File: logarithmic_units.rst

package info (click to toggle)
astropy 7.0.1-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 35,328 kB
  • sloc: python: 233,437; ansic: 55,264; javascript: 17,680; lex: 8,621; sh: 3,317; xml: 2,287; makefile: 191
file content (290 lines) | stat: -rw-r--r-- 11,408 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
.. _logarithmic_units:

Magnitudes and Other Logarithmic Units
**************************************

Magnitudes and logarithmic units such as ``dex`` and ``dB`` are used as the
logarithm of values relative to some reference value. Quantities with such
units are supported in ``astropy`` via the :class:`~astropy.units.Magnitude`,
:class:`~astropy.units.Dex`, and :class:`~astropy.units.Decibel` classes.

Creating Logarithmic Quantities
===============================

You can create logarithmic quantities either directly or by multiplication with
a logarithmic unit.

Example
-------

.. EXAMPLE START: Creating Logarithmic Quantities

To create a logarithmic quantity::

  >>> import astropy.units as u, astropy.constants as c, numpy as np
  >>> u.Magnitude(-10.)  # doctest: +FLOAT_CMP
  <Magnitude -10. mag>
  >>> u.Magnitude(10 * u.ct / u.s)  # doctest: +FLOAT_CMP
  <Magnitude -2.5 mag(ct / s)>
  >>> u.Magnitude(-2.5, "mag(ct/s)")  # doctest: +FLOAT_CMP
  <Magnitude -2.5 mag(ct / s)>
  >>> -2.5 * u.mag(u.ct / u.s)  # doctest: +FLOAT_CMP
  <Magnitude -2.5 mag(ct / s)>
  >>> u.Dex((c.G * u.M_sun / u.R_sun**2).cgs)  # doctest: +FLOAT_CMP
  <Dex 4.438067627303133 dex(cm / s2)>
  >>> np.linspace(2., 5., 7) * u.Unit("dex(cm/s2)")  # doctest: +FLOAT_CMP
  <Dex [2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ] dex(cm / s2)>

Above, we make use of the fact that the units ``mag``, ``dex``, and
``dB`` are special in that, when used as functions, they return a
:class:`~astropy.units.LogUnit` instance
(:class:`~astropy.units.MagUnit`,
:class:`~astropy.units.DexUnit`, and
:class:`~astropy.units.DecibelUnit`,
respectively). The same happens as required when strings are parsed
by :class:`~astropy.units.Unit`.

.. EXAMPLE END

As for normal |Quantity| objects, you can access the value with the
`~astropy.units.Quantity.value` attribute. In addition, you can convert to a
|Quantity| with the physical unit using the
`~astropy.units.FunctionQuantity.physical` attribute::

    >>> logg = 5. * u.dex(u.cm / u.s**2)
    >>> logg.value
    np.float64(5.0)
    >>> logg.physical  # doctest: +FLOAT_CMP
    <Quantity 100000. cm / s2>

Converting to Different Units
=============================

Like |Quantity| objects, logarithmic quantities can be converted to different
units, be it another logarithmic unit or a physical one.

Example
-------

.. EXAMPLE START: Converting Logarithmic Quantities to Different Units

To convert a logarithmic quantity to a different unit::

    >>> logg = 5. * u.dex(u.cm / u.s**2)
    >>> logg.to(u.m / u.s**2)  # doctest: +FLOAT_CMP
    <Quantity 1000. m / s2>
    >>> logg.to('dex(m/s2)')  # doctest: +FLOAT_CMP
    <Dex 3. dex(m / s2)>

For convenience, the :attr:`~astropy.units.FunctionQuantity.si` and
:attr:`~astropy.units.FunctionQuantity.cgs` attributes can be used to
convert the |Quantity| to base `SI
<https://www.bipm.org/documents/20126/41483022/SI-Brochure-9-EN.pdf>`_ or `CGS
<https://en.wikipedia.org/wiki/Centimetre-gram-second_system_of_units>`_
units::

    >>> logg.si  # doctest: +FLOAT_CMP
    <Dex 3. dex(m / s2)>

.. EXAMPLE END

Arithmetic and Photometric Applications
=======================================

Addition and subtraction work as expected for logarithmic quantities,
multiplying and dividing the physical units as appropriate. It may be best
seen through an example of a photometric reduction.

