| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 
 | .. _access_table:
Accessing a Table
*****************
Accessing table properties and data is generally consistent with the basic
interface for ``numpy`` `structured arrays
<https://numpy.org/doc/stable/user/basics.rec.html>`_.
Basics
======
For a quick overview, the code below shows the basics of accessing table data.
Where relevant, there is a comment about what sort of object is returned.
Except where noted, table access returns objects that can be modified in order
to update the original table data or properties. See also the section on
:ref:`copy_versus_reference` to learn more about this topic.
**Make a table**
::
  from astropy.table import Table
  import numpy as np
  arr = np.arange(15).reshape(5, 3)
  t = Table(arr, names=('a', 'b', 'c'), meta={'keywords': {'key1': 'val1'}})
**Table properties**
::
  t.columns   # Dict of table columns (access by column name, index, or slice)
  t.colnames  # List of column names
  t.meta      # Dict of meta-data
  len(t)      # Number of table rows
**Access table data**
::
  t['a']       # Column 'a'
  t['a'][1]    # Row 1 of column 'a'
  t[1]         # Row 1
  t[1]['a']    # Column 'a' of row 1
  t[1][1:]     # Row 1, columns b and c
  t[2:5]       # Table object with rows 2:5
  t[[1, 3, 4]]  # Table object with rows 1, 3, 4 (copy)
  t[np.array([1, 3, 4])]  # Table object with rows 1, 3, 4 (copy)
  t[[]]        # Same table definition but with no rows of data
  t['a', 'c']  # Table with cols 'a', 'c' (copy)
  dat = np.array(t)  # Copy table data to numpy structured array object
  t['a'].quantity  # an astropy.units.Quantity for Column 'a'
  t['a'].to('km')  # an astropy.units.Quantity for Column 'a' in units of kilometers
  t.columns[1]  # Column 1 (which is the 'b' column)
  t.columns[0:2]  # New table with columns 0 and 1
.. Note::
   Although they appear nearly equivalent, there is a factor of two performance
   difference between ``t[1]['a']`` (slower, because an intermediate |Row|
   object gets created) versus ``t['a'][1]`` (faster). Always use the latter
   when possible.
**Print table or column**
::
  print(t)     # Print formatted version of table to the screen
  t.pprint()   # Same as above
  t.pprint(show_unit=True)  # Show column unit
  t.pprint(show_name=False)  # Do not show column names
  t.pprint_all() # Print full table no matter how long / wide it is (same as t.pprint(max_lines=-1, max_width=-1))
  t.more()  # Interactively scroll through table like Unix "more"
  print(t['a'])    # Formatted column values
  t['a'].pprint()  # Same as above, with same options as Table.pprint()
  t['a'].more()    # Interactively scroll through column
  t['a', 'c'].pprint()  # Print columns 'a' and 'c' of table
  lines = t.pformat()  # Formatted table as a list of lines (same options as pprint)
  lines = t['a'].pformat()  # Formatted column values as a list
Details
=======
For all of the following examples it is assumed that the table has been created
as follows::
  >>> from astropy.table import Table, Column
  >>> import numpy as np
  >>> import astropy.units as u
  >>> arr = np.arange(15, dtype=np.int32).reshape(5, 3)
  >>> t = Table(arr, names=('a', 'b', 'c'), meta={'keywords': {'key1': 'val1'}})
  >>> t['a'].format = "{:.3f}"  # print with 3 digits after decimal point
  >>> t['a'].unit = 'm sec^-1'
  >>> t['a'].description = 'unladen swallow velocity'
  >>> print(t)
       a      b   c
    m sec^-1
    -------- --- ---
       0.000   1   2
       3.000   4   5
       6.000   7   8
       9.000  10  11
      12.000  13  14
.. Note::
   In the example above the ``format``, ``unit``, and ``description``
   attributes of the |Column| were set directly. For :ref:`mixin_columns` like
   |Quantity| you must set via the ``info`` attribute, for example,
   ``t['a'].info.format = "{:.3f}"``. You can use the ``info`` attribute with
   |Column| objects as well, so the general solution that works with any table
   column is to set via the ``info`` attribute. See :ref:`mixin_attributes` for
   more information.
