1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
|
# Licensed under a 3-clause BSD style license - see LICENSE.rst:
"""
Tests for model evaluation.
Compare the results of some models with other programs.
"""
import unittest.mock as mk
import numpy as np
# pylint: disable=invalid-name, no-member
import pytest
from numpy.testing import assert_allclose, assert_equal
from astropy import units as u
from astropy.modeling import fitting, models
from astropy.modeling.bounding_box import ModelBoundingBox
from astropy.modeling.core import FittableModel, Model, _ModelMeta
from astropy.modeling.models import Gaussian2D
from astropy.modeling.parameters import InputParameterError, Parameter
from astropy.modeling.polynomial import PolynomialBase
from astropy.modeling.powerlaws import (
BrokenPowerLaw1D,
ExponentialCutoffPowerLaw1D,
LogParabola1D,
PowerLaw1D,
SmoothlyBrokenPowerLaw1D,
)
from astropy.modeling.separable import separability_matrix
from astropy.tests.helper import assert_quantity_allclose
from astropy.utils import NumpyRNGContext
from astropy.utils.compat.optional_deps import HAS_SCIPY
from .example_models import models_1D, models_2D
fitters = [
fitting.LevMarLSQFitter,
fitting.TRFLSQFitter,
fitting.LMLSQFitter,
fitting.DogBoxLSQFitter,
]
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.parametrize("fitter", fitters)
def test_custom_model(fitter, amplitude=4, frequency=1):
fitter = fitter()
def sine_model(x, amplitude=4, frequency=1):
"""
Model function
"""
return amplitude * np.sin(2 * np.pi * frequency * x)
def sine_deriv(x, amplitude=4, frequency=1):
"""
Jacobian of model function, e.g. derivative of the function with
respect to the *parameters*
"""
da = np.sin(2 * np.pi * frequency * x)
df = 2 * np.pi * x * amplitude * np.cos(2 * np.pi * frequency * x)
return np.vstack((da, df))
SineModel = models.custom_model(sine_model, fit_deriv=sine_deriv)
x = np.linspace(0, 4, 50)
sin_model = SineModel()
sin_model.evaluate(x, 5.0, 2.0)
sin_model.fit_deriv(x, 5.0, 2.0)
np.random.seed(0)
data = sin_model(x) + np.random.rand(len(x)) - 0.5
model = fitter(sin_model, x, data)
assert np.all(
(
np.array([model.amplitude.value, model.frequency.value])
- np.array([amplitude, frequency])
)
< 0.001
)
def test_custom_model_init():
@models.custom_model
def SineModel(x, amplitude=4, frequency=1):
"""Model function"""
return amplitude * np.sin(2 * np.pi * frequency * x)
sin_model = SineModel(amplitude=2.0, frequency=0.5)
assert sin_model.amplitude == 2.0
assert sin_model.frequency == 0.5
def test_custom_model_defaults():
@models.custom_model
def SineModel(x, amplitude=4, frequency=1):
"""Model function"""
return amplitude * np.sin(2 * np.pi * frequency * x)
sin_model = SineModel()
assert SineModel.amplitude.default == 4
assert SineModel.frequency.default == 1
assert sin_model.amplitude == 4
assert sin_model.frequency == 1
def test_inconsistent_input_shapes():
g = Gaussian2D()
x = np.arange(-1.0, 1, 0.2)
y = x.copy()
# check scalar input broadcasting works
assert np.abs(g(x, 0) - g(x, 0 * x)).sum() == 0
# and that array broadcasting works
x.shape = (10, 1)
y.shape = (1, 10)
result = g(x, y)
assert result.shape == (10, 10)
# incompatible shapes do _not_ work
g = Gaussian2D()
x = np.arange(-1.0, 1, 0.2)
y = np.arange(-1.0, 1, 0.1)
with pytest.raises(ValueError, match="broadcast"):
g(x, y)
def test_custom_model_bounding_box():
"""Test bounding box evaluation for a 3D model"""
def ellipsoid(x, y, z, x0=13, y0=10, z0=8, a=4, b=3, c=2, amp=1):
rsq = ((x - x0) / a) ** 2 + ((y - y0) / b) ** 2 + ((z - z0) / c) ** 2
val = (rsq < 1) * amp
return val
class Ellipsoid3D(models.custom_model(ellipsoid)):
@property
def bounding_box(self):
return (
(self.z0 - self.c, self.z0 + self.c),
(self.y0 - self.b, self.y0 + self.b),
(self.x0 - self.a, self.x0 + self.a),
)
model = Ellipsoid3D()
bbox = model.bounding_box
zlim, ylim, xlim = bbox.bounding_box()
dz, dy, dx = (np.diff(bbox) / 2).ravel()
z1, y1, x1 = np.mgrid[
slice(zlim[0], zlim[1] + 1),
slice(ylim[0], ylim[1] + 1),
slice(xlim[0], xlim[1] + 1),
]
z2, y2, x2 = np.mgrid[
slice(zlim[0] - dz, zlim[1] + dz + 1),
slice(ylim[0] - dy, ylim[1] + dy + 1),
slice(xlim[0] - dx, xlim[1] + dx + 1),
]
arr = model(x2, y2, z2, with_bounding_box=True)
sub_arr = model(x1, y1, z1, with_bounding_box=True)
# check for flux agreement
assert abs(np.nansum(arr) - np.nansum(sub_arr)) < np.nansum(arr) * 1e-7
class Fittable2DModelTester:
"""
Test class for all two dimensional parametric models.
