)
# set up the figure & axes for plotting
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
fig.suptitle('Lomb-Scargle Periodogram (period=0.41 days)')
fig.subplots_adjust(bottom=0.12, left=0.07, right=0.95)
inset = fig.add_axes([0.78, 0.56, 0.15, 0.3])
# plot the raw data
ax[0].errorbar(t, mag, dmag, fmt='ok', elinewidth=1.5, capsize=0)
ax[0].invert_yaxis()
ax[0].set(xlim=(0, 50),
xlabel='Observation time (days)',
ylabel='Observed Magnitude')
# plot the periodogram
ax[1].plot(1. / freq, PLS)
ax[1].set(xlabel='period (days)',
ylabel='Lomb-Scargle Power',
xlim=(0.2, 1.2),
ylim=(0, 1));
# plot the false-alarm levels
z_false = ls.false_alarm_level(0.01, maximum_frequency=1 / 0.2,
method='baluev')
ax[1].axhline(z_false, linestyle='dotted', color='black')
# plot the phased data & model in the inset
inset.errorbar(phase, mag, dmag, fmt='.k', capsize=0)
inset.plot(phase_fit, mag_fit)
inset.invert_yaxis()
inset.set_xlabel('phase')
inset.set_ylabel('mag')
The dotted line shows the periodogram level corresponding to a maximum peak
false alarm probability of 1%. This example demonstrates that for irregularly
sampled data, the Lomb-Scargle periodogram can be sensitive to frequencies
higher than the average Nyquist frequency: the above data are sampled at an
average rate of roughly one observation per night, and the periodogram
relatively cleanly reveals the true period of 0.41 days.
Still, the periodogram has many spurious peaks, which are due to several
factors:
1. Errors in observations lead to leakage of power from the true peaks.
2. The signal is not a perfect sinusoid, so additional peaks can indicate
higher frequency components in the signal.
3. The observations take place only at night, meaning that the survey window has
non-negligible power at a frequency of 1 cycle per day. Thus we expect
aliases to appear at :math:`f_{\rm alias} = f_{\rm true} + n f_{\rm window}`
for integer values of :math:`n`. With a true period of 0.41 days and a 1-day
signal in the observing window, the :math:`n=+1` and :math:`n=-1` aliases to
lie at periods of 0.29 and 0.69 days, respectively: these aliases are
prominent in the above plot.
The interaction of these effects means that in practice there is no absolute
guarantee that the highest peak corresponds to the best frequency, and results
must be interpreted carefully. For a detailed discussion of these effects, see
[11]_.
.. EXAMPLE END
Literature References
=====================
.. [1] Lomb, N.R. *Least-squares frequency analysis of unequally spaced data*.
Ap&SS 39 pp. 447-462 (1976)
.. [2] Scargle, J. D. *Studies in astronomical time series analysis. II -
Statistical aspects of spectral analysis of unevenly spaced data*.
ApJ 1:263 pp. 835-853 (1982)
.. [3] Press W.H. and Rybicki, G.B, *Fast algorithm for spectral analysis
of unevenly sampled data*. ApJ 1:338, p. 277 (1989)
.. [4] Vanderplas, J., Connolly, A. Ivezic, Z. & Gray, A. *Introduction to
astroML: Machine learning for astrophysics*. Proceedings of the
Conference on Intelligent Data Understanding (2012)
.. [5] Vanderplas, J., Connolly, A. Ivezic, Z. & Gray, A. *Statistics,
Data Mining and Machine Learning in Astronomy*. Princeton Press (2014)}
.. [6] VanderPlas, J. *Gatspy: General Tools for Astronomical Time Series
in Python* (2015) https://zenodo.org/record/14833
.. [7] VanderPlas, J. & Ivezic, Z. *Periodograms for Multiband Astronomical
Time Series*. ApJ 812.1:18 (2015)
.. [8] Baluev, R.V. *Assessing Statistical Significance of Periodogram Peaks*
MNRAS 385, 1279 (2008)
.. [9] Palmer, D. *A Fast Chi-squared Technique for Period Search of
Irregularly Sampled Data*. ApJ 695.1:496 (2009)
.. [10] Zechmeister, M. and Kurster, M. *The generalised Lomb-Scargle
periodogram. A new formalism for the floating-mean and Keplerian
periodograms*, A&A 496, 577-584 (2009)
.. [11] VanderPlas, J. *Understanding the Lomb-Scargle Periodogram*
ApJS 236.1:16 (2018)
https://ui.adsabs.harvard.edu/abs/2018ApJS..236...16V
|