1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
.. _nddata-covariance:
Covariance
**********
Overview
========
For a data vector, :math:`{\mathbf x} = \{x_0, x_1, ...\}`, the covariance
between any two elements :math:`x_i` and :math:`x_j` define the elements of the
*covariance matrix*
.. math::
\Sigma_{ij} = \rho_{ij} \sigma_i \sigma_j,
where :math:`\rho_{ij}` are the elements of the *correlation matrix* and
:math:`V_i \equiv \sigma^2_i` is the variance in :math:`x_i`. The covariance
matrix is, by definition, symmetric and positive-semidefinite (all eigenvalues
are non-negative).
The `~astropy.nddata.covariance.Covariance` object is a general utility for
constructing, visualizing, and storing two-dimensional covariance matrices. To
minimize its memory footprint, the class uses sparse matrices (i.e., the module
requires `scipy.sparse`) and only stores the upper triangle of the covariance
matrix.
The class provides two convenient *static* methods for swapping between a full
covariance matrix (`~astropy.nddata.covariance.Covariance.revert_correlation`)
and the combination of a variance vector and correlation matrix
(`~astropy.nddata.covariance.Covariance.to_correlation`).
.. _nddata-covariance-intro:
Introductory Examples
---------------------
As a general introduction to covariance matrices, let :math:`{\mathbf x}`
contain 10 measurements. Let the correlation coefficient between adjacent
measurements be 0.5 (:math:`\rho_{ij} = 0.5\ {\rm for}\ |j-i| = 1`), 0.2 for
next but one measurements (:math:`\rho_{ij} = 0.2\ {\rm for}\ |j-i| = 2`), and 0
otherwise. If we adopt unity variance for all elements of :math:`{\mathbf x}`,
we can directly construct the (banded) covariance matrix in python as follows:
>>> import numpy as np
>>>
>>> # Create the covariance matrix as a dense array
>>> npts = 10
>>> c = (np.diag(np.full(npts-2, 0.2, dtype=float), k=-2)
... + np.diag(np.full(npts-1, 0.5, dtype=float), k=-1)
... + np.diag(np.full(npts, 1.0, dtype=float), k=0)
... + np.diag(np.full(npts-1, 0.5, dtype=float), k=1)
... + np.diag(np.full(npts-2, 0.2, dtype=float), k=2))
>>> c
array([[1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. ],
[0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. ],
[0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. ],
[0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. ],
[0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. ],
[0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. ],
[0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2],
[0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. ]])
In this case, the correlation matrix and the covariance matrix are *identical*
because the elements of the variance vector are all unity.
With a correlation matrix, we can construct the covariance matrix with any
arbitrary variance vector. Continuing the example above, the following creates
a new covariance matrix with a variance vector with all elements equal to 4:
>>> new_var = np.full(npts, 4., dtype=float)
>>> new_c = c * np.sqrt(new_var[:,None] * new_var[None,:])
>>> new_c
array([[4. , 2. , 0.8, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[2. , 4. , 2. , 0.8, 0. , 0. , 0. , 0. , 0. , 0. ],
[0.8, 2. , 4. , 2. , 0.8, 0. , 0. , 0. , 0. , 0. ],
[0. , 0.8, 2. , 4. , 2. , 0.8, 0. , 0. , 0. , 0. ],
[0. , 0. , 0.8, 2. , 4. , 2. , 0.8, 0. , 0. , 0. ],
[0. , 0. , 0. , 0.8, 2. , 4. , 2. , 0.8, 0. , 0. ],
[0. , 0. , 0. , 0. , 0.8, 2. , 4. , 2. , 0.8, 0. ],
[0. , 0. , 0. , 0. , 0. , 0.8, 2. , 4. , 2. , 0.8],
[0. , 0. , 0. , 0. , 0. , 0. , 0.8, 2. , 4. , 2. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8, 2. , 4. ]])
Or likewise for heteroscedastic data:
>>> new_var = (1. + np.absolute(np.arange(npts) - npts//2).astype(float))**2
>>> new_var
array([36., 25., 16., 9., 4., 1., 4., 9., 16., 25.])