Test values have to be defined in example_models.py. It currently test the
model with different input types, evaluates the model at different
positions and assures that it gives the correct values. And tests if the
model works with non-linear fitters.
This can be used as a base class for user defined model testing.
"""
def setup_class(self):
self.N = 100
self.M = 100
self.eval_error = 0.0001
self.fit_error = 0.1
self.x = 5.3
self.y = 6.7
self.x1 = np.arange(1, 10, 0.1)
self.y1 = np.arange(1, 10, 0.1)
self.y2, self.x2 = np.mgrid[:10, :8]
def test_input2D(self, model_class, test_parameters):
"""Test model with different input types."""
model = create_model(model_class, test_parameters)
model(self.x, self.y)
model(self.x1, self.y1)
model(self.x2, self.y2)
def test_eval2D(self, model_class, test_parameters):
"""Test model values add certain given points"""
model = create_model(model_class, test_parameters)
x = test_parameters["x_values"]
y = test_parameters["y_values"]
z = test_parameters["z_values"]
assert np.all(np.abs(model(x, y) - z) < self.eval_error)
def test_bounding_box2D(self, model_class, test_parameters):
"""Test bounding box evaluation"""
model = create_model(model_class, test_parameters)
# testing setter
model.bounding_box = ((-5, 5), (-5, 5))
assert model.bounding_box == ((-5, 5), (-5, 5))
model.bounding_box = None
MESSAGE = r"No bounding box is defined for this model .*"
with pytest.raises(NotImplementedError, match=MESSAGE):
model.bounding_box
# test the exception of dimensions don't match
MESSAGE = r"An interval must be some sort of sequence of length 2"
with pytest.raises(ValueError, match=MESSAGE):
model.bounding_box = (-5, 5)
del model.bounding_box
try:
bbox = model.bounding_box
except NotImplementedError:
return
ddx = 0.01
ylim, xlim = bbox
x1 = np.arange(xlim[0], xlim[1], ddx)
y1 = np.arange(ylim[0], ylim[1], ddx)
x2 = np.concatenate(
(
[xlim[0] - idx * ddx for idx in range(10, 0, -1)],
x1,
[xlim[1] + idx * ddx for idx in range(1, 10)],
)
)
y2 = np.concatenate(
(
[ylim[0] - idx * ddx for idx in range(10, 0, -1)],
y1,
[ylim[1] + idx * ddx for idx in range(1, 10)],
)
)
inside_bbox = model(x1, y1)
outside_bbox = model(x2, y2, with_bounding_box=True)
outside_bbox = outside_bbox[~np.isnan(outside_bbox)]
assert np.all(inside_bbox == outside_bbox)
def test_bounding_box2D_peak(self, model_class, test_parameters):
if not test_parameters.pop("bbox_peak", False):
return
model = create_model(model_class, test_parameters)
bbox = model.bounding_box
ylim, xlim = bbox
dy, dx = (np.diff(bbox) / 2).ravel()
y1, x1 = np.mgrid[slice(ylim[0], ylim[1] + 1), slice(xlim[0], xlim[1] + 1)]
y2, x2 = np.mgrid[
slice(ylim[0] - dy, ylim[1] + dy + 1), slice(xlim[0] - dx, xlim[1] + dx + 1)
]
arr = model(x2, y2)
sub_arr = model(x1, y1)
# check for flux agreement
assert abs(arr.sum() - sub_arr.sum()) < arr.sum() * 1e-7
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.parametrize("fitter", fitters)
def test_fitter2D(self, model_class, test_parameters, fitter):
"""Test if the parametric model works with the fitter."""
fitter = fitter()
x_lim = test_parameters["x_lim"]
y_lim = test_parameters["y_lim"]
parameters = test_parameters["parameters"]
model = create_model(model_class, test_parameters)
if model.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
pytest.skip("The LMLSQFitter fitter does not support models with bounds")
if isinstance(parameters, dict):
parameters = [parameters[name] for name in model.param_names]
if "log_fit" in test_parameters:
if test_parameters["log_fit"]:
x = np.logspace(x_lim[0], x_lim[1], self.N)
y = np.logspace(y_lim[0], y_lim[1], self.N)
else:
x = np.linspace(x_lim[0], x_lim[1], self.N)
y = np.linspace(y_lim[0], y_lim[1], self.N)
xv, yv = np.meshgrid(x, y)
np.random.seed(0)
# add 10% noise to the amplitude
noise = np.random.rand(self.N, self.N) - 0.5
data = model(xv, yv) + 0.1 * parameters[0] * noise
new_model = fitter(model, xv, yv, data)
params = [getattr(new_model, name) for name in new_model.param_names]
fixed = [param.fixed for param in params]
expected = np.array([val for val, fixed in zip(parameters, fixed) if not fixed])
fitted = np.array([param.value for param in params if not param.fixed])
assert_allclose(fitted, expected, atol=self.fit_error)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.parametrize("fitter", fitters)
def test_deriv_2D(self, model_class, test_parameters, fitter):
"""
Test the derivative of a model by fitting with an estimated and
analytical derivative.
