File: unified_table.rst

package info (click to toggle)
astropy 7.1.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 34,832 kB
  • sloc: python: 238,140; ansic: 55,278; lex: 8,621; sh: 3,317; xml: 2,287; makefile: 191
file content (301 lines) | stat: -rw-r--r-- 13,325 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
.. _read_write_tables:

Table Data
==========

The :class:`~astropy.table.QTable` and :class:`~astropy.table.Table` classes includes two
methods, :meth:`~astropy.table.Table.read` and :meth:`~astropy.table.Table.write`, that
make it possible to read from and write to files. A number of formats are supported (see
`Built-in table readers/writers`_) and new file formats and extensions can be registered
with the :class:`~astropy.table.Table` class (see :ref:`I/O Registry <io_registry>`).

.. toctree::
    :maxdepth: 1
    :caption: Table Formats

    unified_table_text
    unified_table_fits
    unified_table_hdf5
    unified_table_parquet
    unified_table_votable

..
  EXAMPLE START
  Reading a DAOPhot Table

To use this interface, first import the :class:`~astropy.table.Table` class,
then call the :class:`~astropy.table.Table`
:meth:`~astropy.table.Table.read` method with the name of the file and
the file format, for instance ``'ascii.daophot'``:

.. doctest-skip::

    >>> from astropy.table import Table
    >>> t = Table.read('photometry.dat', format='ascii.daophot')

..
  EXAMPLE END

..
  EXAMPLE START
  Reading a Table directly from the Internet

It is possible to load tables directly from the Internet using URLs. For
example, download tables from Vizier catalogues in CDS format
(``'ascii.cds'``):

.. doctest-remote-data::

    >>> from astropy.table import Table
    >>> t = Table.read("ftp://cdsarc.unistra.fr/pub/cats/VII/253/snrs.dat",
    ...         readme="ftp://cdsarc.unistra.fr/pub/cats/VII/253/ReadMe",
    ...         format="ascii.cds")

For certain file formats the format can be automatically detected, for
example, from the filename extension::

    >>> t = Table.read('table.tex')  # doctest: +SKIP

..
  EXAMPLE END

..
  EXAMPLE START
  Writing a LaTeX Table

For writing a table, the format can be explicitly specified::

    >>> t.write(filename, format='latex')  # doctest: +SKIP

As for the :meth:`~astropy.table.Table.read` method, the format may
be automatically identified in some cases.

The underlying file handler will also automatically detect various
compressed data formats and uncompress them as far as
supported by the Python installation (see
:meth:`~astropy.utils.data.get_readable_fileobj`).

For writing, you can also specify details about the `Table serialization
methods`_ via the ``serialize_method`` keyword argument. This allows
fine control of the way to write out certain columns, for instance
writing an ISO format Time column as a pair of JD1/JD2 floating
point values (for full resolution) or as a formatted ISO date string.

..
  EXAMPLE END

.. _built_in_readers_writers:

Built-In Table Readers/Writers
------------------------------

The :class:`~astropy.table.Table` class has built-in support for various input
and output formats including :ref:`table_io_ascii`,
:ref:`table_io_fits`, :ref:`table_io_hdf5`, :ref:`table_io_pandas`,
:ref:`table_io_parquet`, and :ref:`table_io_votable`.

A full list of the supported formats and corresponding classes is shown in the
table below. The ``Write`` column indicates those formats that support write
functionality, and the ``Suffix`` column indicates the filename suffix
indicating a particular format. If the value of ``Suffix`` is ``auto``, the
format is auto-detected from the file itself. Not all formats support auto-
detection.

