File: test_models.py

package info (click to toggle)
astropy 7.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,832 kB
  • sloc: python: 238,140; ansic: 55,278; lex: 8,621; sh: 3,317; xml: 2,287; makefile: 191
file content (1231 lines) | stat: -rw-r--r-- 43,140 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
# Licensed under a 3-clause BSD style license - see LICENSE.rst:

"""
Tests for model evaluation.
Compare the results of some models with other programs.
"""

import unittest.mock as mk

import numpy as np

# pylint: disable=invalid-name, no-member
import pytest
from numpy.testing import assert_allclose, assert_equal

from astropy import units as u
from astropy.modeling import fitting, models
from astropy.modeling.bounding_box import ModelBoundingBox
from astropy.modeling.core import FittableModel, Model, _ModelMeta
from astropy.modeling.models import Gaussian2D
from astropy.modeling.parameters import InputParameterError, Parameter
from astropy.modeling.polynomial import PolynomialBase
from astropy.modeling.powerlaws import (
    BrokenPowerLaw1D,
    ExponentialCutoffPowerLaw1D,
    LogParabola1D,
    PowerLaw1D,
    SmoothlyBrokenPowerLaw1D,
)
from astropy.modeling.separable import separability_matrix
from astropy.tests.helper import assert_quantity_allclose
from astropy.utils import NumpyRNGContext
from astropy.utils.compat.optional_deps import HAS_SCIPY

from .example_models import models_1D, models_2D

fitters = [
    fitting.LevMarLSQFitter,
    fitting.TRFLSQFitter,
    fitting.LMLSQFitter,
    fitting.DogBoxLSQFitter,
]


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.parametrize("fitter", fitters)
def test_custom_model(fitter, amplitude=4, frequency=1):
    fitter = fitter()

    def sine_model(x, amplitude=4, frequency=1):
        """
        Model function
        """
        return amplitude * np.sin(2 * np.pi * frequency * x)

    def sine_deriv(x, amplitude=4, frequency=1):
        """
        Jacobian of model function, e.g. derivative of the function with
        respect to the *parameters*
        """
        da = np.sin(2 * np.pi * frequency * x)
        df = 2 * np.pi * x * amplitude * np.cos(2 * np.pi * frequency * x)
        return np.vstack((da, df))

    SineModel = models.custom_model(sine_model, fit_deriv=sine_deriv)

    x = np.linspace(0, 4, 50)
    sin_model = SineModel()

    sin_model.evaluate(x, 5.0, 2.0)
    sin_model.fit_deriv(x, 5.0, 2.0)

    np.random.seed(0)
    data = sin_model(x) + np.random.rand(len(x)) - 0.5
    model = fitter(sin_model, x, data)
    assert np.all(
        (
            np.array([model.amplitude.value, model.frequency.value])
            - np.array([amplitude, frequency])
        )
        < 0.001
    )


def test_custom_model_init():
    @models.custom_model
    def SineModel(x, amplitude=4, frequency=1):
        """Model function"""

        return amplitude * np.sin(2 * np.pi * frequency * x)

    sin_model = SineModel(amplitude=2.0, frequency=0.5)
    assert sin_model.amplitude == 2.0
    assert sin_model.frequency == 0.5


def test_custom_model_defaults():
    @models.custom_model
    def SineModel(x, amplitude=4, frequency=1):
        """Model function"""

        return amplitude * np.sin(2 * np.pi * frequency * x)

    sin_model = SineModel()
    assert SineModel.amplitude.default == 4
    assert SineModel.frequency.default == 1

    assert sin_model.amplitude == 4
    assert sin_model.frequency == 1


def test_inconsistent_input_shapes():
    g = Gaussian2D()
    x = np.arange(-1.0, 1, 0.2)
    y = x.copy()
    # check scalar input broadcasting works
    assert np.abs(g(x, 0) - g(x, 0 * x)).sum() == 0
    # and that array broadcasting works
    x.shape = (10, 1)
    y.shape = (1, 10)
    result = g(x, y)
    assert result.shape == (10, 10)
    # incompatible shapes do _not_ work
    g = Gaussian2D()
    x = np.arange(-1.0, 1, 0.2)
    y = np.arange(-1.0, 1, 0.1)
    with pytest.raises(ValueError, match="broadcast"):
        g(x, y)


def test_custom_model_bounding_box():
    """Test bounding box evaluation for a 3D model"""

    def ellipsoid(x, y, z, x0=13, y0=10, z0=8, a=4, b=3, c=2, amp=1):
        rsq = ((x - x0) / a) ** 2 + ((y - y0) / b) ** 2 + ((z - z0) / c) ** 2
        val = (rsq < 1) * amp
        return val

    class Ellipsoid3D(models.custom_model(ellipsoid)):
        @property
        def bounding_box(self):
            return (
                (self.z0 - self.c, self.z0 + self.c),
                (self.y0 - self.b, self.y0 + self.b),
                (self.x0 - self.a, self.x0 + self.a),
            )

    model = Ellipsoid3D()
    bbox = model.bounding_box

    zlim, ylim, xlim = bbox.bounding_box()
    dz, dy, dx = (np.diff(bbox) / 2).ravel()
    z1, y1, x1 = np.mgrid[
        slice(zlim[0], zlim[1] + 1),
        slice(ylim[0], ylim[1] + 1),
        slice(xlim[0], xlim[1] + 1),
    ]
    z2, y2, x2 = np.mgrid[
        slice(zlim[0] - dz, zlim[1] + dz + 1),
        slice(ylim[0] - dy, ylim[1] + dy + 1),
        slice(xlim[0] - dx, xlim[1] + dx + 1),
    ]

    arr = model(x2, y2, z2, with_bounding_box=True)
    sub_arr = model(x1, y1, z1, with_bounding_box=True)

    # check for flux agreement
    assert abs(np.nansum(arr) - np.nansum(sub_arr)) < np.nansum(arr) * 1e-7


class Fittable2DModelTester:
    """
    Test class for all two dimensional parametric models.