"""
fitter = fitter()
x_lim = test_parameters["x_lim"]
y_lim = test_parameters["y_lim"]
if model_class.fit_deriv is None or issubclass(model_class, PolynomialBase):
return
if "log_fit" in test_parameters:
if test_parameters["log_fit"]:
x = np.logspace(x_lim[0], x_lim[1], self.N)
y = np.logspace(y_lim[0], y_lim[1], self.M)
x_test = np.logspace(x_lim[0], x_lim[1], self.N * 10)
y_test = np.logspace(y_lim[0], y_lim[1], self.M * 10)
else:
x = np.linspace(x_lim[0], x_lim[1], self.N)
y = np.linspace(y_lim[0], y_lim[1], self.M)
x_test = np.linspace(x_lim[0], x_lim[1], self.N * 10)
y_test = np.linspace(y_lim[0], y_lim[1], self.M * 10)
xv, yv = np.meshgrid(x, y)
xv_test, yv_test = np.meshgrid(x_test, y_test)
try:
model_with_deriv = create_model(
model_class,
test_parameters,
use_constraints=False,
parameter_key="deriv_initial",
)
model_no_deriv = create_model(
model_class,
test_parameters,
use_constraints=False,
parameter_key="deriv_initial",
)
model = create_model(
model_class,
test_parameters,
use_constraints=False,
parameter_key="deriv_initial",
)
except KeyError:
model_with_deriv = create_model(
model_class, test_parameters, use_constraints=False
)
model_no_deriv = create_model(
model_class, test_parameters, use_constraints=False
)
model = create_model(model_class, test_parameters, use_constraints=False)
if model_with_deriv.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
pytest.skip("The LMLSQFitter fitter does not support models with bounds")
# add 10% noise to the amplitude
rsn = np.random.default_rng(0)
amplitude = test_parameters["parameters"][0]
n = 0.1 * amplitude * (rsn.random((self.M, self.N)) - 0.5)
data = model(xv, yv) + n
fitter_with_deriv = fitter
new_model_with_deriv = fitter_with_deriv(model_with_deriv, xv, yv, data)
fitter_no_deriv = fitter
new_model_no_deriv = fitter_no_deriv(
model_no_deriv, xv, yv, data, estimate_jacobian=True
)
assert_allclose(
new_model_with_deriv(xv_test, yv_test),
new_model_no_deriv(xv_test, yv_test),
rtol=1e-2,
)
if model_class != Gaussian2D:
deriv_atol = test_parameters.get("deriv_atol", 0.1)
assert_allclose(
new_model_with_deriv.parameters,
new_model_no_deriv.parameters,
rtol=deriv_atol,
)
@pytest.mark.filterwarnings(r"ignore:humlicek2 has been deprecated since .*")
class Fittable1DModelTester:
"""
Test class for all one dimensional parametric models.
Test values have to be defined in example_models.py. It currently test the
model with different input types, evaluates the model at different
positions and assures that it gives the correct values. And tests if the
model works with non-linear fitters.
This can be used as a base class for user defined model testing.
"""
# These models will fail fitting test, because built in fitting data
# will produce non-finite values
_non_finite_models = [
BrokenPowerLaw1D,
ExponentialCutoffPowerLaw1D,
LogParabola1D,
PowerLaw1D,
SmoothlyBrokenPowerLaw1D,
]
def setup_class(self):
self.N = 100
self.M = 100
self.eval_error = 0.0001
self.fit_error = 0.11
self.x = 5.3
self.y = 6.7
self.x1 = np.arange(1, 10, 0.1)
self.y1 = np.arange(1, 10, 0.1)
self.y2, self.x2 = np.mgrid[:10, :8]
@pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning")
def test_input1D(self, model_class, test_parameters):
"""Test model with different input types."""
model = create_model(model_class, test_parameters)
model(self.x)
model(self.x1)
model(self.x2)
@pytest.mark.xfail(reason="Failure on MIPS")
def test_eval1D(self, model_class, test_parameters):
"""
Test model values at certain given points
"""
model = create_model(model_class, test_parameters)
x = test_parameters["x_values"]
y = test_parameters["y_values"]
assert_allclose(model(x), y, atol=self.eval_error)
def test_bounding_box1D(self, model_class, test_parameters):
"""Test bounding box evaluation"""
model = create_model(model_class, test_parameters)
# testing setter
model.bounding_box = (-5, 5)
model.bounding_box = None
MESSAGE = r"No bounding box is defined for this model .*"
with pytest.raises(NotImplementedError, match=MESSAGE):
model.bounding_box
del model.bounding_box
# test exception if dimensions don't match
MESSAGE = r"An interval must be some sort of sequence of length 2"
with pytest.raises(ValueError, match=MESSAGE):
model.bounding_box = 5
try:
bbox = model.bounding_box.bounding_box()
except NotImplementedError:
return
ddx = 0.01
x1 = np.arange(bbox[0], bbox[1], ddx)
x2 = np.concatenate(
(
[bbox[0] - idx * ddx for idx in range(10, 0, -1)],
x1,
[bbox[1] + idx * ddx for idx in range(1, 10)],
)
)
inside_bbox = model(x1)
outside_bbox = model(x2, with_bounding_box=True)
outside_bbox = outside_bbox[~np.isnan(outside_bbox)]
assert np.all(inside_bbox == outside_bbox)
def test_bounding_box1D_peak(self, model_class, test_parameters):
if not test_parameters.pop("bbox_peak", False):
return
model = create_model(model_class, test_parameters)
bbox = model.bounding_box
if isinstance(model, (models.Lorentz1D, models.Drude1D)):
rtol = 0.01 # 1% agreement is enough due to very extended wings
ddx = 0.1 # Finer sampling to "integrate" flux for narrow peak
else:
rtol = 1e-7
ddx = 1
if isinstance(bbox, ModelBoundingBox):
bbox = bbox.bounding_box()
dx = (np.diff(bbox) / 2)[0]
x1 = np.mgrid[slice(bbox[0], bbox[1] + 1, ddx)]
x2 = np.mgrid[slice(bbox[0] - dx, bbox[1] + dx + 1, ddx)]
arr = model(x2)
sub_arr = model(x1)
# check for flux agreement
assert abs(arr.sum() - sub_arr.sum()) < arr.sum() * rtol
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.xfail(reason="Somtimes fails in i386")
@pytest.mark.parametrize("fitter", fitters)
def test_fitter1D(self, model_class, test_parameters, fitter):
"""
Test if the parametric model works with the fitter.