>>> new_c = c * np.sqrt(new_var[:,None] * new_var[None,:])
>>> new_c
array([[36. , 15. , 4.8, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[15. , 25. , 10. , 3. , 0. , 0. , 0. , 0. , 0. , 0. ],
[ 4.8, 10. , 16. , 6. , 1.6, 0. , 0. , 0. , 0. , 0. ],
[ 0. , 3. , 6. , 9. , 3. , 0.6, 0. , 0. , 0. , 0. ],
[ 0. , 0. , 1.6, 3. , 4. , 1. , 0.8, 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0.6, 1. , 1. , 1. , 0.6, 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0.8, 1. , 4. , 3. , 1.6, 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0.6, 3. , 9. , 6. , 3. ],
[ 0. , 0. , 0. , 0. , 0. , 0. , 1.6, 6. , 16. , 10. ],
[ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 3. , 10. , 25. ]])
.. note::
The `~astropy.nddata.covariance.Covariance` class provides a convenience
function for creating a new `~astropy.nddata.covariance.Covariance` instance
with the same correlation matrix but a new variance vector; see
:ref:`here<covariance-apply-new-variance>`.
Reordering and Subsets
----------------------
When reordering or down-selecting subsets of the elements of :math:`\mathbf{x}`,
these changes must be propagated to the associated covariance matrix, just as
would be needed for the error vector for an uncorrelated dataset.
The example below first generates a vector with a shuffled set of indices. The
reordered :math:`\mathbf{x}` vector would be constructed by setting
``reordered_x = x[i]`` and the covariance matrix would be reordered using
`numpy.ix_`, as follows:
>>> rng = np.random.default_rng(99)
>>> i = np.arange(npts)
>>> rng.shuffle(i)
>>> i
array([4, 6, 0, 3, 8, 1, 2, 5, 7, 9])
>>> reordered_c = c[np.ix_(i,i)]
>>> reordered_c
array([[1. , 0.2, 0. , 0.5, 0. , 0. , 0.2, 0.5, 0. , 0. ],
[0.2, 1. , 0. , 0. , 0.2, 0. , 0. , 0.5, 0.5, 0. ],
[0. , 0. , 1. , 0. , 0. , 0.5, 0.2, 0. , 0. , 0. ],
[0.5, 0. , 0. , 1. , 0. , 0.2, 0.5, 0.2, 0. , 0. ],
[0. , 0.2, 0. , 0. , 1. , 0. , 0. , 0. , 0.5, 0.5],
[0. , 0. , 0.5, 0.2, 0. , 1. , 0.5, 0. , 0. , 0. ],
[0.2, 0. , 0.2, 0.5, 0. , 0.5, 1. , 0. , 0. , 0. ],
[0.5, 0.5, 0. , 0.2, 0. , 0. , 0. , 1. , 0.2, 0. ],
[0. , 0.5, 0. , 0. , 0.5, 0. , 0. , 0.2, 1. , 0.2],
[0. , 0. , 0. , 0. , 0.5, 0. , 0. , 0. , 0.2, 1. ]])
Note that the diagonal of ``reordered_c`` is still unity (all elements of
:math:`\mathbf{x}` are perfectly correlated with themselves), but the
off-diagonal terms have been rearranged to maintain the pre-existing
correlations.
Creating a covariance matrix for a subset of data is a very similar operation.
If we want the covariance matrix for the first 3 elements of the data vector, we
can do the following:
>>> i = np.arange(3)
>>> sub_c = c[np.ix_(i,i)]
>>> sub_c
array([[1. , 0.5, 0.2],
[0.5, 1. , 0.5],
[0.2, 0.5, 1. ]])
.. note::
The `~astropy.nddata.covariance.Covariance` class provides a convenience
function for matching the covariance data to a slice of its parent data array;
see :ref:`here<covariance-match-to-data-slice>`.