    Test values have to be defined in example_models.py. It currently test the
    model with different input types, evaluates the model at different
    positions and assures that it gives the correct values. And tests if the
    model works with non-linear fitters.

    This can be used as a base class for user defined model testing.
    """

    def setup_class(self):
        self.N = 100
        self.M = 100
        self.eval_error = 0.0001
        self.fit_error = 0.1
        self.x = 5.3
        self.y = 6.7
        self.x1 = np.arange(1, 10, 0.1)
        self.y1 = np.arange(1, 10, 0.1)
        self.y2, self.x2 = np.mgrid[:10, :8]

    def test_input2D(self, model_class, test_parameters):
        """Test model with different input types."""

        model = create_model(model_class, test_parameters)
        model(self.x, self.y)
        model(self.x1, self.y1)
        model(self.x2, self.y2)

    def test_eval2D(self, model_class, test_parameters):
        """Test model values add certain given points"""

        model = create_model(model_class, test_parameters)
        x = test_parameters["x_values"]
        y = test_parameters["y_values"]
        z = test_parameters["z_values"]
        assert np.all(np.abs(model(x, y) - z) < self.eval_error)

    def test_bounding_box2D(self, model_class, test_parameters):
        """Test bounding box evaluation"""

        model = create_model(model_class, test_parameters)

        # testing setter
        model.bounding_box = ((-5, 5), (-5, 5))
        assert model.bounding_box == ((-5, 5), (-5, 5))

        model.bounding_box = None
        MESSAGE = r"No bounding box is defined for this model .*"
        with pytest.raises(NotImplementedError, match=MESSAGE):
            model.bounding_box

        # test the exception of dimensions don't match
        MESSAGE = r"An interval must be some sort of sequence of length 2"
        with pytest.raises(ValueError, match=MESSAGE):
            model.bounding_box = (-5, 5)

        del model.bounding_box

        try:
            bbox = model.bounding_box
        except NotImplementedError:
            return

        ddx = 0.01
        ylim, xlim = bbox
        x1 = np.arange(xlim[0], xlim[1], ddx)
        y1 = np.arange(ylim[0], ylim[1], ddx)

        x2 = np.concatenate(
            (
                [xlim[0] - idx * ddx for idx in range(10, 0, -1)],
                x1,
                [xlim[1] + idx * ddx for idx in range(1, 10)],
            )
        )
        y2 = np.concatenate(
            (
                [ylim[0] - idx * ddx for idx in range(10, 0, -1)],
                y1,
                [ylim[1] + idx * ddx for idx in range(1, 10)],
            )
        )

        inside_bbox = model(x1, y1)
        outside_bbox = model(x2, y2, with_bounding_box=True)
        outside_bbox = outside_bbox[~np.isnan(outside_bbox)]

        assert np.all(inside_bbox == outside_bbox)

    def test_bounding_box2D_peak(self, model_class, test_parameters):
        if not test_parameters.pop("bbox_peak", False):
            return

        model = create_model(model_class, test_parameters)
        bbox = model.bounding_box

        ylim, xlim = bbox
        dy, dx = (np.diff(bbox) / 2).ravel()
        y1, x1 = np.mgrid[slice(ylim[0], ylim[1] + 1), slice(xlim[0], xlim[1] + 1)]
        y2, x2 = np.mgrid[
            slice(ylim[0] - dy, ylim[1] + dy + 1), slice(xlim[0] - dx, xlim[1] + dx + 1)
        ]

        arr = model(x2, y2)
        sub_arr = model(x1, y1)

        # check for flux agreement
        assert abs(arr.sum() - sub_arr.sum()) < arr.sum() * 1e-7

    @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
    @pytest.mark.parametrize("fitter", fitters)
    def test_fitter2D(self, model_class, test_parameters, fitter):
        """Test if the parametric model works with the fitter."""
        fitter = fitter()

        x_lim = test_parameters["x_lim"]
        y_lim = test_parameters["y_lim"]

        parameters = test_parameters["parameters"]
        model = create_model(model_class, test_parameters)

        if model.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
            pytest.skip("The LMLSQFitter fitter does not support models with bounds")

        if isinstance(parameters, dict):
            parameters = [parameters[name] for name in model.param_names]

        if "log_fit" in test_parameters:
            if test_parameters["log_fit"]:
                x = np.logspace(x_lim[0], x_lim[1], self.N)
                y = np.logspace(y_lim[0], y_lim[1], self.N)
        else:
            x = np.linspace(x_lim[0], x_lim[1], self.N)
            y = np.linspace(y_lim[0], y_lim[1], self.N)
        xv, yv = np.meshgrid(x, y)

        np.random.seed(0)
        # add 10% noise to the amplitude
        noise = np.random.rand(self.N, self.N) - 0.5
        data = model(xv, yv) + 0.1 * parameters[0] * noise
        new_model = fitter(model, xv, yv, data)

        params = [getattr(new_model, name) for name in new_model.param_names]
        fixed = [param.fixed for param in params]
        expected = np.array([val for val, fixed in zip(parameters, fixed) if not fixed])
        fitted = np.array([param.value for param in params if not param.fixed])
        assert_allclose(fitted, expected, atol=self.fit_error)