===========================  =====  ======  ============================================================================================
           Format            Write  Suffix                                          Description
===========================  =====  ======  ============================================================================================
                      ascii    Yes          Text table in most supported formats (uses guessing)
               ascii.aastex    Yes          :class:`~astropy.io.ascii.AASTex`: AASTeX deluxetable used for AAS journals
                ascii.basic    Yes          :class:`~astropy.io.ascii.Basic`: Basic table with custom delimiters
                  ascii.cds     No          :class:`~astropy.io.ascii.Cds`: CDS format table
     ascii.commented_header    Yes          :class:`~astropy.io.ascii.CommentedHeader`: Column names in a commented line
                  ascii.csv    Yes    .csv  :class:`~astropy.io.ascii.Csv`: Basic table with comma-separated values
              ascii.daophot     No          :class:`~astropy.io.ascii.Daophot`: IRAF DAOphot format table
                 ascii.ecsv    Yes   .ecsv  :class:`~astropy.io.ascii.Ecsv`: Basic table with Enhanced CSV (supporting metadata)
          ascii.fixed_width    Yes          :class:`~astropy.io.ascii.FixedWidth`: Fixed width
ascii.fixed_width_no_header    Yes          :class:`~astropy.io.ascii.FixedWidthNoHeader`: Fixed width with no header
 ascii.fixed_width_two_line    Yes          :class:`~astropy.io.ascii.FixedWidthTwoLine`: Fixed width with second header line
                 ascii.html    Yes   .html  :class:`~astropy.io.ascii.HTML`: HTML table
                 ascii.ipac    Yes          :class:`~astropy.io.ascii.Ipac`: IPAC format table
                ascii.latex    Yes    .tex  :class:`~astropy.io.ascii.Latex`: LaTeX table
                  ascii.mrt    Yes          :class:`~astropy.io.ascii.Mrt`: AAS Machine-Readable Table format
            ascii.no_header    Yes          :class:`~astropy.io.ascii.NoHeader`: Basic table with no headers
                  ascii.qdp    Yes    .qdp   :class:`~astropy.io.ascii.QDP`: Quick and Dandy Plotter files
                  ascii.rdb    Yes    .rdb  :class:`~astropy.io.ascii.Rdb`: Tab-separated with a type definition header line
                  ascii.rst    Yes    .rst  :class:`~astropy.io.ascii.RST`: reStructuredText simple format table
           ascii.sextractor     No          :class:`~astropy.io.ascii.SExtractor`: SExtractor format table
                  ascii.tab    Yes          :class:`~astropy.io.ascii.Tab`: Basic table with tab-separated values
                 ascii.tdat    Yes   .tdat  :class:`~astropy.io.ascii.Tdat`: Transportable Database Aggregate Table format
                       fits    Yes    auto  :mod:`~astropy.io.fits`: Flexible Image Transport System file
                       hdf5    Yes    auto  |HDF5|: Hierarchical Data Format binary file
                   jsviewer    Yes          JavaScript viewer format (write-only)
                 pandas.csv    Yes          :func:`pandas.read_csv` and :meth:`pandas.DataFrame.to_csv`
                 pandas.fwf     No          :func:`pandas.read_fwf` (fixed width format)
                pandas.html    Yes          :func:`pandas.read_html` and :meth:`pandas.DataFrame.to_html`
                pandas.json    Yes          :func:`pandas.read_json` and :meth:`pandas.DataFrame.to_json`
                    parquet    Yes    auto  |Parquet|: Apache Parquet binary file
            parquet.votable    Yes          Parquet file(s) with VOTable metadata
                pyarrow.csv     No          :func:`~astropy.io.misc.pyarrow.csv.read_csv`: Performant CSV reader
                    votable    Yes    auto  :mod:`~astropy.io.votable`: Table format used by Virtual Observatory (VO) initiative
            votable.parquet    Yes          Parquet serialization of VOTables. Specify this format for writing, reading is automatic.
===========================  =====  ======  ============================================================================================

Details
-------

.. _table_serialization_methods:

Table Serialization Methods
^^^^^^^^^^^^^^^^^^^^^^^^^^^

``astropy`` supports fine-grained control of the way to write out (serialize)
the columns in a Table. For instance, if you are writing an ISO format
Time column to an ECSV text table file, you may want to write this as a pair
of JD1/JD2 floating point values for full resolution (perfect "round-trip"),
or as a formatted ISO date string so that the values are easily readable by
your other applications.

The default method for serialization depends on the format (FITS, ECSV, HDF5).
For instance HDF5 is a binary format and so it would make sense to store a Time
object as JD1/JD2, while ECSV is a flat text format and commonly you
would want to see the date in the same format as the Time object. The defaults
also reflect an attempt to minimize compatibility issues between ``astropy``
versions. For instance, it was possible to write Time columns to ECSV as
formatted strings in a version prior to the ability to write as JD1/JD2
pairs, so the current default for ECSV is to write as formatted strings.