"""
fitter = fitter()
x_lim = test_parameters["x_lim"]
parameters = test_parameters["parameters"]
model = create_model(model_class, test_parameters)
if model.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
pytest.skip("The LMLSQFitter fitter does not support models with bounds")
if isinstance(parameters, dict):
parameters = [parameters[name] for name in model.param_names]
if "log_fit" in test_parameters:
if test_parameters["log_fit"]:
x = np.logspace(x_lim[0], x_lim[1], self.N)
else:
x = np.linspace(x_lim[0], x_lim[1], self.N)
np.random.seed(0)
# add 10% noise to the amplitude
relative_noise_amplitude = 0.01
data = (1 + relative_noise_amplitude * np.random.randn(len(x))) * model(x)
new_model = fitter(model, x, data)
# Only check parameters that were free in the fit
params = [getattr(new_model, name) for name in new_model.param_names]
fixed = [param.fixed for param in params]
expected = np.array([val for val, fixed in zip(parameters, fixed) if not fixed])
fitted = np.array([param.value for param in params if not param.fixed])
assert_allclose(fitted, expected, atol=self.fit_error)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning")
@pytest.mark.parametrize("fitter", fitters)
def test_deriv_1D(self, model_class, test_parameters, fitter):
"""
Test the derivative of a model by comparing results with an estimated
derivative.
"""
fitter = fitter()
if model_class in self._non_finite_models:
return
x_lim = test_parameters["x_lim"]
if model_class.fit_deriv is None or issubclass(model_class, PolynomialBase):
return
if "log_fit" in test_parameters:
if test_parameters["log_fit"]:
x = np.logspace(x_lim[0], x_lim[1], self.N)
else:
x = np.linspace(x_lim[0], x_lim[1], self.N)
parameters = test_parameters["parameters"]
model_with_deriv = create_model(
model_class, test_parameters, use_constraints=False
)
model_no_deriv = create_model(
model_class, test_parameters, use_constraints=False
)
if model_with_deriv.has_bounds and isinstance(fitter, fitting.LMLSQFitter):
pytest.skip("The LMLSQFitter fitter does not support models with bounds")
# NOTE: PR 10644 replaced deprecated usage of RandomState but could not
# find a new seed that did not cause test failure, resorted to hardcoding.
# add 10% noise to the amplitude
# fmt: off
rsn_rand_1234567890 = np.array(
[
0.61879477, 0.59162363, 0.88868359, 0.89165480, 0.45756748,
0.77818808, 0.26706377, 0.99610621, 0.54009489, 0.53752161,
0.40099938, 0.70540579, 0.40518559, 0.94999075, 0.03075388,
0.13602495, 0.08297726, 0.42352224, 0.23449723, 0.74743526,
0.65177865, 0.68998682, 0.16413419, 0.87642114, 0.44733314,
0.57871104, 0.52377835, 0.62689056, 0.34869427, 0.26209748,
0.07498055, 0.17940570, 0.82999425, 0.98759822, 0.11326099,
0.63846415, 0.73056694, 0.88321124, 0.52721004, 0.66487673,
0.74209309, 0.94083846, 0.70123128, 0.29534353, 0.76134369,
0.77593881, 0.36985514, 0.89519067, 0.33082813, 0.86108824,
0.76897859, 0.61343376, 0.43870907, 0.91913538, 0.76958966,
0.51063556, 0.04443249, 0.57463611, 0.31382006, 0.41221713,
0.21531811, 0.03237521, 0.04166386, 0.73109303, 0.74556052,
0.64716325, 0.77575353, 0.64599254, 0.16885816, 0.48485480,
0.53844248, 0.99690349, 0.23657074, 0.04119088, 0.46501519,
0.35739006, 0.23002665, 0.53420791, 0.71639475, 0.81857486,
0.73994342, 0.07948837, 0.75688276, 0.13240193, 0.48465576,
0.20624753, 0.02298276, 0.54257873, 0.68123230, 0.35887468,
0.36296147, 0.67368397, 0.29505730, 0.66558885, 0.93652252,
0.36755130, 0.91787687, 0.75922703, 0.48668067, 0.45967890
]
)
# fmt: on
n = 0.1 * parameters[0] * (rsn_rand_1234567890 - 0.5)
data = model_with_deriv(x) + n
fitter_with_deriv = fitter
new_model_with_deriv = fitter_with_deriv(model_with_deriv, x, data)
fitter_no_deriv = fitter
new_model_no_deriv = fitter_no_deriv(
model_no_deriv, x, data, estimate_jacobian=True
)
deriv_atol = test_parameters.get("deriv_atol", 0.15)
assert_allclose(
new_model_with_deriv.parameters,
new_model_no_deriv.parameters,
atol=deriv_atol,
)
def create_model(
model_class, test_parameters, use_constraints=True, parameter_key="parameters"
):
"""Create instance of model class."""