Example
-------

.. EXAMPLE START: Photometric Reduction with Logarithmic Quantities

First, calculate instrumental magnitudes assuming some count rates for three
objects::

    >>> tint = 1000.*u.s
    >>> cr_b = ([3000., 100., 15.] * u.ct) / tint
    >>> cr_v = ([4000., 90., 25.] * u.ct) / tint
    >>> b_i, v_i = u.Magnitude(cr_b), u.Magnitude(cr_v)
    >>> b_i, v_i  # doctest: +FLOAT_CMP
    (<Magnitude [-1.19280314,  2.5       ,  4.55977185] mag(ct / s)>,
     <Magnitude [-1.50514998,  2.61439373,  4.00514998] mag(ct / s)>)

Then, the instrumental B-V color is::

    >>> b_i - v_i  # doctest: +FLOAT_CMP
    <Magnitude [ 0.31234684, -0.11439373,  0.55462187] mag>

Note that the physical unit has become dimensionless. The following step might
be used to correct for atmospheric extinction::

    >>> atm_ext_b, atm_ext_v = 0.12 * u.mag, 0.08 * u.mag
    >>> secz = 1./np.cos(45 * u.deg)
    >>> b_i0 = b_i - atm_ext_b * secz
    >>> v_i0 = v_i - atm_ext_b * secz
    >>> b_i0, v_i0  # doctest: +FLOAT_CMP
    (<Magnitude [-1.36250876,  2.33029437,  4.39006622] mag(ct / s)>,
     <Magnitude [-1.67485561,  2.4446881 ,  3.83544435] mag(ct / s)>)

Since the extinction is dimensionless, the units do not change. Now suppose the
first star has a known ST magnitude, so we can calculate zero points::

    >>> b_ref, v_ref = 17.2 * u.STmag, 17.0 * u.STmag
    >>> b_ref, v_ref  # doctest: +FLOAT_CMP
    (<Magnitude 17.2 mag(ST)>, <Magnitude 17. mag(ST)>)
    >>> zp_b, zp_v = b_ref - b_i0[0], v_ref - v_i0[0]
    >>> zp_b, zp_v  # doctest: +FLOAT_CMP
    (<Magnitude 18.56250876 mag(ST s / ct)>,
     <Magnitude 18.67485561 mag(ST s / ct)>)

Here, ``ST`` is shorthand for the ST zero-point flux::

    >>> (0. * u.STmag).to(u.erg/u.s/u.cm**2/u.AA)  # doctest: +FLOAT_CMP
    <Quantity 3.63078055e-09 erg / (Angstrom s cm2)>
    >>> (-21.1 * u.STmag).to(u.erg/u.s/u.cm**2/u.AA)  # doctest: +FLOAT_CMP
    <Quantity 1. erg / (Angstrom s cm2)>

.. Note::

    At present, only magnitudes defined in terms of luminosity or flux are
    implemented, since those do not depend on the filter with which the
    measurement was made. They include absolute and apparent bolometric [M15]_,
    ST [H95]_, and AB [OG83]_ magnitudes.

Now applying the calibration, we find (note the proper change in units)::

    >>> B, V = b_i0 + zp_b, v_i0 + zp_v
    >>> B, V  # doctest: +FLOAT_CMP
    (<Magnitude [17.2       , 20.89280314, 22.95257499] mag(ST)>,
     <Magnitude [17.        , 21.1195437 , 22.51029996] mag(ST)>)

We could convert these magnitudes to another system, for example, ABMag, using
appropriate :ref:`equivalency <unit_equivalencies>`::

    >>> V.to(u.ABmag, u.spectral_density(5500.*u.AA))  # doctest: +FLOAT_CMP
    <Magnitude [16.99023831, 21.10978201, 22.50053827] mag(AB)>

This is particularly useful for converting magnitude into flux density. ``V``
is currently in ST magnitudes, which is based on flux densities per unit
wavelength (:math:`f_\lambda`). Therefore, we can directly convert ``V`` into
flux density per unit wavelength using the
:meth:`~astropy.units.quantity.Quantity.to` method::

    >>> flam = V.to(u.erg/u.s/u.cm**2/u.AA)
    >>> flam  # doctest: +FLOAT_CMP
    <Quantity [5.75439937e-16, 1.29473986e-17, 3.59649961e-18] erg / (Angstrom s cm2)>

To convert ``V`` to flux density per unit frequency (:math:`f_\nu`), we again
need the appropriate :ref:`equivalency <unit_equivalencies>`, which in this case
is the central wavelength of the magnitude band, 5500 Angstroms::

    >>> lam = 5500 * u.AA
    >>> fnu = V.to(u.erg/u.s/u.cm**2/u.Hz, u.spectral_density(lam))
    >>> fnu  # doctest: +FLOAT_CMP
    <Quantity [5.80636959e-27, 1.30643316e-28, 3.62898099e-29] erg / (Hz s cm2)>

We could have used the central frequency instead::

    >>> nu = 5.45077196e+14 * u.Hz
    >>> fnu = V.to(u.erg/u.s/u.cm**2/u.Hz, u.spectral_density(nu))
    >>> fnu  # doctest: +FLOAT_CMP
    <Quantity [5.80636959e-27, 1.30643316e-28, 3.62898099e-29] erg / (Hz s cm2)>

.. Note::

    When converting magnitudes to flux densities, the order of operations
    matters; the value of the unit needs to be established *before* the
    conversion. For example, ``21 * u.ABmag.to(u.erg/u.s/u.cm**2/u.Hz)`` will
    give you 21 times :math:`f_\nu` for an AB mag of 1, whereas ``(21 *
    u.ABmag).to(u.erg/u.s/u.cm**2/u.Hz)`` will give you :math:`f_\nu` for an AB
    mag of 21.