.. _table-summary-information:
Summary Information
-------------------
You can get summary information about the table as follows::
  >>> t.info
  <Table length=5>
  name dtype   unit   format       description
  ---- ----- -------- ------ ------------------------
     a int32 m sec^-1 {:.3f} unladen swallow velocity
     b int32
     c int32
If called as a function then you can supply an ``option`` that specifies
the type of information to return. The built-in ``option`` choices are
``'attributes'`` (column attributes, which is the default) or ``'stats'``
(basic column statistics). The ``option`` argument can also be a list
of available options::
  >>> t.info('stats')  # doctest: +FLOAT_CMP
  <Table length=5>
  name mean   std   min max
  ---- ---- ------- --- ---
     a    6 4.24264   0  12
     b    7 4.24264   1  13
     c    8 4.24264   2  14
  >>> t.info(['attributes', 'stats'])  # doctest: +FLOAT_CMP
  <Table length=5>
  name dtype   unit   format       description        mean   std   min max
  ---- ----- -------- ------ ------------------------ ---- ------- --- ---
     a int32 m sec^-1 {:.3f} unladen swallow velocity    6 4.24264   0  12
     b int32                                             7 4.24264   1  13
     c int32                                             8 4.24264   2  14
Columns also have an ``info`` property that has the same behavior and
arguments, but provides information about a single column::
  >>> t['a'].info
  name = a
  dtype = int32
  unit = m sec^-1
  format = {:.3f}
  description = unladen swallow velocity
  class = Column
  n_bad = 0
  length = 5
  >>> t['a'].info('stats')  # doctest: +FLOAT_CMP
  name = a
  mean = 6
  std = 4.24264
  min = 0
  max = 12
  n_bad = 0
  length = 5
Accessing Properties
--------------------
The code below shows accessing the table columns as a |TableColumns| object,
getting the column names, table metadata, and number of table rows. The table
metadata is a :class:`dict` by default.
::
  >>> t.columns
  <TableColumns names=('a','b','c')>
  >>> t.colnames
  ['a', 'b', 'c']
  >>> t.meta  # Dict of meta-data
  {'keywords': {'key1': 'val1'}}
  >>> len(t)
  5
Accessing Data
--------------
As expected you can access a table column by name and get an element from that
column with a numerical index::
  >>> t['a']  # Column 'a'
  <Column name='a' dtype='int32' unit='m sec^-1' format='{:.3f}' description='unladen swallow velocity' length=5>
   0.000
   3.000
   6.000
   9.000
  12.000
  >>> t['a'][1]  # Row 1 of column 'a'
  np.int32(3)
When a table column is printed, it is formatted according to the ``format``
attribute (see :ref:`table_format_string`). Note the difference between the
column representation above and how it appears via ``print()`` or ``str()``::
  >>> print(t['a'])
     a
  m sec^-1
  --------
     0.000
     3.000
     6.000
     9.000
    12.000
Likewise a table row and a column from that row can be selected::
  >>> t[1]  # Row object corresponding to row 1
  <Row index=1>
     a       b     c
  m sec^-1
   int32   int32 int32
  -------- ----- -----
     3.000     4     5
  >>> t[1]['a']  # Column 'a' of row 1
  np.int32(3)
A |Row| object has the same columns and metadata as its parent table::
  >>> t[1].columns
  <TableColumns names=('a','b','c')>
  >>> t[1].meta
  {'keywords': {'key1': 'val1'}}
Slicing a table returns a new table object with references to the original
data within the slice region (See :ref:`copy_versus_reference`). The table
metadata and column definitions are copied.
::
  >>> t[2:5]  # Table object with rows 2:5 (reference)
  <Table length=3>
     a       b     c
  m sec^-1
   int32   int32 int32
  -------- ----- -----
     6.000     7     8
     9.000    10    11
    12.000    13    14
It is possible to select table rows with an array of indexes or by specifying
multiple column names. This returns a copy of the original table for the
selected rows or columns.  ::
  >>> print(t[[1, 3, 4]])  # Table object with rows 1, 3, 4 (copy)
       a      b   c
    m sec^-1
    -------- --- ---
       3.000   4   5
       9.000  10  11
      12.000  13  14
  >>> print(t[np.array([1, 3, 4])])  # Table object with rows 1, 3, 4 (copy)
       a      b   c
    m sec^-1
    -------- --- ---
       3.000   4   5
       9.000  10  11
      12.000  13  14
  >>> print(t['a', 'c'])  # or t[['a', 'c']] or t[('a', 'c')]
  ...                     # Table with cols 'a', 'c' (copy)
       a      c
    m sec^-1
    -------- ---
       0.000   2
       3.000   5
       6.000   8
       9.000  11
      12.000  14
We can select rows from a table using conditionals to create boolean masks. A
table indexed with a boolean array will only return rows where the mask array
element is `True`. Different conditionals can be combined using the bitwise
operators.  ::
  >>> mask = (t['a'] > 4) & (t['b'] > 8)  # Table rows where column a > 4
  >>> print(t[mask])                      # and b > 8
  ...