In N-dimensions
---------------
Covariance matrices can be constructed for arrays of higher dimensionality by
flattening the data arrays. For a row-major array flattening order, one can
adopt the convention that :math:`\Sigma_{ij}` for an image of size
:math:`(N_x,N_y)` is the covariance between image pixels :math:`I_{x_i,y_i}` and
:math:`I_{x_j,y_j}`, where :math:`i = x_i + N_x\ y_i` and :math:`j = x_j + N_x\
y_j`.
As an example, let the covariance matrix ``c``, used throughout this section, be
the covariance matrix for a :math:`5 \times 2` array, instead of a 10-element
vector. The complication is determining the mapping from the data array to the
relevant covariance element; we can do this using `numpy` functions as follows.
To determine the covariance between elements ``data[1,0]`` and ``data[2,0]``, we
convert the indices from the ``data`` to find a covariance of 0.2:
>>> data_array_shape = (5,2)
>>> i_data = (np.array([1]), np.array([0]))
>>> j_data = (np.array([2]), np.array([0]))
>>> i_cov = np.ravel_multi_index(i_data, data_array_shape)
>>> j_cov = np.ravel_multi_index(j_data, data_array_shape)
>>> i_cov, j_cov
(array([2]), array([4]))
>>> c[i_cov, j_cov]
array([0.2])
The inverse operation (determining the indices of the data array given the
indices in the covariance matrix) uses `~numpy.unravel_index` (cf. ``i_data``):
>>> np.unravel_index(i_cov, data_array_shape)
(array([1]), array([0]))
.. note::
The `~astropy.nddata.covariance.Covariance` class provides convenience
functions for switching between the data array and covariance matrix
indexing when working with higher dimensionality data arrays;
see :ref:`here<covariance-nd-indexing>`.
.. _nddata-covariance-construction:
Construction
============
Many methods are provided to construct a `~astropy.nddata.covariance.Covariance`
object. In *all* of the following examples, the object ``c`` is the banded
covariance array created at the beginning of the :ref:`nddata-covariance-intro`
section.
Instantiating from pre-existing arrays
--------------------------------------
The simplest instantiation methods are based on using data that are already
available.
To create a `~astropy.nddata.covariance.Covariance` object from a
variance vector:
.. doctest-requires:: scipy
>>> from astropy.nddata.covariance import Covariance
>>> # Create from a variance vector
>>> var = np.ones(3, dtype=float)
>>> # Create from the Covariance object
>>> covar = Covariance.from_variance(var)
>>> # Test its contents
>>> print(np.array_equal(covar.to_dense(), np.identity(3)))
True
In this case, the variance is unity for all elements of the data array such that
the covariance matrix is diagonal and identical to the identity matrix.
To create a `~astropy.nddata.covariance.Covariance` object from a "dense" (i.e.,
fully populated) covariance matrix:
.. doctest-requires:: scipy
>>> # Instantiate from a covariance array
>>> covar = Covariance(array=c)
>>> print(np.array_equal(covar.to_dense(), c))
True
>>> covar.to_dense()
array([[1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. ],
[0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. ],
[0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. ],
[0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. ],
[0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. ],
[0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. ],
[0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2],
[0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. ]])
.. important::
The last statement uses `~astropy.nddata.covariance.Covariance.to_dense` to
access the array; see :ref:`nddata-covariance-data-access`.
Above, the base instantiation method is used; however, the
`~astropy.nddata.covariance.Covariance.from_array` method is also provided. The
primary difference is that the latter allows limits to be imposed on the
(absolute value of the) correlation or covariance values.
Finally, note that, by default, all instantiations of a
`~astropy.nddata.covariance.Covariance` object check that the input matrix is
symmetric. If it is not, a warning is issued. To skip the check and the
warning, set ``assume_symmetric=True``. Regardless of whether or not the check
is performed, the object *only stores the upper triangle of the input matrix*
effectively meaning that any asymmetry in the matrix is lost when it is
ingested.
Instantiating from random samples
---------------------------------
You can construct a covariance matrix based on samples from a distribution using
`~astropy.nddata.covariance.Covariance.from_samples`:
.. doctest-requires:: scipy
>>> # Set the mean to 0 for all elements
>>> m = np.zeros(npts, dtype=float)
>>>
>>> # Sample the multivariate normal distribution with the provided
>>> # mean and covariance.