constraints = {}
if issubclass(model_class, PolynomialBase):
return model_class(**test_parameters[parameter_key])
elif issubclass(model_class, FittableModel):
if "requires_scipy" in test_parameters and not HAS_SCIPY:
pytest.skip("SciPy not found")
if use_constraints:
if "constraints" in test_parameters:
constraints = test_parameters["constraints"]
return model_class(*test_parameters[parameter_key], **constraints)
@pytest.mark.filterwarnings(r"ignore:Model is linear in parameters.*")
@pytest.mark.filterwarnings(r"ignore:The fit may be unsuccessful.*")
@pytest.mark.parametrize(
("model_class", "test_parameters"),
sorted(models_1D.items(), key=lambda x: str(x[0])),
)
class TestFittable1DModels(Fittable1DModelTester):
pass
@pytest.mark.filterwarnings(r"ignore:Model is linear in parameters.*")
@pytest.mark.parametrize(
("model_class", "test_parameters"),
sorted(models_2D.items(), key=lambda x: str(x[0])),
)
class TestFittable2DModels(Fittable2DModelTester):
pass
def test_ShiftModel():
# Shift by a scalar
m = models.Shift(42)
assert m(0) == 42
assert_equal(m([1, 2]), [43, 44])
# Shift by a list
m = models.Shift([42, 43], n_models=2)
assert_equal(m(0), [42, 43])
assert_equal(m([1, 2], model_set_axis=False), [[43, 44], [44, 45]])
def test_ScaleModel():
# Scale by a scalar
m = models.Scale(42)
assert m(0) == 0
assert_equal(m([1, 2]), [42, 84])
# Scale by a list
m = models.Scale([42, 43], n_models=2)
assert_equal(m(0), [0, 0])
assert_equal(m([1, 2], model_set_axis=False), [[42, 84], [43, 86]])
@pytest.mark.xfail(reason="Failure on MIPS")
@pytest.mark.filterwarnings(r"ignore:humlicek2 has been deprecated since .*")
def test_voigt_model():
"""
Currently just tests that the model peaks at its origin.
Regression test for https://github.com/astropy/astropy/issues/3942
"""
m = models.Voigt1D(x_0=5, amplitude_L=10, fwhm_L=0.5, fwhm_G=0.9)
x = np.arange(0, 10, 0.01)
y = m(x)
assert y[500] == y.max() # y[500] is right at the center
def test_model_instance_repr():
m = models.Gaussian1D(1.5, 2.5, 3.5)
assert repr(m) == "<Gaussian1D(amplitude=1.5, mean=2.5, stddev=3.5)>"
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_interp_1d():
"""
Test Tabular1D model.
"""
points = np.arange(0, 5)
values = [1.0, 10, 2, 45, -3]
LookupTable = models.tabular_model(1)
model = LookupTable(points=points, lookup_table=values)
xnew = [0.0, 0.7, 1.4, 2.1, 3.9]
ans1 = [1.0, 7.3, 6.8, 6.3, 1.8]
assert_allclose(model(xnew), ans1)
# Test evaluate without passing `points`.
model = LookupTable(lookup_table=values)
assert_allclose(model(xnew), ans1)
# Test bounds error.
xextrap = [0.0, 0.7, 1.4, 2.1, 3.9, 4.1]
MESSAGE = r"One of the requested xi is out of bounds in dimension 0"
with pytest.raises(ValueError, match=MESSAGE):
model(xextrap)
# test extrapolation and fill value
model = LookupTable(lookup_table=values, bounds_error=False, fill_value=None)
assert_allclose(model(xextrap), [1.0, 7.3, 6.8, 6.3, 1.8, -7.8])
# Test unit support
xnew = xnew * u.nm
ans1 = ans1 * u.nJy
model = LookupTable(points=points * u.nm, lookup_table=values * u.nJy)
assert_quantity_allclose(model(xnew), ans1)
assert_quantity_allclose(model(xnew.to(u.nm)), ans1)
assert model.bounding_box == (0 * u.nm, 4 * u.nm)
# Test fill value unit conversion and unitless input on table with unit
model = LookupTable(
[1, 2, 3],
[10, 20, 30] * u.nJy,
bounds_error=False,
fill_value=1e-33 * (u.W / (u.m * u.m * u.Hz)),
)
assert_quantity_allclose(model(np.arange(5)), [100, 10, 20, 30, 100] * u.nJy)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_interp_2d():
table = np.array(
[
[-0.04614432, -0.02512547, -0.00619557, 0.0144165, 0.0297525],
[-0.04510594, -0.03183369, -0.01118008, 0.01201388, 0.02496205],
[-0.05464094, -0.02804499, -0.00960086, 0.01134333, 0.02284104],
[-0.04879338, -0.02539565, -0.00440462, 0.01795145, 0.02122417],
[-0.03637372, -0.01630025, -0.00157902, 0.01649774, 0.01952131],
]
)
points = np.arange(0, 5)
points = (points, points)
xnew = np.array([0.0, 0.7, 1.4, 2.1, 3.9])
LookupTable = models.tabular_model(2)
model = LookupTable(points, table)
znew = model(xnew, xnew)
result = np.array([-0.04614432, -0.03450009, -0.02241028, -0.0069727, 0.01938675])
assert_allclose(znew, result, atol=1e-7)
# test 2D arrays as input
a = np.arange(12).reshape((3, 4))
y, x = np.mgrid[:3, :4]
t = models.Tabular2D(lookup_table=a)
r = t(y, x)
assert_allclose(a, r)
MESSAGE = r"Only n_models=1 is supported"
with pytest.raises(NotImplementedError, match=MESSAGE):
model = LookupTable(n_models=2)
MESSAGE = r"Must provide a lookup table"
with pytest.raises(ValueError, match=MESSAGE):
model = LookupTable(points=([1.2, 2.3], [1.2, 6.7], [3, 4]))
MESSAGE = r"lookup_table should be an array with 2 dimensions"
with pytest.raises(ValueError, match=MESSAGE):
model = LookupTable(lookup_table=[1, 2, 3])