       a      b   c
    m sec^-1
    -------- --- ---
       9.000  10  11
      12.000  13  14
Finally, you can access the underlying table data as a native ``numpy``
structured array by creating a copy or reference with :func:`numpy.array`::
  >>> data = np.array(t)  # copy of data in t as a structured array
  >>> data = np.array(t, copy=False)  # reference to data in t
Possibly missing columns
^^^^^^^^^^^^^^^^^^^^^^^^
In some cases it might not be guaranteed that a column is present in a table,
but there does exist a good default value that can be used if it is not. The
columns of a |Table| can be represented as a :class:`dict` subclass instance
through the ``columns`` attribute, which means that a replacement for missing
columns can be provided using the :meth:`dict.get` method::
    >>> t.columns.get("b", np.zeros(len(t)))
    <Column name='b' dtype='int32' length=5>
     1
     4
     7
    10
    13
    >>> t.columns.get("x", np.zeros(len(t)))
    array([0., 0., 0., 0., 0.])
In case of a single |Row| it is possible to use its
:meth:`~astropy.table.Row.get` method without having to go through
``columns``::
    >>> row = t[2]
    >>> row.get("c", -1)
    np.int32(8)
    >>> row.get("y", -1)
    -1
Table Equality
--------------
We can check table data equality using two different methods:
- The ``==`` comparison operators. In the general case, this returns a 1D array
  with ``dtype=bool`` mapping each row to ``True`` if and only if the *entire row*
  matches. For incomparable data (different ``dtype`` or unbroacastable lengths),
  a boolean ``False`` is returned.
  This is in contrast to the behavior of ``numpy`` where trying to compare
  structured arrays might raise exceptions.
- Table :meth:`~astropy.table.Table.values_equal` to compare table values
  element-wise. This returns a boolean `True` or `False` for each table
  *element*, so you get a `~astropy.table.Table` of values.
.. note:: both methods will report equality *after* broadcasting, which
  matches ``numpy`` array comparison.
Examples
^^^^^^^^
.. EXAMPLE START: Checking Table Equality
To check table equality::
  >>> t1 = Table(rows=[[1, 2, 3],
  ...                  [4, 5, 6],
  ...                  [7, 7, 9]], names=['a', 'b', 'c'])
  >>> t2 = Table(rows=[[1, 2, -1],
  ...                  [4, -1, 6],
  ...                  [7, 7, 9]], names=['a', 'b', 'c'])
  >>> t1 == t2
  array([False, False,  True])
  >>> t1.values_equal(t2)  # Compare to another table
  <Table length=3>
   a     b     c
  bool  bool  bool
  ---- ----- -----
  True  True False
  True False  True
  True  True  True
  >>> t1.values_equal([2, 4, 7])  # Compare to an array column-wise
  <Table length=3>
    a     b     c
   bool  bool  bool
  ----- ----- -----
  False  True False
   True False False
   True  True False
  >>> t1.values_equal(7)  # Compare to a scalar column-wise
  <Table length=3>
    a     b     c
   bool  bool  bool
  ----- ----- -----
  False False False
  False False False
   True  True False
.. EXAMPLE END
Formatted Printing
------------------
The values in a table or column can be printed or retrieved as a formatted
table using one of several methods:
- `print()` function.
- `Table.more() <astropy.table.Table.more>` or `Column.more()
  <astropy.table.Column.more>` methods to interactively scroll through
  table values.
- `Table.pprint() <astropy.table.Table.pprint>` or `Column.pprint()
  <astropy.table.Column.pprint>` methods to print a formatted version of
  the table to the screen.
- `Table.pformat() <astropy.table.Table.pformat>` or `Column.pformat()
  <astropy.table.Column.pformat>` methods to return the formatted table
  or column as a list of fixed-width strings. This could be used as a quick way
  to save a table.
These methods use :ref:`table_format_string`
if available and strive to make the output readable.
By default, table and column printing will
not print the table larger than the available interactive screen size. If the
screen size cannot be determined (in a non-interactive environment or on
Windows) then a default size of 25 rows by 80 columns is used. If a table is
too large, then rows and/or columns are cut from the middle so it fits.