>>> s = rng.multivariate_normal(m, c, size=100000)
>>>
>>> # Construct the covariance matrix from the random samples
>>> covar = Covariance.from_samples(s.T, cov_tol=0.1)
>>>
>>> # Test that the known input covariance matrix is close to the
>>> # measured covariance from the random samples
>>> print(np.all(np.absolute(c - covar.to_dense()) < 0.02))
True
Here, we have drawn samples from a known multivariate normal distribution with a
mean of zero (``m``) and a known covariance matrix (``c``), defined for the 10
(``npts``) elements in the dataset (e.g., 10 pixels in a spectrum). The code
checks the reconstruction of the known covariance matrix against the result
built from these random samples.
Instantiating from a matrix multiplication
------------------------------------------
Linear operations on a dataset (e.g., binning or smoothing) can be written as
matrix multiplications of the form
.. math::
{\mathbf y} = {\mathbf T}\ {\mathbf x},
where :math:`{\mathbf T}` is a transfer matrix of size :math:`N_y\times N_x`,
:math:`{\mathbf x}` is a vector of size :math:`N_x`, and :math:`{\mathbf y}` is
a vector of length :math:`{N_y}` that results from the multiplication. If
:math:`{\mathbf \Sigma}_x` is the covariance matrix for :math:`{\mathbf x}`, then
the covariance matrix for :math:`{\mathbf y}` is
.. math::
{\mathbf \Sigma}_y = {\mathbf T}\ {\mathbf \Sigma}_x\ {\mathbf T}^\top.
The example below shows how to build a covariance matrix from a matrix
multiplication using
`~astropy.nddata.covariance.Covariance.from_matrix_multiplication`:
.. doctest-requires:: scipy
>>> # Construct a dataset
>>> x = np.arange(npts, dtype=float)
>>>
>>> # Construct a transfer matrix that simply selects the elements at
>>> # indices 0, 2, and 4
>>> t = np.zeros((3,npts), dtype=float)
>>> t[0,0] = 1.0
>>> t[1,2] = 1.0
>>> t[2,4] = 1.0
>>>
>>> # Get y
>>> y = np.dot(t, x)
>>> y
array([0., 2., 4.])
>>>
>>> # Construct the covariance matrix
>>> covar = Covariance.from_matrix_multiplication(t, c)
>>>
>>> # Test the result
>>> _c = (np.diag(np.full(3-1, 0.2, dtype=float), k=-1)
... + np.diag(np.full(3, 1.0, dtype=float), k=0)
... + np.diag(np.full(3-1, 0.2, dtype=float), k=1))
>>> _c
array([[1. , 0.2, 0. ],
[0.2, 1. , 0.2],
[0. , 0.2, 1. ]])
>>> print(np.array_equal(covar.to_dense(), _c))
True
In N-dimensions
---------------
All of the instantiation methods above allow you to define the "data shape" of
the data array for the associated covariance matrix. Following the previous
N-dimensional example, let ``c`` be the covariance matrix for a :math:`5 \times
2` array, instead of a 10-element vector.
.. doctest-requires:: scipy
>>> data_array_shape
(5, 2)
>>> covar = Covariance(array=c, data_shape=data_array_shape)
>>> covar.to_dense()
array([[1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. ],
[0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. ],
[0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. ],
[0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. ],
[0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. ],
[0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. ],
[0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2],
[0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. ]])
The covariance matrix looks identical, but the higher dimensionality will affect
its :ref:`nddata-covariance-coord-access`.
.. _nddata-covariance-data-access:
Accessing the data
==================
The `~astropy.nddata.covariance.Covariance` object is primarily a storage
utility. Internally, the object only stores the upper triangle of the covariance
matrix. **This means that you should not directly access a covariance value
within the object itself**; you must use the functions described below.