The two classes which have configurable serialization methods are `~astropy.time.Time`
and `~astropy.table.MaskedColumn`. The defaults for each format are listed below:

====== ==================== ===============
Format    Time                MaskedColumn
====== ==================== ===============
FITS    ``jd1_jd2``          ``null_value``
ECSV    ``formatted_value``  ``null_value``
HDF5    ``jd1_jd2``          ``data_mask``
YAML    ``jd2_jd2``            ---
====== ==================== ===============

Examples
""""""""

..
  EXAMPLE START
  Table Serialization Methods in astropy.io

Start by making a table with a Time column and masked column::

  >>> import sys
  >>> from astropy.time import Time
  >>> from astropy.table import Table, MaskedColumn

  >>> t = Table(masked=True)
  >>> t['tm'] = Time(['2000-01-01', '2000-01-02'])
  >>> t['mc1'] = MaskedColumn([1.0, 2.0], mask=[True, False])
  >>> t['mc2'] = MaskedColumn([3.0, 4.0], mask=[False, True])
  >>> t
  <Table masked=True length=2>
             tm             mc1     mc2
            Time          float64 float64
  ----------------------- ------- -------
  2000-01-01 00:00:00.000      --     3.0
  2000-01-02 00:00:00.000     2.0      --

Now specify that you want all `~astropy.time.Time` columns written as JD1/JD2
and the ``mc1`` column written as a data/mask pair and write to ECSV::

  >>> serialize_method = {Time: 'jd1_jd2', 'mc1': 'data_mask'}
  >>> t.write(sys.stdout, format='ascii.ecsv', serialize_method=serialize_method)  # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
  # %ECSV 1.0
   ...
  # schema: astropy-2.0
   tm.jd1    tm.jd2  mc1  mc1.mask  mc2
  2451544.0    0.5   1.0   True     3.0
  2451546.0   -0.5   2.0   False     ""

(Spaces added for clarity)

Notice that the ``tm`` column has been replaced by the ``tm.jd1`` and ``tm.jd2``
columns, and likewise a new column ``mc1.mask`` has appeared and it explicitly
contains the mask values. When this table is read back with the ``ascii.ecsv``
reader then the original columns are reconstructed.

The ``serialize_method`` argument can be set in two different ways:

- As a single string like ``data_mask``. This value then applies to every
  column, and is a convenient strategy for a masked table with no Time columns.
- As a `dict`, where the key can be either a single column name or a class (as
  shown in the example above), and the value is the corresponding serialization
  method.

..
  EXAMPLE END

Reading and Writing Column Objects
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. EXAMPLE START: Reading and Writing Column Objects

Individual table columns do not have their own functions for reading and writing
but it is easy to select just a single column (here "obstime") from a table for writing::

    >>> from astropy.time import Time
    >>> tab = Table({'name': ['AB Aur', 'SU Aur'],
    ...              'obstime': Time(['2013-05-23T14:23:12', '2011-11-11T11:11:11'])})
    >>> tab[['obstime']].write('obstime.fits')

Note the notation ``[['obstime']]`` in the last line - indexing a table with a list of strings
gives us a new table with the columns given by the strings. Since the inner list has only
one element, the resulting table has only one column.

Then, we can read back that single-column table and extract the column from it::

    >>> col = Table.read('obstime.fits').columns[0]
    >>> type(col)
    <class 'astropy.table.column.Column'>

.. testcleanup::

    >>> import pathlib
    >>> pathlib.Path.unlink('obstime.fits')

.. EXAMPLE END

Note on Filenames
^^^^^^^^^^^^^^^^^
Both the :meth:`~astropy.table.Table.read` and
:meth:`~astropy.table.Table.write` methods can accept file paths of the form
``~/data/file.csv`` or ``~username/data/file.csv``. These tilde-prefixed paths
are expanded in the same way as is done by many command-line utilities, to
represent the home directory of the current or specified user, respectively.

Command-Line Utility
^^^^^^^^^^^^^^^^^^^^

.. note::

    In v7.1, the ``showtable`` command is now deprecated to avoid a name clash on Debian;
    use ``showtable-astropy`` instead. The deprecated command will be removed in a future
    release.

For convenience, the command-line tool ``showtable-astropy`` can be used to print the
content of tables for the formats supported by the unified I/O interface.

Example
"""""""

..
  EXAMPLE START
  Viewing the Contents of a Table on the Command Line

To view the contents of a table on the command line::

    $ showtable-astropy astropy/io/fits/tests/data/table.fits

     target V_mag
    ------- -----
    NGC1001  11.1
    NGC1002  12.3
    NGC1003  15.2

To get full documentation on the usage and available options, do ``showtable-astropy --help``.