Suppose we also knew the intrinsic color of the first star, then we can
calculate the reddening::

    >>> B_V0 = -0.2 * u.mag
    >>> EB_V = (B - V)[0] - B_V0
    >>> R_V = 3.1
    >>> A_V = R_V * EB_V
    >>> A_B = (R_V+1) * EB_V
    >>> EB_V, A_V, A_B  # doctest: +FLOAT_CMP
    (<Magnitude 0.4 mag>, <Magnitude 1.24 mag>, <Magnitude 1.64 mag>)

Here, you see that the extinctions have been converted to quantities. This
happens generally for division and multiplication, since these processes
work only for dimensionless magnitudes (otherwise, the physical unit would have
to be raised to some power), and |Quantity| objects, unlike logarithmic
quantities, allow units like ``mag / d``.

.. EXAMPLE END

Note that you can take the automatic unit conversion quite far (perhaps too
far, but it is fun). For instance, suppose we also knew the bolometric
correction and absolute bolometric magnitude, then we can calculate the
distance modulus::

    >>> BC_V = -0.3 * (u.m_bol - u.STmag)
    >>> M_bol = 5.46 * u.M_bol
    >>> DM = V[0] - A_V + BC_V - M_bol
    >>> BC_V, M_bol, DM  # doctest: +FLOAT_CMP
    (<Magnitude -0.3 mag(bol / ST)>,
     <Magnitude 5.46 mag(Bol)>,
     <Magnitude 10. mag(bol / Bol)>)

With a proper :ref:`equivalency <unit_equivalencies>`, we can also convert to
distance without remembering the 5-5log rule (but you might find the
:class:`~astropy.coordinates.Distance` class to be even more convenient)::

    >>> radius_and_inverse_area = [(u.pc, u.pc**-2,
    ...                            lambda x: 1./(4.*np.pi*x**2),
    ...                            lambda x: np.sqrt(1./(4.*np.pi*x)))]
    >>> DM.to(u.pc, equivalencies=radius_and_inverse_area)  # doctest: +FLOAT_CMP
    <Quantity 1000. pc>

NumPy Functions
===============

For logarithmic quantities, most ``numpy`` functions and many array methods do
not make sense, hence they are disabled. But you can use those you would expect
to work::

    >>> np.max(v_i)  # doctest: +FLOAT_CMP
    <Magnitude 4.00514998 mag(ct / s)>
    >>> np.std(v_i)  # doctest: +FLOAT_CMP
    <Magnitude 2.33971149 mag>

.. note::

    This is implemented by having a list of supported ufuncs in
    ``units/function/core.py`` and by explicitly disabling some array methods in
    :class:`~astropy.units.FunctionQuantity`.  If you believe a
    function or method is incorrectly treated, please `let us know
    <http://www.astropy.org/contribute.html>`_.

Dimensionless Logarithmic Quantities
====================================

Dimensionless quantities are treated somewhat specially in that, if needed,
logarithmic quantities will be converted to normal |Quantity| objects with the
appropriate unit of ``mag``, ``dB``, or ``dex``.  With this, it is possible to
use composite units like ``mag/d`` or ``dB/m``, which cannot conveniently be
supported as logarithmic units. For instance::

    >>> dBm = u.dB(u.mW)
    >>> signal_in, signal_out = 100. * dBm, 50 * dBm
    >>> cable_loss = (signal_in - signal_out) / (100. * u.m)
    >>> signal_in, signal_out, cable_loss  # doctest: +FLOAT_CMP
    (<Decibel 100. dB(mW)>, <Decibel 50. dB(mW)>, <Quantity 0.5 dB / m>)
    >>> better_cable_loss = 0.2 * u.dB / u.m
    >>> signal_in - better_cable_loss * 100. * u.m  # doctest: +FLOAT_CMP
    <Decibel 80. dB(mW)>

**References**

.. [M15] Mamajek et al., 2015, `arXiv:1510.06262
	  <https://ui.adsabs.harvard.edu/abs/2015arXiv151006262M>`_
.. [H95] E.g., Holtzman et al., 1995, `PASP 107, 1065
          <https://ui.adsabs.harvard.edu/abs/1995PASP..107.1065H>`_
.. [OG83] Oke, J.B., & Gunn, J. E., 1983, `ApJ 266, 713
	  <https://ui.adsabs.harvard.edu/abs/1983ApJ...266..713O>`_