    @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
    @pytest.mark.parametrize("fitter", fitters)
    def test_deriv_2D(self, model_class, test_parameters, fitter):
        """
        Test the derivative of a model by fitting with an estimated and
        analytical derivative.
        """
        fitter = fitter()

        x_lim = test_parameters["x_lim"]
        y_lim = test_parameters["y_lim"]

        if model_class.fit_deriv is None or issubclass(model_class, PolynomialBase):
            return

        if "log_fit" in test_parameters:
            if test_parameters["log_fit"]:
                x = np.logspace(x_lim[0], x_lim[1], self.N)
                y = np.logspace(y_lim[0], y_lim[1], self.M)
                x_test = np.logspace(x_lim[0], x_lim[1], self.N * 10)
                y_test = np.logspace(y_lim[0], y_lim[1], self.M * 10)
        else:
            x = np.linspace(x_lim[0], x_lim[1], self.N)
            y = np.linspace(y_lim[0], y_lim[1], self.M)
            x_test = np.linspace(x_lim[0], x_lim[1], self.N * 10)
            y_test = np.linspace(y_lim[0], y_lim[1], self.M * 10)
        xv, yv = np.meshgrid(x, y)
        xv_test, yv_test = np.meshgrid(x_test, y_test)

        try:
            model_with_deriv = create_model(
                model_class,
                test_parameters,
                use_constraints=False,
                parameter_key="deriv_initial",
            )
            model_no_deriv = create_model(
                model_class,
                test_parameters,
                use_constraints=False,
                parameter_key="deriv_initial",
            )
            model = create_model(
                model_class,
                test_parameters,
                use_constraints=False,
                parameter_key="deriv_initial",
            )
        except KeyError:
            model_with_deriv = create_model(
                model_class, test_parameters, use_constraints=False
            )
            model_no_deriv = create_model(
                model_class, test_parameters, use_constraints=False
            )
            model = create_model(model_class, test_parameters, use_constraints=False)

        if model_with_deriv.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
            pytest.skip("The LMLSQFitter fitter does not support models with bounds")

        # add 10% noise to the amplitude
        rsn = np.random.default_rng(0)
        amplitude = test_parameters["parameters"][0]
        n = 0.1 * amplitude * (rsn.random((self.M, self.N)) - 0.5)

        data = model(xv, yv) + n
        fitter_with_deriv = fitter
        new_model_with_deriv = fitter_with_deriv(model_with_deriv, xv, yv, data)
        fitter_no_deriv = fitter
        new_model_no_deriv = fitter_no_deriv(
            model_no_deriv, xv, yv, data, estimate_jacobian=True
        )
        assert_allclose(
            new_model_with_deriv(xv_test, yv_test),
            new_model_no_deriv(xv_test, yv_test),
            rtol=1e-2,
        )

        if model_class != Gaussian2D:
            deriv_atol = test_parameters.get("deriv_atol", 0.1)
            assert_allclose(
                new_model_with_deriv.parameters,
                new_model_no_deriv.parameters,
                rtol=deriv_atol,
            )


@pytest.mark.filterwarnings(r"ignore:humlicek2 has been deprecated since .*")
class Fittable1DModelTester:
    """
    Test class for all one dimensional parametric models.

    Test values have to be defined in example_models.py. It currently test the
    model with different input types, evaluates the model at different
    positions and assures that it gives the correct values. And tests if the
    model works with non-linear fitters.

    This can be used as a base class for user defined model testing.
    """

    # These models will fail fitting test, because built in fitting data
    #   will produce non-finite values
    _non_finite_models = [
        BrokenPowerLaw1D,
        ExponentialCutoffPowerLaw1D,
        LogParabola1D,
        PowerLaw1D,
        SmoothlyBrokenPowerLaw1D,
    ]

    def setup_class(self):
        self.N = 100
        self.M = 100
        self.eval_error = 0.0001
        self.fit_error = 0.11
        self.x = 5.3
        self.y = 6.7
        self.x1 = np.arange(1, 10, 0.1)
        self.y1 = np.arange(1, 10, 0.1)
        self.y2, self.x2 = np.mgrid[:10, :8]

    @pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning")
    def test_input1D(self, model_class, test_parameters):
        """Test model with different input types."""

        model = create_model(model_class, test_parameters)
        model(self.x)
        model(self.x1)
        model(self.x2)

    @pytest.mark.xfail(reason="Failure on MIPS")
    def test_eval1D(self, model_class, test_parameters):
        """
        Test model values at certain given points
        """
        model = create_model(model_class, test_parameters)
        x = test_parameters["x_values"]
        y = test_parameters["y_values"]
        assert_allclose(model(x), y, atol=self.eval_error)

    def test_bounding_box1D(self, model_class, test_parameters):
        """Test bounding box evaluation"""

        model = create_model(model_class, test_parameters)

        # testing setter
        model.bounding_box = (-5, 5)
        model.bounding_box = None

        MESSAGE = r"No bounding box is defined for this model .*"
        with pytest.raises(NotImplementedError, match=MESSAGE):
            model.bounding_box

        del model.bounding_box

        # test exception if dimensions don't match
        MESSAGE = r"An interval must be some sort of sequence of length 2"
        with pytest.raises(ValueError, match=MESSAGE):
            model.bounding_box = 5

        try:
            bbox = model.bounding_box.bounding_box()
        except NotImplementedError:
            return

        ddx = 0.01
        x1 = np.arange(bbox[0], bbox[1], ddx)
        x2 = np.concatenate(
            (
                [bbox[0] - idx * ddx for idx in range(10, 0, -1)],
                x1,
                [bbox[1] + idx * ddx for idx in range(1, 10)],
            )
        )

        inside_bbox = model(x1)
        outside_bbox = model(x2, with_bounding_box=True)
        outside_bbox = outside_bbox[~np.isnan(outside_bbox)]

        assert np.all(inside_bbox == outside_bbox)

    def test_bounding_box1D_peak(self, model_class, test_parameters):
        if not test_parameters.pop("bbox_peak", False):
            return

        model = create_model(model_class, test_parameters)
        bbox = model.bounding_box

        if isinstance(model, (models.Lorentz1D, models.Drude1D)):
            rtol = 0.01  # 1% agreement is enough due to very extended wings
            ddx = 0.1  # Finer sampling to "integrate" flux for narrow peak
        else:
            rtol = 1e-7
            ddx = 1

        if isinstance(bbox, ModelBoundingBox):
            bbox = bbox.bounding_box()

        dx = (np.diff(bbox) / 2)[0]
        x1 = np.mgrid[slice(bbox[0], bbox[1] + 1, ddx)]
        x2 = np.mgrid[slice(bbox[0] - dx, bbox[1] + dx + 1, ddx)]
        arr = model(x2)
        sub_arr = model(x1)

