1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
********************************
Overplotting markers and artists
********************************
The class :class:`~astropy.visualization.wcsaxes.WCSAxes` provides two handy methods:
:meth:`~astropy.visualization.wcsaxes.WCSAxes.plot_coord`,
:meth:`~astropy.visualization.wcsaxes.WCSAxes.scatter_coord`
Used to plots and scatter respectively :class:`~astropy.coordinates.SkyCoord` or :class:`~astropy.coordinates.BaseCoordinateFrame` coordinates on the axes. The ``transform`` keyword argument will be created based on the coordinate, specifying it here will throw a :class:`~TypeError`.
For the example in the following page we start from the example introduced in
:ref:`initialization`.
.. plot::
:context: reset
:nofigs:
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
import matplotlib.pyplot as plt
filename = get_pkg_data_filename('galactic_center/gc_msx_e.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header)
ax = plt.subplot(projection=wcs)
ax.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower')
Pixel coordinates
*****************
Apart from the handling of the ticks, tick labels, and grid lines, the
`~astropy.visualization.wcsaxes.WCSAxes` class behaves like a normal Matplotlib
``Axes`` instance, and methods such as
:meth:`~matplotlib.axes.Axes.imshow`,
:meth:`~matplotlib.axes.Axes.contour`,
:meth:`~matplotlib.axes.Axes.plot`,
:meth:`~matplotlib.axes.Axes.scatter`, and so on will work and plot the
data in **pixel coordinates** by default.
In the following example, the scatter markers and the rectangle will be plotted
in pixel coordinates:
.. plot::
:context:
:include-source:
:align: center
# The following line makes it so that the zoom level no longer changes,
# otherwise Matplotlib has a tendency to zoom out when adding overlays.
ax.set_autoscale_on(False)
# Add a rectangle with bottom left corner at pixel position (30, 50) with a
# width and height of 60 and 50 pixels respectively.
from matplotlib.patches import Rectangle
r = Rectangle((30., 50.), 60., 50., edgecolor='yellow', facecolor='none')
ax.add_patch(r)
# Add three markers at (40, 30), (100, 130), and (130, 60). The facecolor is
# a transparent white (0.5 is the alpha value).
ax.scatter([40, 100, 130], [30, 130, 60], s=100, edgecolor='white', facecolor=(1, 1, 1, 0.5))
World coordinates
*****************
All such Matplotlib commands allow a ``transform=`` argument to be passed,
which will transform the input from world to pixel coordinates before it is
passed to Matplotlib and plotted. For instance::
ax.scatter(..., transform=...)
will take the values passed to :meth:`~matplotlib.axes.Axes.scatter` and will
transform them using the transformation passed to ``transform=``, in order to
end up with the final pixel coordinates.
The `~astropy.visualization.wcsaxes.WCSAxes` class includes a :meth:`~astropy.visualization.wcsaxes.WCSAxes.get_transform`
method that can be used to get the appropriate transformation object to convert
from various world coordinate systems to the final pixel coordinate system
required by Matplotlib. The :meth:`~astropy.visualization.wcsaxes.WCSAxes.get_transform` method can
take a number of different inputs, which are described in this and subsequent
sections. The two simplest inputs to this method are ``'world'`` and
``'pixel'``.
For example, if your WCS defines an image where the coordinate system consists of an angle in degrees and a wavelength in nanometers, you can do::
ax.scatter([34], [3.2], transform=ax.get_transform('world'))
to plot a marker at (34deg, 3.2nm).
Using ``ax.get_transform('pixel')`` is equivalent to not using any
transformation at all (and things then behave as described in the `Pixel
coordinates`_ section).
Celestial coordinates
*********************
For the special case where the WCS represents celestial coordinates, a number
of other inputs can be passed to :meth:`~astropy.visualization.wcsaxes.WCSAxes.get_transform`. These
are:
* ``'fk4'``: B1950 FK4 equatorial coordinates
* ``'fk5'``: J2000 FK5 equatorial coordinates
* ``'icrs'``: ICRS equatorial coordinates
* ``'galactic'``: Galactic coordinates
In addition, any valid `astropy.coordinates` coordinate frame can be passed.