.. _nddata-covariance-covariance-access:
Covariance Matrix
-----------------
There are two ways to access the full covariance matrix:
- Use `~astropy.nddata.covariance.Covariance.to_sparse` to produce a sparse matrix or
- Use `~astropy.nddata.covariance.Covariance.to_dense` for a dense matrix.
The output of these two methods can be used as you would use any
`scipy.sparse.csr_matrix` or `numpy.ndarray` object, respectively.
.. _nddata-covariance-correl-access:
Variance Vector and Correlation Matrix
--------------------------------------
The variance vector is stored as an accessible property
(`~astropy.nddata.covariance.Covariance.variance`), but note that the property
is immutable.
Access to the full correlation matrix is provided using
`~astropy.nddata.covariance.Covariance.to_sparse` to produce a sparse matrix or
`~astropy.nddata.covariance.Covariance.to_dense` for a dense matrix by setting
the keyword argument ``correlation = True``.
.. _nddata-covariance-coord-access:
Coordinate Data
---------------
Although more useful as preparation for storage, the covariance data can also be
accessed in coordinate format:
.. doctest-requires:: scipy
>>> covar = Covariance(array=c)
>>> i, j, cij = covar.coordinate_data()
>>> print(np.array_equal(covar.to_dense()[i,j], cij))
True
The arrays returned by `~astropy.nddata.covariance.Covariance.coordinate_data`
provide the matrix coordinates (``i`` and ``j``) for the non-zero covariance
values (``cij``).
.. _nddata-covariance-table:
File IO
=======
The primary way to write/read `~astropy.nddata.covariance.Covariance` objects is
by first parsing the data into a `~astropy.table.Table` using the
`~astropy.nddata.covariance.Covariance.to_table` method:
.. doctest-requires:: scipy
>>> covar = Covariance(array=c)
>>> tbl = covar.to_table()
>>> tbl.meta
{'COVSHAPE': '(10, 10)'}
>>> tbl[:3]
<Table length=3>
INDXI INDXJ COVARIJ
int64 int64 float64
----- ----- -------
0 0 1.0
0 1 0.5
0 2 0.2
The output above just shows the first 3 rows of the table to demonstrate that
the non-zero elements of the covariance matrix are stored in "coordinate
format." Specifically, the data is provided in three columns:
- ``'INDXI'``: The row index in the covariance matrix (:math:`i`).
- ``'INDXJ'``: The column index in the covariance matrix (:math:`j`).
- ``'COVARIJ'``: The covariance value (:math:`\Sigma_{ij}`).
The table also contains the following metadata:
- ``'COVSHAPE'``: The shape of the covariance matrix.
- ``'BUNIT'``: (If defined) The string representation of the covariance units.
- ``'COVDSHP'``: (If the dimensionality is greater than 1) The shape of the
associated data array.
For higher dimensional arrays, the coordinate data are automatically reshaped so
that the indices correspond to the data array. For example,
.. doctest-requires:: scipy
>>> data_array_shape
(5, 2)
>>> covar = Covariance(array=c, data_shape=data_array_shape)
>>> tbl = covar.to_table()
>>> tbl.meta
{'COVSHAPE': '(10, 10)', 'COVDSHP': '(5, 2)'}
>>> tbl[:3]
<Table length=3>
INDXI INDXJ COVARIJ
int64[2] int64[2] float64
-------- -------- -------
0 .. 0 0 .. 0 1.0
0 .. 0 0 .. 1 0.5
0 .. 0 1 .. 0 0.2
>>> tbl['INDXI'][0]
array([0, 0])
.. warning::
Recall that the storage of covariance matrices for higher
dimensional data always assumes a row-major storage order.
The inverse operation is also provided to instantiate a
`~astropy.nddata.covariance.Covariance` object from a table. Continuing the
N-dimensional example above:
.. doctest-requires:: scipy
>>> _covar = Covariance.from_table(tbl)
>>> _covar.data_shape
(5, 2)
>>> _covar.to_dense()
array([[1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. ],
[0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. ],
[0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. ],
[0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. ],
[0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. ],
[0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. ],
[0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2],
[0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. ]])
Use of the `~astropy.nddata.covariance.Covariance.to_table` and
`~astropy.nddata.covariance.Covariance.from_table` methods can be used with
Astropy's unified file I/O system to read and write the covariance matrices.