        # check for flux agreement
        assert abs(arr.sum() - sub_arr.sum()) < arr.sum() * rtol

    @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
    @pytest.mark.xfail(reason="Somtimes fails in i386")
    @pytest.mark.parametrize("fitter", fitters)
    def test_fitter1D(self, model_class, test_parameters, fitter):
        """
        Test if the parametric model works with the fitter.
        """
        fitter = fitter()

        x_lim = test_parameters["x_lim"]
        parameters = test_parameters["parameters"]
        model = create_model(model_class, test_parameters)

        if model.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
            pytest.skip("The LMLSQFitter fitter does not support models with bounds")

        if isinstance(parameters, dict):
            parameters = [parameters[name] for name in model.param_names]

        if "log_fit" in test_parameters:
            if test_parameters["log_fit"]:
                x = np.logspace(x_lim[0], x_lim[1], self.N)
        else:
            x = np.linspace(x_lim[0], x_lim[1], self.N)

        np.random.seed(0)
        # add 10% noise to the amplitude
        relative_noise_amplitude = 0.01
        data = (1 + relative_noise_amplitude * np.random.randn(len(x))) * model(x)
        new_model = fitter(model, x, data)

        # Only check parameters that were free in the fit
        params = [getattr(new_model, name) for name in new_model.param_names]
        fixed = [param.fixed for param in params]
        expected = np.array([val for val, fixed in zip(parameters, fixed) if not fixed])
        fitted = np.array([param.value for param in params if not param.fixed])
        assert_allclose(fitted, expected, atol=self.fit_error)

    @pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
    @pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning")
    @pytest.mark.parametrize("fitter", fitters)
    def test_deriv_1D(self, model_class, test_parameters, fitter):
        """
        Test the derivative of a model by comparing results with an estimated
        derivative.
        """
        fitter = fitter()

        if model_class in self._non_finite_models:
            return

        x_lim = test_parameters["x_lim"]

        if model_class.fit_deriv is None or issubclass(model_class, PolynomialBase):
            return

        if "log_fit" in test_parameters:
            if test_parameters["log_fit"]:
                x = np.logspace(x_lim[0], x_lim[1], self.N)
        else:
            x = np.linspace(x_lim[0], x_lim[1], self.N)

        parameters = test_parameters["parameters"]
        model_with_deriv = create_model(
            model_class, test_parameters, use_constraints=False
        )
        model_no_deriv = create_model(
            model_class, test_parameters, use_constraints=False
        )

        if model_with_deriv.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
            pytest.skip("The LMLSQFitter fitter does not support models with bounds")

        # NOTE: PR 10644 replaced deprecated usage of RandomState but could not
        #       find a new seed that did not cause test failure, resorted to hardcoding.
        # add 10% noise to the amplitude
        # fmt: off
        rsn_rand_1234567890 = np.array(
            [
                0.61879477, 0.59162363, 0.88868359, 0.89165480, 0.45756748,
                0.77818808, 0.26706377, 0.99610621, 0.54009489, 0.53752161,
                0.40099938, 0.70540579, 0.40518559, 0.94999075, 0.03075388,
                0.13602495, 0.08297726, 0.42352224, 0.23449723, 0.74743526,
                0.65177865, 0.68998682, 0.16413419, 0.87642114, 0.44733314,
                0.57871104, 0.52377835, 0.62689056, 0.34869427, 0.26209748,
                0.07498055, 0.17940570, 0.82999425, 0.98759822, 0.11326099,
                0.63846415, 0.73056694, 0.88321124, 0.52721004, 0.66487673,
                0.74209309, 0.94083846, 0.70123128, 0.29534353, 0.76134369,
                0.77593881, 0.36985514, 0.89519067, 0.33082813, 0.86108824,
                0.76897859, 0.61343376, 0.43870907, 0.91913538, 0.76958966,
                0.51063556, 0.04443249, 0.57463611, 0.31382006, 0.41221713,
                0.21531811, 0.03237521, 0.04166386, 0.73109303, 0.74556052,
                0.64716325, 0.77575353, 0.64599254, 0.16885816, 0.48485480,
                0.53844248, 0.99690349, 0.23657074, 0.04119088, 0.46501519,
                0.35739006, 0.23002665, 0.53420791, 0.71639475, 0.81857486,
                0.73994342, 0.07948837, 0.75688276, 0.13240193, 0.48465576,
                0.20624753, 0.02298276, 0.54257873, 0.68123230, 0.35887468,
                0.36296147, 0.67368397, 0.29505730, 0.66558885, 0.93652252,
                0.36755130, 0.91787687, 0.75922703, 0.48668067, 0.45967890
            ]
        )
        # fmt: on

        n = 0.1 * parameters[0] * (rsn_rand_1234567890 - 0.5)

        data = model_with_deriv(x) + n
        fitter_with_deriv = fitter
        new_model_with_deriv = fitter_with_deriv(model_with_deriv, x, data)
        fitter_no_deriv = fitter
        new_model_no_deriv = fitter_no_deriv(
            model_no_deriv, x, data, estimate_jacobian=True
        )

        deriv_atol = test_parameters.get("deriv_atol", 0.15)
        assert_allclose(
            new_model_with_deriv.parameters,
            new_model_no_deriv.parameters,
            atol=deriv_atol,
        )


def create_model(
    model_class, test_parameters, use_constraints=True, parameter_key="parameters"
):
    """Create instance of model class."""

