1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
.. _logarithmic_units:
Magnitudes and Other Logarithmic Units
**************************************
Magnitudes and logarithmic units such as ``dex`` and ``dB`` are used as the
logarithm of values relative to some reference value. Quantities with such
units are supported in ``astropy`` via the :class:`~astropy.units.Magnitude`,
:class:`~astropy.units.Dex`, and :class:`~astropy.units.Decibel` classes.
Creating Logarithmic Quantities
===============================
You can create logarithmic quantities either directly or by multiplication with
a logarithmic unit.
Example
-------
.. EXAMPLE START: Creating Logarithmic Quantities
To create a logarithmic quantity::
>>> import astropy.units as u, astropy.constants as c, numpy as np
>>> u.Magnitude(-10.) # doctest: +FLOAT_CMP
<Magnitude -10. mag>
>>> u.Magnitude(10 * u.ct / u.s) # doctest: +FLOAT_CMP
<Magnitude -2.5 mag(ct / s)>
>>> u.Magnitude(-2.5, "mag(ct/s)") # doctest: +FLOAT_CMP
<Magnitude -2.5 mag(ct / s)>
>>> -2.5 * u.mag(u.ct / u.s) # doctest: +FLOAT_CMP
<Magnitude -2.5 mag(ct / s)>
>>> u.Dex((c.G * u.M_sun / u.R_sun**2).cgs) # doctest: +FLOAT_CMP
<Dex 4.438067627303133 dex(cm / s2)>
>>> np.linspace(2., 5., 7) * u.Unit("dex(cm/s2)") # doctest: +FLOAT_CMP
<Dex [2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ] dex(cm / s2)>
Above, we make use of the fact that the units ``mag``, ``dex``, and
``dB`` are special in that, when used as functions, they return a
:class:`~astropy.units.LogUnit` instance
(:class:`~astropy.units.MagUnit`,
:class:`~astropy.units.DexUnit`, and
:class:`~astropy.units.DecibelUnit`,
respectively). The same happens as required when strings are parsed
by :class:`~astropy.units.Unit`.
.. EXAMPLE END
As for normal |Quantity| objects, you can access the value with the
`~astropy.units.Quantity.value` attribute. In addition, you can convert to a
|Quantity| with the physical unit using the
`~astropy.units.FunctionQuantity.physical` attribute::
>>> logg = 5. * u.dex(u.cm / u.s**2)
>>> logg.value
np.float64(5.0)
>>> logg.physical # doctest: +FLOAT_CMP
<Quantity 100000. cm / s2>
Converting to Different Units
=============================
Like |Quantity| objects, logarithmic quantities can be converted to different
units, be it another logarithmic unit or a physical one.
Example
-------
.. EXAMPLE START: Converting Logarithmic Quantities to Different Units
To convert a logarithmic quantity to a different unit::
>>> logg = 5. * u.dex(u.cm / u.s**2)
>>> logg.to(u.m / u.s**2) # doctest: +FLOAT_CMP
<Quantity 1000. m / s2>
>>> logg.to('dex(m/s2)') # doctest: +FLOAT_CMP
<Dex 3. dex(m / s2)>
For convenience, the :attr:`~astropy.units.FunctionQuantity.si` and
:attr:`~astropy.units.FunctionQuantity.cgs` attributes can be used to
convert the |Quantity| to base `SI
<https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf>`_ or `CGS
<https://en.wikipedia.org/wiki/Centimetre-gram-second_system_of_units>`_
units::
>>> logg.si # doctest: +FLOAT_CMP
<Dex 3. dex(m / s2)>
.. EXAMPLE END
Arithmetic and Photometric Applications
=======================================
Addition and subtraction work as expected for logarithmic quantities,
multiplying and dividing the physical units as appropriate. It may be best
seen through an example of a photometric reduction.