Example
^^^^^^^
.. EXAMPLE START: Printing Formatted Tables
To print a formatted table::
  >>> arr = np.arange(3000).reshape(100, 30)  # 100 rows x 30 columns array
  >>> t = Table(arr)
  >>> print(t)
  col0 col1 col2 col3 col4 col5 col6 ... col23 col24 col25 col26 col27 col28 col29
  ---- ---- ---- ---- ---- ---- ---- ... ----- ----- ----- ----- ----- ----- -----
     0    1    2    3    4    5    6 ...    23    24    25    26    27    28    29
    30   31   32   33   34   35   36 ...    53    54    55    56    57    58    59
    60   61   62   63   64   65   66 ...    83    84    85    86    87    88    89
    90   91   92   93   94   95   96 ...   113   114   115   116   117   118   119
   120  121  122  123  124  125  126 ...   143   144   145   146   147   148   149
   150  151  152  153  154  155  156 ...   173   174   175   176   177   178   179
   180  181  182  183  184  185  186 ...   203   204   205   206   207   208   209
   210  211  212  213  214  215  216 ...   233   234   235   236   237   238   239
   240  241  242  243  244  245  246 ...   263   264   265   266   267   268   269
   270  271  272  273  274  275  276 ...   293   294   295   296   297   298   299
   ...  ...  ...  ...  ...  ...  ... ...   ...   ...   ...   ...   ...   ...   ...
  2700 2701 2702 2703 2704 2705 2706 ...  2723  2724  2725  2726  2727  2728  2729
  2730 2731 2732 2733 2734 2735 2736 ...  2753  2754  2755  2756  2757  2758  2759
  2760 2761 2762 2763 2764 2765 2766 ...  2783  2784  2785  2786  2787  2788  2789
  2790 2791 2792 2793 2794 2795 2796 ...  2813  2814  2815  2816  2817  2818  2819
  2820 2821 2822 2823 2824 2825 2826 ...  2843  2844  2845  2846  2847  2848  2849
  2850 2851 2852 2853 2854 2855 2856 ...  2873  2874  2875  2876  2877  2878  2879
  2880 2881 2882 2883 2884 2885 2886 ...  2903  2904  2905  2906  2907  2908  2909
  2910 2911 2912 2913 2914 2915 2916 ...  2933  2934  2935  2936  2937  2938  2939
  2940 2941 2942 2943 2944 2945 2946 ...  2963  2964  2965  2966  2967  2968  2969
  2970 2971 2972 2973 2974 2975 2976 ...  2993  2994  2995  2996  2997  2998  2999
  Length = 100 rows
.. EXAMPLE END
more() method
^^^^^^^^^^^^^
In order to browse all rows of a table or column use the `Table.more()
<astropy.table.Table.more>` or `Column.more() <astropy.table.Column.more>`
methods. These let you interactively scroll through the rows much like the Unix
``more`` command. Once part of the table or column is displayed the supported
navigation keys are:
|  **f, space** : forward one page
|  **b** : back one page
|  **r** : refresh same page
|  **n** : next row
|  **p** : previous row
|  **<** : go to beginning
|  **>** : go to end
|  **q** : quit browsing
|  **h** : print this help
pprint() method
^^^^^^^^^^^^^^^
In order to fully control the print output use the `Table.pprint()
<astropy.table.Table.pprint>` or `Column.pprint()
<astropy.table.Column.pprint>` methods. These have keyword arguments
``max_lines``, ``max_width``, ``show_name``, ``show_unit``, and
``show_dtype``, with meanings as shown below::
  >>> arr = np.arange(3000, dtype=float).reshape(100, 30)
  >>> t = Table(arr)
  >>> t['col0'].format = '%e'
  >>> t['col0'].unit = 'km**2'
  >>> t['col29'].unit = 'kg sec m**-2'
  >>> t.pprint(max_lines=8, max_width=40)
      col0     ...    col29
      km2      ... kg sec m**-2
  ------------ ... ------------
  0.000000e+00 ...         29.0
           ... ...          ...
  2.940000e+03 ...       2969.0
  2.970000e+03 ...       2999.0
  Length = 100 rows
  >>> t.pprint(max_lines=8, max_width=40, show_unit=False)
      col0     ... col29
  ------------ ... ------
  0.000000e+00 ...   29.0
           ... ...    ...