    constraints = {}
    if issubclass(model_class, PolynomialBase):
        return model_class(**test_parameters[parameter_key])
    elif issubclass(model_class, FittableModel):
        if "requires_scipy" in test_parameters and not HAS_SCIPY:
            pytest.skip("SciPy not found")
        if use_constraints:
            if "constraints" in test_parameters:
                constraints = test_parameters["constraints"]
        return model_class(*test_parameters[parameter_key], **constraints)


@pytest.mark.filterwarnings(r"ignore:Model is linear in parameters.*")
@pytest.mark.filterwarnings(r"ignore:The fit may be unsuccessful.*")
@pytest.mark.parametrize(
    ("model_class", "test_parameters"),
    sorted(models_1D.items(), key=lambda x: str(x[0])),
)
class TestFittable1DModels(Fittable1DModelTester):
    pass


@pytest.mark.filterwarnings(r"ignore:Model is linear in parameters.*")
@pytest.mark.parametrize(
    ("model_class", "test_parameters"),
    sorted(models_2D.items(), key=lambda x: str(x[0])),
)
class TestFittable2DModels(Fittable2DModelTester):
    pass


def test_ShiftModel():
    # Shift by a scalar
    m = models.Shift(42)
    assert m(0) == 42
    assert_equal(m([1, 2]), [43, 44])

    # Shift by a list
    m = models.Shift([42, 43], n_models=2)
    assert_equal(m(0), [42, 43])
    assert_equal(m([1, 2], model_set_axis=False), [[43, 44], [44, 45]])


def test_ScaleModel():
    # Scale by a scalar
    m = models.Scale(42)
    assert m(0) == 0
    assert_equal(m([1, 2]), [42, 84])

    # Scale by a list
    m = models.Scale([42, 43], n_models=2)
    assert_equal(m(0), [0, 0])
    assert_equal(m([1, 2], model_set_axis=False), [[42, 84], [43, 86]])


@pytest.mark.xfail(reason="Failure on MIPS")
@pytest.mark.filterwarnings(r"ignore:humlicek2 has been deprecated since .*")
def test_voigt_model():
    """
    Currently just tests that the model peaks at its origin.
    Regression test for https://github.com/astropy/astropy/issues/3942
    """

    m = models.Voigt1D(x_0=5, amplitude_L=10, fwhm_L=0.5, fwhm_G=0.9)
    x = np.arange(0, 10, 0.01)
    y = m(x)
    assert y[500] == y.max()  # y[500] is right at the center


def test_model_instance_repr():
    m = models.Gaussian1D(1.5, 2.5, 3.5)
    assert repr(m) == "<Gaussian1D(amplitude=1.5, mean=2.5, stddev=3.5)>"


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_interp_1d():
    """
    Test Tabular1D model.
    """
    points = np.arange(0, 5)
    values = [1.0, 10, 2, 45, -3]
    LookupTable = models.tabular_model(1)
    model = LookupTable(points=points, lookup_table=values)
    xnew = [0.0, 0.7, 1.4, 2.1, 3.9]
    ans1 = [1.0, 7.3, 6.8, 6.3, 1.8]
    assert_allclose(model(xnew), ans1)
    # Test evaluate without passing `points`.
    model = LookupTable(lookup_table=values)
    assert_allclose(model(xnew), ans1)
    # Test bounds error.
    xextrap = [0.0, 0.7, 1.4, 2.1, 3.9, 4.1]
    MESSAGE = r"One of the requested xi is out of bounds in dimension 0"
    with pytest.raises(ValueError, match=MESSAGE):
        model(xextrap)
    # test extrapolation and fill value
    model = LookupTable(lookup_table=values, bounds_error=False, fill_value=None)
    assert_allclose(model(xextrap), [1.0, 7.3, 6.8, 6.3, 1.8, -7.8])

    # Test unit support
    xnew = xnew * u.nm
    ans1 = ans1 * u.nJy
    model = LookupTable(points=points * u.nm, lookup_table=values * u.nJy)
    assert_quantity_allclose(model(xnew), ans1)
    assert_quantity_allclose(model(xnew.to(u.nm)), ans1)
    assert model.bounding_box == (0 * u.nm, 4 * u.nm)

    # Test fill value unit conversion and unitless input on table with unit
    model = LookupTable(
        [1, 2, 3],
        [10, 20, 30] * u.nJy,
        bounds_error=False,
        fill_value=1e-33 * (u.W / (u.m * u.m * u.Hz)),
    )
    assert_quantity_allclose(model(np.arange(5)), [100, 10, 20, 30, 100] * u.nJy)


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_interp_2d():
    table = np.array(
        [
            [-0.04614432, -0.02512547, -0.00619557, 0.0144165, 0.0297525],
            [-0.04510594, -0.03183369, -0.01118008, 0.01201388, 0.02496205],
            [-0.05464094, -0.02804499, -0.00960086, 0.01134333, 0.02284104],
            [-0.04879338, -0.02539565, -0.00440462, 0.01795145, 0.02122417],
            [-0.03637372, -0.01630025, -0.00157902, 0.01649774, 0.01952131],
        ]
    )

    points = np.arange(0, 5)
    points = (points, points)

    xnew = np.array([0.0, 0.7, 1.4, 2.1, 3.9])
    LookupTable = models.tabular_model(2)
    model = LookupTable(points, table)
    znew = model(xnew, xnew)
    result = np.array([-0.04614432, -0.03450009, -0.02241028, -0.0069727, 0.01938675])
    assert_allclose(znew, result, atol=1e-7)