Example
-------
.. EXAMPLE START: Photometric Reduction with Logarithmic Quantities
First, calculate instrumental magnitudes assuming some count rates for three
objects::
>>> tint = 1000.*u.s
>>> cr_b = ([3000., 100., 15.] * u.ct) / tint
>>> cr_v = ([4000., 90., 25.] * u.ct) / tint
>>> b_i, v_i = u.Magnitude(cr_b), u.Magnitude(cr_v)
>>> b_i, v_i # doctest: +FLOAT_CMP
(<Magnitude [-1.19280314, 2.5 , 4.55977185] mag(ct / s)>,
<Magnitude [-1.50514998, 2.61439373, 4.00514998] mag(ct / s)>)
Then, the instrumental B-V color is::
>>> b_i - v_i # doctest: +FLOAT_CMP
<Magnitude [ 0.31234684, -0.11439373, 0.55462187] mag>
Note that the physical unit has become dimensionless. The following step might
be used to correct for atmospheric extinction::
>>> atm_ext_b, atm_ext_v = 0.12 * u.mag, 0.08 * u.mag
>>> secz = 1./np.cos(45 * u.deg)
>>> b_i0 = b_i - atm_ext_b * secz
>>> v_i0 = v_i - atm_ext_b * secz
>>> b_i0, v_i0 # doctest: +FLOAT_CMP
(<Magnitude [-1.36250876, 2.33029437, 4.39006622] mag(ct / s)>,
<Magnitude [-1.67485561, 2.4446881 , 3.83544435] mag(ct / s)>)
Since the extinction is dimensionless, the units do not change. Now suppose the
first star has a known ST magnitude, so we can calculate zero points::
>>> b_ref, v_ref = 17.2 * u.STmag, 17.0 * u.STmag
>>> b_ref, v_ref # doctest: +FLOAT_CMP
(<Magnitude 17.2 mag(ST)>, <Magnitude 17. mag(ST)>)
>>> zp_b, zp_v = b_ref - b_i0[0], v_ref - v_i0[0]
>>> zp_b, zp_v # doctest: +FLOAT_CMP
(<Magnitude 18.56250876 mag(ST s / ct)>,
<Magnitude 18.67485561 mag(ST s / ct)>)
Here, ``ST`` is shorthand for the ST zero-point flux::
>>> (0. * u.STmag).to(u.erg/u.s/u.cm**2/u.AA) # doctest: +FLOAT_CMP
<Quantity 3.63078055e-09 erg / (Angstrom s cm2)>
>>> (-21.1 * u.STmag).to(u.erg/u.s/u.cm**2/u.AA) # doctest: +FLOAT_CMP
<Quantity 1. erg / (Angstrom s cm2)>
.. Note::
At present, only magnitudes defined in terms of luminosity or flux are
implemented, since those do not depend on the filter with which the
measurement was made. They include absolute and apparent bolometric [M15]_,
ST [H95]_, and AB [OG83]_ magnitudes.
Now applying the calibration, we find (note the proper change in units)::
>>> B, V = b_i0 + zp_b, v_i0 + zp_v
>>> B, V # doctest: +FLOAT_CMP
(<Magnitude [17.2 , 20.89280314, 22.95257499] mag(ST)>,
<Magnitude [17. , 21.1195437 , 22.51029996] mag(ST)>)
We could convert these magnitudes to another system, for example, ABMag, using
appropriate :ref:`equivalency <unit_equivalencies>`::
>>> V.to(u.ABmag, u.spectral_density(5500.*u.AA)) # doctest: +FLOAT_CMP
<Magnitude [16.99023831, 21.10978201, 22.50053827] mag(AB)>
This is particularly useful for converting magnitude into flux density. ``V``
is currently in ST magnitudes, which is based on flux densities per unit
wavelength (:math:`f_\lambda`). Therefore, we can directly convert ``V`` into
flux density per unit wavelength using the
:meth:`~astropy.units.quantity.Quantity.to` method::
>>> flam = V.to(u.erg/u.s/u.cm**2/u.AA)
>>> flam # doctest: +FLOAT_CMP
<Quantity [5.75439937e-16, 1.29473986e-17, 3.59649961e-18] erg / (Angstrom s cm2)>
To convert ``V`` to flux density per unit frequency (:math:`f_\nu`), we again
need the appropriate :ref:`equivalency <unit_equivalencies>`, which in this case
is the central wavelength of the magnitude band, 5500 Angstroms::
>>> lam = 5500 * u.AA
>>> fnu = V.to(u.erg/u.s/u.cm**2/u.Hz, u.spectral_density(lam))
>>> fnu # doctest: +FLOAT_CMP
<Quantity [5.80636959e-27, 1.30643316e-28, 3.62898099e-29] erg / (Hz s cm2)>
We could have used the central frequency instead::
>>> nu = 5.45077196e+14 * u.Hz
>>> fnu = V.to(u.erg/u.s/u.cm**2/u.Hz, u.spectral_density(nu))
>>> fnu # doctest: +FLOAT_CMP
<Quantity [5.80636959e-27, 1.30643316e-28, 3.62898099e-29] erg / (Hz s cm2)>
.. Note::
When converting magnitudes to flux densities, the order of operations
matters; the value of the unit needs to be established *before* the
conversion. For example, ``21 * u.ABmag.to(u.erg/u.s/u.cm**2/u.Hz)`` will
give you 21 times :math:`f_\nu` for an AB mag of 1, whereas ``(21 *
u.ABmag).to(u.erg/u.s/u.cm**2/u.Hz)`` will give you :math:`f_\nu` for an AB
mag of 21.