  2.940000e+03 ... 2969.0
  2.970000e+03 ... 2999.0
  Length = 100 rows
  >>> t.pprint(max_lines=8, max_width=40, show_name=False)
      km2      ... kg sec m**-2
  ------------ ... ------------
  0.000000e+00 ...         29.0
  3.000000e+01 ...         59.0
           ... ...          ...
  2.940000e+03 ...       2969.0
  2.970000e+03 ...       2999.0
  Length = 100 rows
  >>> t.pprint(max_lines=8, max_width=40, show_dtype=True)
      col0       col1  ...    col29
      km2              ... kg sec m**-2
    float64    float64 ...   float64
  ------------ ------- ... ------------
  0.000000e+00     1.0 ...         29.0
           ...     ... ...          ...
  2.970000e+03  2971.0 ...       2999.0
  Length = 100 rows
In order to force printing all values regardless of the output length or width
use :meth:`~astropy.table.Table.pprint_all`, which is equivalent to setting
``max_lines`` and ``max_width`` to ``-1`` in :meth:`~astropy.table.Table.pprint`.
:meth:`~astropy.table.Table.pprint_all` takes the same arguments as :meth:`~astropy.table.Table.pprint`.
For the wide table in this example you see six lines of wrapped output like the
following::
  >>> t.pprint_all(max_lines=8)  # doctest: +SKIP
      col0         col1     col2   col3   col4   col5   col6   col7   col8   col9  col10  col11  col12  col13  col14  col15  col16  col17  col18  col19  col20  col21  col22  col23  col24  col25  col26  col27  col28     col29
      km2                                                                                                                                                                                                               kg sec m**-2
  ------------ ----------- ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------------
  0.000000e+00    1.000000    2.0    3.0    4.0    5.0    6.0    7.0    8.0    9.0   10.0   11.0   12.0   13.0   14.0   15.0   16.0   17.0   18.0   19.0   20.0   21.0   22.0   23.0   24.0   25.0   26.0   27.0   28.0         29.0
           ...         ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...          ...
  2.940000e+03 2941.000000 2942.0 2943.0 2944.0 2945.0 2946.0 2947.0 2948.0 2949.0 2950.0 2951.0 2952.0 2953.0 2954.0 2955.0 2956.0 2957.0 2958.0 2959.0 2960.0 2961.0 2962.0 2963.0 2964.0 2965.0 2966.0 2967.0 2968.0       2969.0
  2.970000e+03 2971.000000 2972.0 2973.0 2974.0 2975.0 2976.0 2977.0 2978.0 2979.0 2980.0 2981.0 2982.0 2983.0 2984.0 2985.0 2986.0 2987.0 2988.0 2989.0 2990.0 2991.0 2992.0 2993.0 2994.0 2995.0 2996.0 2997.0 2998.0       2999.0
  Length = 100 rows
For columns, the syntax and behavior of :func:`~astropy.table.Column.pprint` is
the same except that there is no ``max_width`` keyword argument::
  >>> t['col3'].pprint(max_lines=8)
   col3
  ------
     3.0
    33.0
     ...
  2943.0
  2973.0
  Length = 100 rows
Column alignment
^^^^^^^^^^^^^^^^
Individual columns have the ability to be aligned in a number of different
ways for an enhanced viewing experience::
  >>> t1 = Table()
  >>> t1['long column name 1'] = [1, 2, 3]
  >>> t1['long column name 2'] = [4, 5, 6]
  >>> t1['long column name 3'] = [7, 8, 9]
  >>> t1['long column name 4'] = [700000, 800000, 900000]
  >>> t1['long column name 2'].info.format = '<'
  >>> t1['long column name 3'].info.format = '0='
  >>> t1['long column name 4'].info.format = '^'
  >>> t1.pprint()
   long column name 1 long column name 2 long column name 3 long column name 4
  ------------------ ------------------ ------------------ ------------------
                   1 4                  000000000000000007       700000
                   2 5                  000000000000000008       800000
                   3 6                  000000000000000009       900000
Conveniently, alignment can be handled another way — by passing a list to the
keyword argument ``align``::
  >>> t1 = Table()
  >>> t1['column1'] = [1, 2, 3]
  >>> t1['column2'] = [2, 4, 6]
  >>> t1.pprint(align=['<', '0='])
  column1 column2
  ------- -------
  1       0000002
  2       0000004
  3       0000006
It is also possible to set the alignment of all columns with a single
string value::
  >>> t1.pprint(align='^')
  column1 column2
  ------- -------
     1       2
     2       4
     3       6
The fill character for justification can be set as a prefix to the
alignment character (see `Format Specification Mini-Language
<https://docs.python.org/3/library/string.html#format-specification-mini-language>`_
for additional explanation). This can be done both in the ``align`` argument
and in the column ``format`` attribute. Note the interesting interaction below::
  >>> t1 = Table([[1.0, 2.0], [1, 2]], names=['column1', 'column2'])
  >>> t1['column1'].format = '#^.2f'
  >>> t1.pprint()
  column1 column2
  ------- -------
  ##1.00#       1
  ##2.00#       2
Now if we set a global align, it seems like our original column format
got lost::
  >>> t1.pprint(align='!<')
  column1 column2
  ------- -------
  1.00!!! 1!!!!!!