    # test 2D arrays as input
    a = np.arange(12).reshape((3, 4))
    y, x = np.mgrid[:3, :4]
    t = models.Tabular2D(lookup_table=a)
    r = t(y, x)
    assert_allclose(a, r)

    MESSAGE = r"Only n_models=1 is supported"
    with pytest.raises(NotImplementedError, match=MESSAGE):
        model = LookupTable(n_models=2)
    MESSAGE = r"Must provide a lookup table"
    with pytest.raises(ValueError, match=MESSAGE):
        model = LookupTable(points=([1.2, 2.3], [1.2, 6.7], [3, 4]))
    MESSAGE = r"lookup_table should be an array with 2 dimensions"
    with pytest.raises(ValueError, match=MESSAGE):
        model = LookupTable(lookup_table=[1, 2, 3])
    MESSAGE = r"lookup_table should be an array with 2 dimensions"
    with pytest.raises(ValueError, match=MESSAGE):
        model = LookupTable(([1, 2], [3, 4]), [5, 6])
    MESSAGE = r"points must all have the same unit"
    with pytest.raises(ValueError, match=MESSAGE):
        model = LookupTable(([1, 2] * u.m, [3, 4]), [[5, 6], [7, 8]])
    MESSAGE = r"fill value is in Jy but expected to be unitless"
    with pytest.raises(ValueError, match=MESSAGE):
        model = LookupTable(points, table, bounds_error=False, fill_value=1 * u.Jy)

    # Test unit support
    points = points[0] * u.nm
    points = (points, points)
    xnew = xnew * u.nm
    model = LookupTable(points, table * u.nJy)
    result = result * u.nJy
    assert_quantity_allclose(model(xnew, xnew), result, atol=1e-7 * u.nJy)
    xnew = xnew.to(u.m)
    assert_quantity_allclose(model(xnew, xnew), result, atol=1e-7 * u.nJy)
    bbox = (0 * u.nm, 4 * u.nm)
    bbox = (bbox, bbox)
    assert model.bounding_box == bbox


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_nd():
    a = np.arange(24).reshape((2, 3, 4))
    x, y, z = np.mgrid[:2, :3, :4]
    tab = models.tabular_model(3)
    t = tab(lookup_table=a)
    result = t(x, y, z)
    assert_allclose(a, result)

    MESSAGE = r"Lookup table must have at least one dimension"
    with pytest.raises(ValueError, match=MESSAGE):
        models.tabular_model(0)


def test_with_bounding_box():
    """
    Test the option to evaluate a model respecting
    its bunding_box.
    """
    p = models.Polynomial2D(2) & models.Polynomial2D(2)
    m = models.Mapping((0, 1, 0, 1)) | p
    with NumpyRNGContext(1234567):
        m.parameters = np.random.rand(12)

    m.bounding_box = ((3, 9), (1, 8))
    x, y = np.mgrid[:10, :10]
    a, b = m(x, y)
    aw, bw = m(x, y, with_bounding_box=True)
    ind = (~np.isnan(aw)).nonzero()
    assert_allclose(a[ind], aw[ind])
    assert_allclose(b[ind], bw[ind])

    aw, bw = m(x, y, with_bounding_box=True, fill_value=1000)
    ind = (aw != 1000).nonzero()
    assert_allclose(a[ind], aw[ind])
    assert_allclose(b[ind], bw[ind])

    # test the order of bbox is not reversed for 1D models
    p = models.Polynomial1D(1, c0=12, c1=2.3)
    p.bounding_box = (0, 5)
    assert p(1) == p(1, with_bounding_box=True)

    t3 = models.Shift(10) & models.Scale(2) & models.Shift(-1)
    t3.bounding_box = ((4.3, 6.9), (6, 15), (-1, 10))
    assert_allclose(
        t3([1, 1], [7, 7], [3, 5], with_bounding_box=True),
        [[np.nan, 11], [np.nan, 14], [np.nan, 4]],
    )

    trans3 = models.Shift(10) & models.Scale(2) & models.Shift(-1)
    trans3.bounding_box = ((4.3, 6.9), (6, 15), (-1, 10))
    assert_allclose(trans3(1, 7, 5, with_bounding_box=True), [11, 14, 4])


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_with_bounding_box():
    points = np.arange(5)
    values = np.array([1.5, 3.4, 6.7, 7, 32])
    t = models.Tabular1D(points, values)
    result = t(1, with_bounding_box=True)

    assert result == 3.4
    assert t.inverse(result, with_bounding_box=True) == 1.0


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_bounding_box_with_units():
    points = np.arange(5) * u.pix
    lt = np.arange(5) * u.AA
    t = models.Tabular1D(points, lt)
    result = t(1 * u.pix, with_bounding_box=True)

    assert result == 1.0 * u.AA
    assert t.inverse(result, with_bounding_box=True) == 1 * u.pix


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular1d_inverse():
    """Test that the Tabular1D inverse is defined"""
    points = np.arange(5)
    values = np.array([1.5, 3.4, 6.7, 7, 32])
    t = models.Tabular1D(points, values)
    result = t.inverse((3.4, 6.7))
    assert_allclose(result, np.array((1.0, 2.0)))

    # Check that it works for descending values in lookup_table
    t2 = models.Tabular1D(points, values[::-1])
    assert_allclose(t2.inverse.points[0], t2.lookup_table[::-1])

    result2 = t2.inverse((7, 6.7))
    assert_allclose(result2, np.array((1.0, 2.0)))