Suppose we also knew the intrinsic color of the first star, then we can
calculate the reddening::
>>> B_V0 = -0.2 * u.mag
>>> EB_V = (B - V)[0] - B_V0
>>> R_V = 3.1
>>> A_V = R_V * EB_V
>>> A_B = (R_V+1) * EB_V
>>> EB_V, A_V, A_B # doctest: +FLOAT_CMP
(<Magnitude 0.4 mag>, <Magnitude 1.24 mag>, <Magnitude 1.64 mag>)
Here, you see that the extinctions have been converted to quantities. This
happens generally for division and multiplication, since these processes
work only for dimensionless magnitudes (otherwise, the physical unit would have
to be raised to some power), and |Quantity| objects, unlike logarithmic
quantities, allow units like ``mag / d``.
.. EXAMPLE END
Note that you can take the automatic unit conversion quite far (perhaps too
far, but it is fun). For instance, suppose we also knew the bolometric
correction and absolute bolometric magnitude, then we can calculate the
distance modulus::
>>> BC_V = -0.3 * (u.m_bol - u.STmag)
>>> M_bol = 5.46 * u.M_bol
>>> DM = V[0] - A_V + BC_V - M_bol
>>> BC_V, M_bol, DM # doctest: +FLOAT_CMP
(<Magnitude -0.3 mag(bol / ST)>,
<Magnitude 5.46 mag(Bol)>,
<Magnitude 10. mag(bol / Bol)>)
With a proper :ref:`equivalency <unit_equivalencies>`, we can also convert to
distance without remembering the 5-5log rule (but you might find the
:class:`~astropy.coordinates.Distance` class to be even more convenient)::
>>> radius_and_inverse_area = [(u.pc, u.pc**-2,
... lambda x: 1./(4.*np.pi*x**2),
... lambda x: np.sqrt(1./(4.*np.pi*x)))]
>>> DM.to(u.pc, equivalencies=radius_and_inverse_area) # doctest: +FLOAT_CMP
<Quantity 1000. pc>
NumPy Functions
===============
For logarithmic quantities, most ``numpy`` functions and many array methods do
not make sense, hence they are disabled. But you can use those you would expect
to work::
>>> np.max(v_i) # doctest: +FLOAT_CMP
<Magnitude 4.00514998 mag(ct / s)>
>>> np.std(v_i) # doctest: +FLOAT_CMP
<Magnitude 2.33971149 mag>
.. note::
This is implemented by having a list of supported ufuncs in
``units/function/core.py`` and by explicitly disabling some array methods in
:class:`~astropy.units.FunctionQuantity`. If you believe a
function or method is incorrectly treated, please `let us know
<http://www.astropy.org/contribute.html>`_.
Dimensionless Logarithmic Quantities
====================================
Dimensionless quantities are treated somewhat specially in that, if needed,
logarithmic quantities will be converted to normal |Quantity| objects with the
appropriate unit of ``mag``, ``dB``, or ``dex``. With this, it is possible to
use composite units like ``mag/d`` or ``dB/m``, which cannot conveniently be
supported as logarithmic units. For instance::
>>> dBm = u.dB(u.mW)
>>> signal_in, signal_out = 100. * dBm, 50 * dBm
>>> cable_loss = (signal_in - signal_out) / (100. * u.m)
>>> signal_in, signal_out, cable_loss # doctest: +FLOAT_CMP
(<Decibel 100. dB(mW)>, <Decibel 50. dB(mW)>, <Quantity 0.5 dB / m>)
>>> better_cable_loss = 0.2 * u.dB / u.m
>>> signal_in - better_cable_loss * 100. * u.m # doctest: +FLOAT_CMP
<Decibel 80. dB(mW)>
**References**
.. [M15] Mamajek et al., 2015, `arXiv:1510.06262
<https://ui.adsabs.harvard.edu/abs/2015arXiv151006262M>`_
.. [H95] E.g., Holtzman et al., 1995, `PASP 107, 1065
<https://ui.adsabs.harvard.edu/abs/1995PASP..107.1065H>`_
.. [OG83] Oke, J.B., & Gunn, J. E., 1983, `ApJ 266, 713
<https://ui.adsabs.harvard.edu/abs/1983ApJ...266..713O>`_
|