  2.00!!! 2!!!!!!
The way to avoid this is to explicitly specify the alignment strings
for every column and use `None` where the column format should be
used::
  >>> t1.pprint(align=[None, '!<'])
  column1 column2
  ------- -------
  ##1.00# 1!!!!!!
  ##2.00# 2!!!!!!
pformat() method
^^^^^^^^^^^^^^^^
In order to get the formatted output for manipulation or writing to a file use
the `Table.pformat() <astropy.table.Table.pformat>` or `Column.pformat()
<astropy.table.Column.pformat>` methods. These behave just as for
:meth:`~astropy.table.Table.pprint` but return a list corresponding to each
formatted line in the :meth:`~astropy.table.Table.pprint` output. The
:meth:`~astropy.table.Table.pformat_all` method can be used to return a list
for all lines in the |Table|.
  >>> lines = t['col3'].pformat(max_lines=8)
Hiding columns
^^^^^^^^^^^^^^
The |Table| class has functionality to selectively show or hide certain columns
within the table when using any of the print methods. This can be useful for
columns that are very wide or else "uninteresting" for various reasons. The
specification of which columns are outputted is associated with the table itself
so that it persists through slicing, copying, and serialization (e.g. saving to
:ref:`ecsv_format`). One use case is for specialized table subclasses that
contain auxiliary columns that are not typically useful to the user.
The specification of which columns to include when printing is handled through
two complementary |Table| attributes:
- `~astropy.table.Table.pprint_include_names`: column names to include, where
  the default value of `None` implies including all columns.
- `~astropy.table.Table.pprint_exclude_names`: column names to exclude, where
  the default value of `None` implies excluding no columns.
Typically you should use just one of the two attributes at a time. However,
both can be set at once and the set of columns that actually gets printed
is conceptually expressed in this pseudo-code::
  include_names = (set(table.pprint_include_names() or table.colnames)
                   - set(table.pprint_exclude_names() or ())
Examples
""""""""
Let's start with defining a simple table with one row and six columns::
  >>> from astropy.table.table_helpers import simple_table
  >>> t = simple_table(size=1, cols=6)
  >>> print(t)
  a   b   c   d   e   f
  --- --- --- --- --- ---
  1 1.0   c   4 4.0   f
Now you can get the value of the ``pprint_include_names`` attribute by calling
it as a function, and then include some names for printing::
  >>> print(t.pprint_include_names())
  None
  >>> t.pprint_include_names = ('a', 'c', 'e')
  >>> print(t.pprint_include_names())
  ('a', 'c', 'e')
  >>> print(t)
   a   c   e
  --- --- ---
    1   c 4.0
Now you can instead exclude some columns from printing. Note that for both
include and exclude, you can add column names that do not exist in the table.
This allows pre-defining the attributes before the table has been fully
constructed.