    # Check that it errors on double-valued lookup_table
    points = np.arange(5)
    values = np.array([1.5, 3.4, 3.4, 32, 25])
    t = models.Tabular1D(points, values)
    with pytest.raises(NotImplementedError, match=r"^$"):
        t.inverse((3.4, 7.0))

    # Check that Tabular2D.inverse raises an error
    table = np.arange(5 * 5).reshape(5, 5)
    points = np.arange(0, 5)
    points = (points, points)
    t3 = models.Tabular2D(points=points, lookup_table=table)
    with pytest.raises(
        NotImplementedError,
        match=r"An analytical inverse transform has not been implemented for this model\.",
    ):
        t3.inverse((3, 3))

    # Check that it uses the same kwargs as the original model
    points = np.arange(5)
    values = np.array([1.5, 3.4, 6.7, 7, 32])
    t = models.Tabular1D(points, values)
    MESSAGE = r"One of the requested xi is out of bounds in dimension 0"
    with pytest.raises(ValueError, match=MESSAGE):
        t.inverse(100)
    t = models.Tabular1D(points, values, bounds_error=False, fill_value=None)
    result = t.inverse(100)
    assert_allclose(t(result), 100)


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_grid_shape_mismatch_error():
    points = np.arange(5)
    lt = np.mgrid[0:5, 0:5][0]
    MESSAGE = r"Expected grid points in 2 directions, got 5."
    with pytest.raises(ValueError, match=MESSAGE):
        models.Tabular2D(points, lt)


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_repr():
    points = np.arange(5)
    lt = np.arange(5)
    t = models.Tabular1D(points, lt)
    assert (
        repr(t)
        == "<Tabular1D(points=(array([0, 1, 2, 3, 4]),), lookup_table=[0 1 2 3 4])>"
    )

    table = np.arange(5 * 5).reshape(5, 5)
    points = np.arange(0, 5)
    points = (points, points)
    t = models.Tabular2D(points=points, lookup_table=table)
    assert (
        repr(t)
        == "<Tabular2D(points=(array([0, 1, 2, 3, 4]), array([0, 1, 2, 3, 4])), "
        "lookup_table=[[ 0  1  2  3  4]\n"
        " [ 5  6  7  8  9]\n"
        " [10 11 12 13 14]\n"
        " [15 16 17 18 19]\n"
        " [20 21 22 23 24]])>"
    )


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_str():
    points = np.arange(5)
    lt = np.arange(5)
    t = models.Tabular1D(points, lt)
    assert (
        str(t) == "Model: Tabular1D\n"
        "N_inputs: 1\n"
        "N_outputs: 1\n"
        "Parameters: \n"
        "  points: (array([0, 1, 2, 3, 4]),)\n"
        "  lookup_table: [0 1 2 3 4]\n"
        "  method: linear\n"
        "  fill_value: nan\n"
        "  bounds_error: True"
    )

    table = np.arange(5 * 5).reshape(5, 5)
    points = np.arange(0, 5)
    points = (points, points)
    t = models.Tabular2D(points=points, lookup_table=table)
    assert (
        str(t) == "Model: Tabular2D\n"
        "N_inputs: 2\n"
        "N_outputs: 1\n"
        "Parameters: \n"
        "  points: (array([0, 1, 2, 3, 4]), array([0, 1, 2, 3, 4]))\n"
        "  lookup_table: [[ 0  1  2  3  4]\n"
        " [ 5  6  7  8  9]\n"
        " [10 11 12 13 14]\n"
        " [15 16 17 18 19]\n"
        " [20 21 22 23 24]]\n"
        "  method: linear\n"
        "  fill_value: nan\n"
        "  bounds_error: True"
    )


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_evaluate():
    import scipy.interpolate as scipy_interpolate

    points = np.arange(5)
    lt = np.arange(5)[::-1]
    t = models.Tabular1D(points, lt)
    assert (t.evaluate([1, 2, 3]) == [3, 2, 1]).all()
    assert (t.evaluate(np.array([1, 2, 3]) * u.m) == [3, 2, 1]).all()

    t.n_outputs = 2
    value = [np.array([3, 2, 1]), np.array([1, 2, 3])]

    with mk.patch.object(
        scipy_interpolate, "interpn", autospec=True, return_value=value
    ) as mkInterpn:
        outputs = t.evaluate([1, 2, 3])
        for index, output in enumerate(outputs):
            assert np.all(value[index] == output)
        assert mkInterpn.call_count == 1


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_module_name():
    """
    The module name must be set manually because
    these classes are created dynamically.
    """
    for model in [models.Tabular1D, models.Tabular2D]:
        assert model.__module__ == "astropy.modeling.tabular"


class classmodel(FittableModel):
    f = Parameter(default=1)
    x = Parameter(default=0)
    y = Parameter(default=2)

    def __init__(self, f=f.default, x=x.default, y=y.default):
        super().__init__(f, x, y)

    def evaluate(self):
        pass


class subclassmodel(classmodel):
    f = Parameter(default=3, fixed=True)
    x = Parameter(default=10)
    y = Parameter(default=12)
    h = Parameter(default=5)

    def __init__(self, f=f.default, x=x.default, y=y.default, h=h.default):
        super().__init__(f, x, y)

    def evaluate(self):
        pass


def test_parameter_inheritance():
    b = subclassmodel()
    assert b.param_names == ("f", "x", "y", "h")
    assert b.h == 5
    assert b.f == 3
    assert b.f.fixed == True  # noqa: E712