MESSAGE = r"lookup_table should be an array with 2 dimensions"
with pytest.raises(ValueError, match=MESSAGE):
model = LookupTable(([1, 2], [3, 4]), [5, 6])
MESSAGE = r"points must all have the same unit"
with pytest.raises(ValueError, match=MESSAGE):
model = LookupTable(([1, 2] * u.m, [3, 4]), [[5, 6], [7, 8]])
MESSAGE = r"fill value is in Jy but expected to be unitless"
with pytest.raises(ValueError, match=MESSAGE):
model = LookupTable(points, table, bounds_error=False, fill_value=1 * u.Jy)
# Test unit support
points = points[0] * u.nm
points = (points, points)
xnew = xnew * u.nm
model = LookupTable(points, table * u.nJy)
result = result * u.nJy
assert_quantity_allclose(model(xnew, xnew), result, atol=1e-7 * u.nJy)
xnew = xnew.to(u.m)
assert_quantity_allclose(model(xnew, xnew), result, atol=1e-7 * u.nJy)
bbox = (0 * u.nm, 4 * u.nm)
bbox = (bbox, bbox)
assert model.bounding_box == bbox
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_nd():
a = np.arange(24).reshape((2, 3, 4))
x, y, z = np.mgrid[:2, :3, :4]
tab = models.tabular_model(3)
t = tab(lookup_table=a)
result = t(x, y, z)
assert_allclose(a, result)
MESSAGE = r"Lookup table must have at least one dimension"
with pytest.raises(ValueError, match=MESSAGE):
models.tabular_model(0)
def test_with_bounding_box():
"""
Test the option to evaluate a model respecting
its bunding_box.
"""
p = models.Polynomial2D(2) & models.Polynomial2D(2)
m = models.Mapping((0, 1, 0, 1)) | p
with NumpyRNGContext(1234567):
m.parameters = np.random.rand(12)
m.bounding_box = ((3, 9), (1, 8))
x, y = np.mgrid[:10, :10]
a, b = m(x, y)
aw, bw = m(x, y, with_bounding_box=True)
ind = (~np.isnan(aw)).nonzero()
assert_allclose(a[ind], aw[ind])
assert_allclose(b[ind], bw[ind])
aw, bw = m(x, y, with_bounding_box=True, fill_value=1000)
ind = (aw != 1000).nonzero()
assert_allclose(a[ind], aw[ind])
assert_allclose(b[ind], bw[ind])
# test the order of bbox is not reversed for 1D models
p = models.Polynomial1D(1, c0=12, c1=2.3)
p.bounding_box = (0, 5)
assert p(1) == p(1, with_bounding_box=True)
t3 = models.Shift(10) & models.Scale(2) & models.Shift(-1)
t3.bounding_box = ((4.3, 6.9), (6, 15), (-1, 10))
assert_allclose(
t3([1, 1], [7, 7], [3, 5], with_bounding_box=True),
[[np.nan, 11], [np.nan, 14], [np.nan, 4]],
)
trans3 = models.Shift(10) & models.Scale(2) & models.Shift(-1)
trans3.bounding_box = ((4.3, 6.9), (6, 15), (-1, 10))
assert_allclose(trans3(1, 7, 5, with_bounding_box=True), [11, 14, 4])
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_with_bounding_box():
points = np.arange(5)
values = np.array([1.5, 3.4, 6.7, 7, 32])
t = models.Tabular1D(points, values)
result = t(1, with_bounding_box=True)
assert result == 3.4
assert t.inverse(result, with_bounding_box=True) == 1.0
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_bounding_box_with_units():
points = np.arange(5) * u.pix
lt = np.arange(5) * u.AA
t = models.Tabular1D(points, lt)
result = t(1 * u.pix, with_bounding_box=True)
assert result == 1.0 * u.AA
assert t.inverse(result, with_bounding_box=True) == 1 * u.pix
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular1d_inverse():
"""Test that the Tabular1D inverse is defined"""
points = np.arange(5)
values = np.array([1.5, 3.4, 6.7, 7, 32])
t = models.Tabular1D(points, values)
result = t.inverse((3.4, 6.7))
assert_allclose(result, np.array((1.0, 2.0)))
# Check that it works for descending values in lookup_table
t2 = models.Tabular1D(points, values[::-1])
assert_allclose(t2.inverse.points[0], t2.lookup_table[::-1])
result2 = t2.inverse((7, 6.7))
assert_allclose(result2, np.array((1.0, 2.0)))
# Check that it errors on double-valued lookup_table
points = np.arange(5)
values = np.array([1.5, 3.4, 3.4, 32, 25])
t = models.Tabular1D(points, values)
with pytest.raises(NotImplementedError, match=r"^$"):
t.inverse((3.4, 7.0))
# Check that Tabular2D.inverse raises an error
table = np.arange(5 * 5).reshape(5, 5)
points = np.arange(0, 5)
points = (points, points)
t3 = models.Tabular2D(points=points, lookup_table=table)
with pytest.raises(
NotImplementedError,
match=r"An analytical inverse transform has not been implemented for this model\.",
):
t3.inverse((3, 3))
# Check that it uses the same kwargs as the original model
points = np.arange(5)
values = np.array([1.5, 3.4, 6.7, 7, 32])
t = models.Tabular1D(points, values)
MESSAGE = r"One of the requested xi is out of bounds in dimension 0"
with pytest.raises(ValueError, match=MESSAGE):
t.inverse(100)
t = models.Tabular1D(points, values, bounds_error=False, fill_value=None)
result = t.inverse(100)
assert_allclose(t(result), 100)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_grid_shape_mismatch_error():
points = np.arange(5)
lt = np.mgrid[0:5, 0:5][0]
MESSAGE = r"Expected grid points in 2 directions, got 5."