::
  >>> t.pprint_include_names = None  # Revert to printing all columns
  >>> t.pprint_exclude_names = ('a', 'c', 'e', 'does-not-exist')
  >>> print(t)
   b   d   f
  --- --- ---
  1.0   4   f
Next you can ``add`` or ``remove`` names from the attribute::
  >>> t = simple_table(size=1, cols=6)  # Start with a fresh table
  >>> t.pprint_exclude_names.add('b')  # Single name
  >>> t.pprint_exclude_names.add(['d', 'f'])  # List or tuple of names
  >>> t.pprint_exclude_names.remove('f')  # Single name or list/tuple of names
  >>> t.pprint_exclude_names()
  ('b', 'd')
Finally, you can temporarily set the attributes within a `context manager
<https://docs.python.org/3/reference/datamodel.html#context-managers>`_. For
example::
  >>> t = simple_table(size=1, cols=6)
  >>> t.pprint_include_names = ('a', 'b')
  >>> print(t)
   a   b
  --- ---
    1 1.0
  >>> # Show all (for pprint_include_names the value of None => all columns)
  >>> with t.pprint_include_names.set(None):
  ...     print(t)
   a   b   c   d   e   f
  --- --- --- --- --- ---
    1 1.0   c   4 4.0   f
The specification of names for these attributes can include Unix-style globs
like ``*`` and ``?``. See `fnmatch` for details (and in particular how to
escape those characters if needed). For example::
  >>> t = Table()
  >>> t.pprint_exclude_names = ['boring*']
  >>> t['a'] = [1]
  >>> t['b'] = ['b']
  >>> t['boring_ra'] = [122.0]
  >>> t['boring_dec'] = [89.9]
  >>> print(t)
   a   b
  --- ---
    1   b
Multidimensional columns
^^^^^^^^^^^^^^^^^^^^^^^^
If a column has more than one dimension then each element of the column is
itself an array. In the example below there are three rows, each of which is a
``2 x 2`` array. The formatted output for such a column shows only the first
and last value of each row element and indicates the array dimensions in the
column name header::
  >>> t = Table()
  >>> arr = [ np.array([[ 1.,  2.],
  ...                   [10., 20.]]),
  ...         np.array([[ 3.,  4.],
  ...                   [30., 40.]]),
  ...         np.array([[ 5.,  6.],
  ...                   [50., 60.]]) ]
  >>> t['a'] = arr
  >>> t['a'].shape
  (3, 2, 2)
  >>> t.pprint()
       a
  -----------
  1.0 .. 20.0
  3.0 .. 40.0
  5.0 .. 60.0
In order to see all of the data values for a multidimensional column use the
column representation. This uses the standard ``numpy`` mechanism for printing
any array::
  >>> t['a'].data
  array([[[ 1.,  2.],
          [10., 20.]],
         [[ 3.,  4.],
          [30., 40.]],
         [[ 5.,  6.],
          [50., 60.]]])
.. _format_stuctured_array_columns:
Structured array columns
^^^^^^^^^^^^^^^^^^^^^^^^
.. EXAMPLE START: Creating a formatted Astropy Table with a Structured Column
For columns which are structured arrays, the format string must be a a string
that uses `"new style" format strings
<https://docs.python.org/3/library/string.html#format-string-syntax>`_  with
parameter substitutions corresponding to the field names in the structured
array. Consider the example below including a column of parameters values where
the value, min and max are stored in the in the column as fields named ``val``,
``min``, and ``max``. By default the field values are shown as a tuple::
    >>> pars = np.array(
    ...   [(1.2345678, -20, 3),
    ...    (12.345678, 4.5678, 33)],
    ...   dtype=[('val', 'f8'), ('min', 'f8'), ('max', 'f8')]
    ... )
    >>> t = Table()
    >>> t['a'] = [1, 2]
    >>> t['par'] = pars
    >>> print(t)
     a     par [val, min, max]
    --- -------------------------
      1   (1.2345678, -20.0, 3.0)
      2 (12.345678, 4.5678, 33.0)
However, setting the format string appropriately allows formatting each of the
field values and controlling the overall output::
    >>> t['par'].info.format = '{val:6.2f} ({min:5.1f}, {max:5.1f})'
    >>> print(t)
     a   par [val, min, max]
    --- ---------------------
      1   1.23 (-20.0,   3.0)
      2  12.35 (  4.6,  33.0)
.. EXAMPLE END
.. _columns_with_units:
Columns with Units
^^^^^^^^^^^^^^^^^^
.. note::
  |Table| and |QTable| instances handle entries with units differently. The
  following describes |Table|. :ref:`quantity_and_qtable` explains how a
  |QTable| differs from a |Table|.
A |Column| object with units within a standard |Table| has certain
quantity-related conveniences available. To begin with, it can be converted
explicitly to a |Quantity| object via the
:attr:`~astropy.table.Column.quantity` property and the
:meth:`~astropy.table.Column.to` method::
  >>> data = [[1., 2., 3.], [40000., 50000., 60000.]]