@pytest.mark.filterwarnings(r"ignore:humlicek2 has been deprecated since .*")
def test_parameter_description():
    model = models.Gaussian1D(1.5, 2.5, 3.5)
    assert model.amplitude._description == "Amplitude (peak value) of the Gaussian"
    assert model.mean._description == "Position of peak (Gaussian)"

    model = models.Voigt1D(x_0=5, amplitude_L=10, fwhm_L=0.5, fwhm_G=0.9)
    assert model.amplitude_L._description == "The Lorentzian amplitude"
    assert model.fwhm_L._description == "The Lorentzian full width at half maximum"
    assert model.fwhm_G._description == "The Gaussian full width at half maximum"


def test_SmoothlyBrokenPowerLaw1D_validators():
    MESSAGE = r"amplitude parameter must be > 0"
    with pytest.raises(InputParameterError, match=MESSAGE):
        SmoothlyBrokenPowerLaw1D(amplitude=-1)

    MESSAGE = r"delta parameter must be >= 0.001"
    with pytest.raises(InputParameterError, match=MESSAGE):
        SmoothlyBrokenPowerLaw1D(delta=0)


@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning")
@pytest.mark.filterwarnings(r"ignore:The fit may be unsuccessful.*")
def test_SmoothlyBrokenPowerLaw1D_fit_deriv():
    x_lim = [0.01, 100]

    x = np.logspace(x_lim[0], x_lim[1], 100)

    parameters = {
        "parameters": [1, 10, -2, 2, 0.5],
        "constraints": {"fixed": {"x_break": True, "delta": True}},
    }
    model_with_deriv = create_model(
        SmoothlyBrokenPowerLaw1D, parameters, use_constraints=False
    )
    model_no_deriv = create_model(
        SmoothlyBrokenPowerLaw1D, parameters, use_constraints=False
    )

    # NOTE: PR 10644 replaced deprecated usage of RandomState but could not
    #       find a new seed that did not cause test failure, resorted to hardcoding.
    # add 10% noise to the amplitude
    # fmt: off
    rsn_rand_1234567890 = np.array(
        [
            0.61879477, 0.59162363, 0.88868359, 0.89165480, 0.45756748,
            0.77818808, 0.26706377, 0.99610621, 0.54009489, 0.53752161,
            0.40099938, 0.70540579, 0.40518559, 0.94999075, 0.03075388,
            0.13602495, 0.08297726, 0.42352224, 0.23449723, 0.74743526,
            0.65177865, 0.68998682, 0.16413419, 0.87642114, 0.44733314,
            0.57871104, 0.52377835, 0.62689056, 0.34869427, 0.26209748,
            0.07498055, 0.17940570, 0.82999425, 0.98759822, 0.11326099,
            0.63846415, 0.73056694, 0.88321124, 0.52721004, 0.66487673,
            0.74209309, 0.94083846, 0.70123128, 0.29534353, 0.76134369,
            0.77593881, 0.36985514, 0.89519067, 0.33082813, 0.86108824,
            0.76897859, 0.61343376, 0.43870907, 0.91913538, 0.76958966,
            0.51063556, 0.04443249, 0.57463611, 0.31382006, 0.41221713,
            0.21531811, 0.03237521, 0.04166386, 0.73109303, 0.74556052,
            0.64716325, 0.77575353, 0.64599254, 0.16885816, 0.48485480,
            0.53844248, 0.99690349, 0.23657074, 0.04119088, 0.46501519,
            0.35739006, 0.23002665, 0.53420791, 0.71639475, 0.81857486,
            0.73994342, 0.07948837, 0.75688276, 0.13240193, 0.48465576,
            0.20624753, 0.02298276, 0.54257873, 0.68123230, 0.35887468,
            0.36296147, 0.67368397, 0.29505730, 0.66558885, 0.93652252,
            0.36755130, 0.91787687, 0.75922703, 0.48668067, 0.45967890
        ]
    )
    # fmt: on

    n = 0.1 * parameters["parameters"][0] * (rsn_rand_1234567890 - 0.5)

    data = model_with_deriv(x) + n
    fitter_with_deriv = fitting.LevMarLSQFitter()
    new_model_with_deriv = fitter_with_deriv(model_with_deriv, x, data)
    fitter_no_deriv = fitting.LevMarLSQFitter()
    new_model_no_deriv = fitter_no_deriv(
        model_no_deriv, x, data, estimate_jacobian=True
    )
    assert_allclose(
        new_model_with_deriv.parameters, new_model_no_deriv.parameters, atol=0.5
    )


class _ExtendedModelMeta(_ModelMeta):
    @classmethod
    def __prepare__(cls, name, bases, **kwds):
        # this shows the parent class machinery still applies
        namespace = super().__prepare__(name, bases, **kwds)
        # the custom bit
        namespace.update(kwds)
        return namespace

    model = models.Gaussian1D(1.5, 2.5, 3.5)
    assert model.amplitude._description == "Amplitude (peak value) of the Gaussian"
    assert model.mean._description == "Position of peak (Gaussian)"


def test_metaclass_kwargs():
    """Test can pass kwargs to Models"""

    class ClassModel(FittableModel, flag="flag"):
        def evaluate(self):
            pass

    # Nothing further to test, just making the class is good enough.


def test_submetaclass_kwargs():
    """Test can pass kwargs to Model subclasses."""

    class ClassModel(FittableModel, metaclass=_ExtendedModelMeta, flag="flag"):
        def evaluate(self):
            pass

    assert ClassModel.flag == "flag"


class ModelDefault(Model):
    slope = Parameter()
    intercept = Parameter()
    _separable = False

    @staticmethod
    def evaluate(x, slope, intercept):
        return slope * x + intercept


class ModelCustom(ModelDefault):
    def _calculate_separability_matrix(self):
        return np.array([[0]])


def test_custom_separability_matrix():
    original = separability_matrix(ModelDefault(slope=1, intercept=2))
    assert original.all()

    custom = separability_matrix(ModelCustom(slope=1, intercept=2))
    assert not custom.any()