with pytest.raises(ValueError, match=MESSAGE):
models.Tabular2D(points, lt)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_repr():
points = np.arange(5)
lt = np.arange(5)
t = models.Tabular1D(points, lt)
assert (
repr(t)
== "<Tabular1D(points=(array([0, 1, 2, 3, 4]),), lookup_table=[0 1 2 3 4])>"
)
table = np.arange(5 * 5).reshape(5, 5)
points = np.arange(0, 5)
points = (points, points)
t = models.Tabular2D(points=points, lookup_table=table)
assert (
repr(t)
== "<Tabular2D(points=(array([0, 1, 2, 3, 4]), array([0, 1, 2, 3, 4])), "
"lookup_table=[[ 0 1 2 3 4]\n"
" [ 5 6 7 8 9]\n"
" [10 11 12 13 14]\n"
" [15 16 17 18 19]\n"
" [20 21 22 23 24]])>"
)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_str():
points = np.arange(5)
lt = np.arange(5)
t = models.Tabular1D(points, lt)
assert (
str(t) == "Model: Tabular1D\n"
"N_inputs: 1\n"
"N_outputs: 1\n"
"Parameters: \n"
" points: (array([0, 1, 2, 3, 4]),)\n"
" lookup_table: [0 1 2 3 4]\n"
" method: linear\n"
" fill_value: nan\n"
" bounds_error: True"
)
table = np.arange(5 * 5).reshape(5, 5)
points = np.arange(0, 5)
points = (points, points)
t = models.Tabular2D(points=points, lookup_table=table)
assert (
str(t) == "Model: Tabular2D\n"
"N_inputs: 2\n"
"N_outputs: 1\n"
"Parameters: \n"
" points: (array([0, 1, 2, 3, 4]), array([0, 1, 2, 3, 4]))\n"
" lookup_table: [[ 0 1 2 3 4]\n"
" [ 5 6 7 8 9]\n"
" [10 11 12 13 14]\n"
" [15 16 17 18 19]\n"
" [20 21 22 23 24]]\n"
" method: linear\n"
" fill_value: nan\n"
" bounds_error: True"
)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_evaluate():
import scipy.interpolate as scipy_interpolate
points = np.arange(5)
lt = np.arange(5)[::-1]
t = models.Tabular1D(points, lt)
assert (t.evaluate([1, 2, 3]) == [3, 2, 1]).all()
assert (t.evaluate(np.array([1, 2, 3]) * u.m) == [3, 2, 1]).all()
t.n_outputs = 2
value = [np.array([3, 2, 1]), np.array([1, 2, 3])]
with mk.patch.object(
scipy_interpolate, "interpn", autospec=True, return_value=value
) as mkInterpn:
outputs = t.evaluate([1, 2, 3])
for index, output in enumerate(outputs):
assert np.all(value[index] == output)
assert mkInterpn.call_count == 1
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
def test_tabular_module_name():
"""
The module name must be set manually because
these classes are created dynamically.