  >>> t = Table(data, names=('a', 'b'))
  >>> t['a'].unit = u.m
  >>> t['b'].unit = 'km/s'
  >>> t['a'].quantity  # doctest: +FLOAT_CMP
  <Quantity [1., 2., 3.] m>
  >>> t['b'].to(u.kpc/u.Myr)  # doctest: +FLOAT_CMP
  <Quantity [40.9084866 , 51.13560825, 61.3627299 ] kpc / Myr>
Note that the :attr:`~astropy.table.Column.quantity` property is actually
a *view* of the data in the column, not a copy. Hence, you can set the
values of a column in a way that respects units by making in-place
changes to the :attr:`~astropy.table.Column.quantity` property::
  >>> t['b']
  <Column name='b' dtype='float64' unit='km / s' length=3>
  40000.0
  50000.0
  60000.0
  >>> t['b'].quantity[0] = 45000000*u.m/u.s
  >>> t['b']
  <Column name='b' dtype='float64' unit='km / s' length=3>
  45000.0
  50000.0
  60000.0
Even without explicit conversion, columns with units can be treated like a
|Quantity| in *some* arithmetic expressions (see the warning below for caveats
to this)::
  >>> t['a'] + .005*u.km  # doctest: +FLOAT_CMP
  <Quantity [6., 7., 8.] m>
  >>> from astropy.constants import c
  >>> (t['b'] / c).decompose()  # doctest: +FLOAT_CMP
  <Quantity [0.15010384, 0.16678205, 0.20013846]>
.. warning::
  |Table| columns do *not* always behave the same as |Quantity|. |Table|
  columns act more like regular ``numpy`` arrays unless either explicitly
  converted to a |Quantity| or combined with a |Quantity| using an arithmetic
  operator. For example, the following does not work in the way you would
  expect::
    >>> data = [[30, 90]]
    >>> t = Table(data, names=('angle',))
    >>> t['angle'].unit = 'deg'
    >>> np.sin(t['angle'])  # doctest: +FLOAT_CMP
    <Column name='angle' dtype='float64' unit='deg' length=2>
    -0.988031624093
     0.893996663601
  This is wrong both in that it says the result is in degrees, *and*
  `~numpy.sin` treated the values as radians rather than degrees. If at all in
  doubt that you will get the right result, the safest choice is to either use
  |QTable| or to explicitly convert to |Quantity|::
    >>> np.sin(t['angle'].quantity)  # doctest: +FLOAT_CMP
    <Quantity [0.5, 1. ]>
.. _bytestring-columns-python-3:
Bytestring Columns
^^^^^^^^^^^^^^^^^^
Using bytestring columns (``numpy`` ``'S'`` dtype) is possible
with ``astropy`` tables since they can be compared with the natural
Python string (``str``) type. See `The bytes/str dichotomy in Python 3
<https://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3>`_
for a very brief overview of the difference.
The standard method of representing strings in ``numpy`` is via the
unicode ``'U'`` dtype. The problem is that this requires 4 bytes per
character, and if you have a very large number of strings this could
fill memory and impact performance. A very common use case is that these
strings are actually ASCII and can be represented with 1 byte per character.
In ``astropy`` it is possible to work directly and conveniently with
bytestring data in |Table| and |Column| operations.
Note that the bytestring issue is a particular problem when dealing with HDF5
files, where character data are read as bytestrings (``'S'`` dtype) when using
the :ref:`table_io`. Since HDF5 files are frequently used to store very large
datasets, the memory bloat associated with conversion to ``'U'`` dtype is
unacceptable.
Examples
""""""""
.. EXAMPLE START: Bytestring Data in Astropy Tables
The examples below illustrate dealing with bytestring data in ``astropy``::
    >>> t = Table([['abc', 'def']], names=['a'], dtype=['S'])
    >>> t['a'] == 'abc'  # Gives expected answer
    array([ True, False])
    >>> t['a'] == b'abc'  # Still gives expected answer
    array([ True, False])
    >>> t['a'][0] == 'abc'  # Expected answer
    True
    >>> t['a'][0] == b'abc'  # Cannot compare to bytestring
    False
    >>> t['a'][0] = 'bä'
    >>> t
    <Table length=2>
      a
    bytes3
    ------
        bä
       def
    >>> t['a'] == 'bä'
    array([ True, False])
.. doctest-skip::
    >>> # Round trip unicode strings through HDF5
    >>> t.write('test.hdf5', format='hdf5', path='data', overwrite=True)
    >>> t2 = Table.read('test.hdf5', format='hdf5', path='data')
    >>> t2
    <Table length=2>
     col0
    bytes3
    ------
        bä
       def
.. EXAMPLE END
 |