For example, you can add markers with positions defined in the FK5 system using:
.. plot::
:context: reset
:nofigs:
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
import matplotlib.pyplot as plt
filename = get_pkg_data_filename('galactic_center/gc_msx_e.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header)
ax = plt.subplot(projection=wcs)
ax.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower')
ax.set_autoscale_on(False)
.. plot::
:context:
:include-source:
:align: center
ax.scatter(266.78238, -28.769255, transform=ax.get_transform('fk5'), s=300,
edgecolor='white', facecolor='none')
In the case of :meth:`~matplotlib.axes.Axes.scatter` and :meth:`~matplotlib.axes.Axes.plot`, the positions of the center of the markers is transformed, but the markers themselves are drawn in the frame of reference of the image, which means that they will not look distorted.
Patches/shapes/lines
********************
Transformations can also be passed to Astropy or Matplotlib patches. For example, we can
use the :meth:`~astropy.visualization.wcsaxes.WCSAxes.get_transform` method above to plot a quadrangle
in FK5 equatorial coordinates:
.. plot::
:context: reset
:nofigs:
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
import matplotlib.pyplot as plt
filename = get_pkg_data_filename('galactic_center/gc_msx_e.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header)
ax = plt.subplot(projection=wcs)
ax.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower')
ax.set_autoscale_on(False)
.. plot::
:context:
:include-source:
:align: center
from astropy import units as u
from astropy.visualization.wcsaxes import Quadrangle
r = Quadrangle((266.0, -28.9)*u.deg, 0.3*u.deg, 0.15*u.deg,
edgecolor='green', facecolor='none',
transform=ax.get_transform('fk5'))
ax.add_patch(r)
In this case, the quadrangle will be plotted at FK5 J2000 coordinates (266deg, -28.9deg).
See the `Quadrangles`_ section for more information on `~astropy.visualization.wcsaxes.Quadrangle`.
However, it is **very important** to note that while the height will indeed be 0.15 degrees, the width will not strictly represent 0.3 degrees on the sky, but an interval of 0.3 degrees in longitude (which, depending on the latitude, will represent a different angle on the sky).
In other words, if the width and height are set to the same value, the resulting polygon will not be a square.
The same applies to the `~matplotlib.patches.Circle` patch, which will not actually produce a circle:
.. plot::
:context:
:include-source:
:align: center
from matplotlib.patches import Circle
r = Quadrangle((266.4, -28.9)*u.deg, 0.3*u.deg, 0.3*u.deg,
edgecolor='cyan', facecolor='none',
transform=ax.get_transform('fk5'))
ax.add_patch(r)
c = Circle((266.4, -29.1), 0.15, edgecolor='yellow', facecolor='none',
transform=ax.get_transform('fk5'))
ax.add_patch(c)
.. important:: If what you are interested is simply plotting circles around
sources to highlight them, then we recommend using
:meth:`~matplotlib.axes.Axes.scatter`, since for the circular
marker (the default), the circles will be guaranteed to be
circles in the plot, and only the position of the center is
transformed.
To plot 'true' spherical circles, see the `Spherical patches`_
section.
Quadrangles
***********
`~astropy.visualization.wcsaxes.Quadrangle` is the recommended patch for plotting a quadrangle, as opposed to Matplotlib's `~matplotlib.patches.Rectangle`.
The edges of a quadrangle lie on two lines of constant longitude and two lines of constant latitude (or the equivalent component names in the coordinate frame of interest, such as right ascension and declination).
The edges of `~astropy.visualization.wcsaxes.Quadrangle` will render as curved lines if appropriate for the WCS transformation.
In contrast, `~matplotlib.patches.Rectangle` will always have straight edges.