"""
for model in [models.Tabular1D, models.Tabular2D]:
assert model.__module__ == "astropy.modeling.tabular"
class classmodel(FittableModel):
f = Parameter(default=1)
x = Parameter(default=0)
y = Parameter(default=2)
def __init__(self, f=f.default, x=x.default, y=y.default):
super().__init__(f, x, y)
def evaluate(self):
pass
class subclassmodel(classmodel):
f = Parameter(default=3, fixed=True)
x = Parameter(default=10)
y = Parameter(default=12)
h = Parameter(default=5)
def __init__(self, f=f.default, x=x.default, y=y.default, h=h.default):
super().__init__(f, x, y)
def evaluate(self):
pass
def test_parameter_inheritance():
b = subclassmodel()
assert b.param_names == ("f", "x", "y", "h")
assert b.h == 5
assert b.f == 3
assert b.f.fixed == True # noqa: E712
@pytest.mark.filterwarnings(r"ignore:humlicek2 has been deprecated since .*")
def test_parameter_description():
model = models.Gaussian1D(1.5, 2.5, 3.5)
assert model.amplitude._description == "Amplitude (peak value) of the Gaussian"
assert model.mean._description == "Position of peak (Gaussian)"
model = models.Voigt1D(x_0=5, amplitude_L=10, fwhm_L=0.5, fwhm_G=0.9)
assert model.amplitude_L._description == "The Lorentzian amplitude"
assert model.fwhm_L._description == "The Lorentzian full width at half maximum"
assert model.fwhm_G._description == "The Gaussian full width at half maximum"
def test_SmoothlyBrokenPowerLaw1D_validators():
MESSAGE = r"amplitude parameter must be > 0"
with pytest.raises(InputParameterError, match=MESSAGE):
SmoothlyBrokenPowerLaw1D(amplitude=-1)
MESSAGE = r"delta parameter must be >= 0.001"
with pytest.raises(InputParameterError, match=MESSAGE):
SmoothlyBrokenPowerLaw1D(delta=0)
@pytest.mark.skipif(not HAS_SCIPY, reason="requires scipy")
@pytest.mark.filterwarnings(r"ignore:.*:RuntimeWarning")
@pytest.mark.filterwarnings(r"ignore:The fit may be unsuccessful.*")
def test_SmoothlyBrokenPowerLaw1D_fit_deriv():
x_lim = [0.01, 100]
x = np.logspace(x_lim[0], x_lim[1], 100)
parameters = {
"parameters": [1, 10, -2, 2, 0.5],
"constraints": {"fixed": {"x_break": True, "delta": True}},
}
model_with_deriv = create_model(
SmoothlyBrokenPowerLaw1D, parameters, use_constraints=False
)
model_no_deriv = create_model(
SmoothlyBrokenPowerLaw1D, parameters, use_constraints=False
)
# NOTE: PR 10644 replaced deprecated usage of RandomState but could not
# find a new seed that did not cause test failure, resorted to hardcoding.
# add 10% noise to the amplitude
# fmt: off
rsn_rand_1234567890 = np.array(
[
0.61879477, 0.59162363, 0.88868359, 0.89165480, 0.45756748,
0.77818808, 0.26706377, 0.99610621, 0.54009489, 0.53752161,
0.40099938, 0.70540579, 0.40518559, 0.94999075, 0.03075388,
0.13602495, 0.08297726, 0.42352224, 0.23449723, 0.74743526,
0.65177865, 0.68998682, 0.16413419, 0.87642114, 0.44733314,
0.57871104, 0.52377835, 0.62689056, 0.34869427, 0.26209748,
0.07498055, 0.17940570, 0.82999425, 0.98759822, 0.11326099,
0.63846415, 0.73056694, 0.88321124, 0.52721004, 0.66487673,
0.74209309, 0.94083846, 0.70123128, 0.29534353, 0.76134369,
0.77593881, 0.36985514, 0.89519067, 0.33082813, 0.86108824,
0.76897859, 0.61343376, 0.43870907, 0.91913538, 0.76958966,
0.51063556, 0.04443249, 0.57463611, 0.31382006, 0.41221713,
0.21531811, 0.03237521, 0.04166386, 0.73109303, 0.74556052,
0.64716325, 0.77575353, 0.64599254, 0.16885816, 0.48485480,
0.53844248, 0.99690349, 0.23657074, 0.04119088, 0.46501519,
0.35739006, 0.23002665, 0.53420791, 0.71639475, 0.81857486,
0.73994342, 0.07948837, 0.75688276, 0.13240193, 0.48465576,
0.20624753, 0.02298276, 0.54257873, 0.68123230, 0.35887468,
0.36296147, 0.67368397, 0.29505730, 0.66558885, 0.93652252,
0.36755130, 0.91787687, 0.75922703, 0.48668067, 0.45967890
]
)
# fmt: on
n = 0.1 * parameters["parameters"][0] * (rsn_rand_1234567890 - 0.5)
data = model_with_deriv(x) + n
fitter_with_deriv = fitting.LevMarLSQFitter()
new_model_with_deriv = fitter_with_deriv(model_with_deriv, x, data)
fitter_no_deriv = fitting.LevMarLSQFitter()
new_model_no_deriv = fitter_no_deriv(
model_no_deriv, x, data, estimate_jacobian=True
)
assert_allclose(
new_model_with_deriv.parameters, new_model_no_deriv.parameters, atol=0.5
)
class _ExtendedModelMeta(_ModelMeta):
@classmethod
def __prepare__(cls, name, bases, **kwds):
# this shows the parent class machinery still applies
namespace = super().__prepare__(name, bases, **kwds)
# the custom bit
namespace.update(kwds)
return namespace
model = models.Gaussian1D(1.5, 2.5, 3.5)
assert model.amplitude._description == "Amplitude (peak value) of the Gaussian"
assert model.mean._description == "Position of peak (Gaussian)"
def test_metaclass_kwargs():
"""Test can pass kwargs to Models"""
class ClassModel(FittableModel, flag="flag"):
def evaluate(self):
pass
# Nothing further to test, just making the class is good enough.
def test_submetaclass_kwargs():
"""Test can pass kwargs to Model subclasses."""
class ClassModel(FittableModel, metaclass=_ExtendedModelMeta, flag="flag"):
def evaluate(self):
pass
assert ClassModel.flag == "flag"
class ModelDefault(Model):
slope = Parameter()
intercept = Parameter()
_separable = False
@staticmethod
def evaluate(x, slope, intercept):
return slope * x + intercept
class ModelCustom(ModelDefault):
def _calculate_separability_matrix(self):
return np.array([[0]])
def test_custom_separability_matrix():
original = separability_matrix(ModelDefault(slope=1, intercept=2))
assert original.all()
custom = separability_matrix(ModelCustom(slope=1, intercept=2))
assert not custom.any()
|