Here's a comparison of the two types of patches for plotting a quadrangle in `~astropy.coordinates.ICRS` coordinates on `~astropy.coordinates.Galactic` axes:
.. plot::
:context: reset
:nofigs:
from astropy import units as u
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
from astropy.visualization.wcsaxes import Quadrangle
import matplotlib.pyplot as plt
filename = get_pkg_data_filename('galactic_center/gc_msx_e.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header)
.. plot::
:context:
:include-source:
:align: center
from matplotlib.patches import Rectangle
# Set the Galactic axes such that the plot includes the ICRS south pole
ax = plt.subplot(projection=wcs)
ax.set_xlim(0, 10000)
ax.set_ylim(-10000, 0)
# Overlay the ICRS coordinate grid
overlay = ax.get_coords_overlay('icrs')
overlay.grid(color='black', ls='dotted')
# Add a quadrangle patch (100 degrees by 20 degrees)
q = Quadrangle((255, -70)*u.deg, 100*u.deg, 20*u.deg,
label='Quadrangle', edgecolor='blue', facecolor='none',
transform=ax.get_transform('icrs'))
ax.add_patch(q)
# Add a rectangle patch (100 degrees by 20 degrees)
r = Rectangle((255, -70), 100, 20,
label='Rectangle', edgecolor='red', facecolor='none', linestyle='--',
transform=ax.get_transform('icrs'))
ax.add_patch(r)
plt.legend(loc='upper right')
Contours
********
Overplotting contours is also simple using the
:meth:`~astropy.visualization.wcsaxes.WCSAxes.get_transform` method. For contours,
:meth:`~astropy.visualization.wcsaxes.WCSAxes.get_transform` should be given the WCS of the
image to plot the contours for:
.. plot::
:context: reset
:nofigs:
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
filename = get_pkg_data_filename('galactic_center/gc_msx_e.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header)
ax = plt.subplot(projection=wcs)
ax.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower')
ax.set_autoscale_on(False)
.. plot::
:context:
:include-source:
:align: center
filename = get_pkg_data_filename('galactic_center/gc_bolocam_gps.fits')
hdu = fits.open(filename)[0]
ax.contour(hdu.data, transform=ax.get_transform(WCS(hdu.header)),
levels=[1,2,3,4,5,6], colors='white')
Spherical patches
*****************
In the case where you are making a plot of a celestial image, and want to plot a circle that represents the area within a certain angle of a longitude/latitude,
the `~matplotlib.patches.Circle` patch is not appropriate, since it will result in a distorted shape (because longitude is not the same as the angle on the sky).
For this use case, you can instead use `~astropy.visualization.wcsaxes.SphericalCircle`, which takes a tuple of |Quantity| or a |SkyCoord| object as the input,
and a |Quantity| as the radius:
.. plot::
:context: reset
:nofigs:
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
import matplotlib.pyplot as plt
filename = get_pkg_data_filename('galactic_center/gc_msx_e.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header)
ax = plt.subplot(projection=wcs)
ax.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower')
ax.set_autoscale_on(False)
.. plot::
:context:
:include-source:
:align: center
from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.visualization.wcsaxes import SphericalCircle
r = SphericalCircle((266.4 * u.deg, -29.1 * u.deg), 0.15 * u.degree,
edgecolor='yellow', facecolor='none',
transform=ax.get_transform('fk5'))
ax.add_patch(r)
#The following lines show the usage of a SkyCoord object as the input.
skycoord_object = SkyCoord(266.4 * u.deg, -28.7 * u.deg)
s = SphericalCircle(skycoord_object, 0.15 * u.degree,
edgecolor='white', facecolor='none',
transform=ax.get_transform('fk5'))
ax.add_patch(s)
Beam shape and scale bar
************************
Adding an ellipse that represents the shape of the beam on a celestial
image can be done with the
:func:`~astropy.visualization.wcsaxes.add_beam` function:
.. plot::
:context: reset
:nofigs:
from astropy.wcs import WCS
from astropy.io import fits
from astropy.utils.data import get_pkg_data_filename
import matplotlib.pyplot as plt
filename = get_pkg_data_filename('galactic_center/gc_msx_e.fits')
hdu = fits.open(filename)[0]
wcs = WCS(hdu.header)
ax = plt.subplot(projection=wcs)
ax.imshow(hdu.data, vmin=-2.e-5, vmax=2.e-4, origin='lower')
ax.set_autoscale_on(False)
.. plot::
:context:
:include-source:
:align: center
from astropy import units as u
from astropy.visualization.wcsaxes import add_beam, add_scalebar
add_beam(ax, major=1.2 * u.arcmin, minor=1.2 * u.arcmin, angle=0, frame=True)
To add a segment that shows a physical scale, you can use the
:func:`~astropy.visualization.wcsaxes.add_scalebar` function:
.. plot::
:context:
:include-source:
:align: center
# Compute the angle corresponding to 10 pc at the distance of the galactic center
gc_distance = 8.2 * u.kpc
scalebar_length = 10 * u.pc
scalebar_angle = (scalebar_length / gc_distance).to(
u.deg, equivalencies=u.dimensionless_angles()
)
# Add a scale bar
add_scalebar(ax, scalebar_angle, label="10 pc", color="white")
|