For example, to write the covariance matrix to table and reload it:
.. doctest-requires:: scipy
>>> ofile = 'test_covar_io.fits'
>>> covar = Covariance(array=c)
>>> tbl = covar.to_table()
>>> tbl.write(ofile, format='fits')
>>> from astropy.io import fits
>>> with fits.open(ofile) as hdu:
... hdu.info()
...
Filename: test_covar_io.fits
No. Name Ver Type Cards Dimensions Format
0 PRIMARY 1 PrimaryHDU 4 ()
1 1 BinTableHDU 15 27R x 3C [K, K, D]
>>> from astropy.table import Table
>>> _tbl = Table.read(ofile, format='fits')
>>> _covar = Covariance.from_table(_tbl)
>>> print(np.array_equal(covar.to_dense(), _covar.to_dense()))
True
Utility Functions
=================
.. _covariance-apply-new-variance:
Renormalizing the variance
--------------------------
To create a new covariance matrix that maintains the same correlations as an
existing matrix but a different variance, you can apply a new variance
normalization (following the examples in the :ref:`introductory section
<nddata-covariance-intro>`). The `~astropy.nddata.covariance.Covariance` object
provides a convenience function for this.
.. doctest-requires:: scipy
>>> covar_var1 = Covariance(array=c)
>>> covar_var1.to_dense()
array([[1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. , 0. ],
[0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. , 0. ],
[0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. , 0. ],
[0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. , 0. ],
[0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. , 0. ],
[0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2, 0. ],
[0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5, 0.2],
[0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. , 0.5],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2, 0.5, 1. ]])
>>> var4 = np.full(c.shape[0], 4.0, dtype=float)
>>> covar_var4 = covar_var1.apply_new_variance(var4)
>>> covar_var4.to_dense()
array([[4. , 2. , 0.8, 0. , 0. , 0. , 0. , 0. , 0. , 0. ],
[2. , 4. , 2. , 0.8, 0. , 0. , 0. , 0. , 0. , 0. ],
[0.8, 2. , 4. , 2. , 0.8, 0. , 0. , 0. , 0. , 0. ],
[0. , 0.8, 2. , 4. , 2. , 0.8, 0. , 0. , 0. , 0. ],
[0. , 0. , 0.8, 2. , 4. , 2. , 0.8, 0. , 0. , 0. ],
[0. , 0. , 0. , 0.8, 2. , 4. , 2. , 0.8, 0. , 0. ],
[0. , 0. , 0. , 0. , 0.8, 2. , 4. , 2. , 0.8, 0. ],
[0. , 0. , 0. , 0. , 0. , 0.8, 2. , 4. , 2. , 0.8],
[0. , 0. , 0. , 0. , 0. , 0. , 0.8, 2. , 4. , 2. ],
[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.8, 2. , 4. ]])
.. _covariance-match-to-data-slice:
Matching the covariance data to a slice of its parent data array
----------------------------------------------------------------
To adjust a `~astropy.nddata.covariance.Covariance` object so that it is
appropriate for a slice of its parent data array, use
`~astropy.nddata.covariance.Covariance.match_to_data_slice`. For example, to
create a matrix with every other entry:
.. doctest-requires:: scipy
>>> covar = Covariance(array=c)
>>> sub_covar = covar.match_to_data_slice(np.s_[::2])
>>> sub_covar
<Covariance; shape = (5, 5)>
>>> sub_covar.to_dense()
array([[1. , 0.2, 0. , 0. , 0. ],
[0.2, 1. , 0.2, 0. , 0. ],
[0. , 0.2, 1. , 0.2, 0. ],
[0. , 0. , 0.2, 1. , 0.2],
[0. , 0. , 0. , 0.2, 1. ]])
or to adjust for a reordering of the parent data array:
.. doctest-requires:: scipy
>>> covar = Covariance(array=c)
>>> rng = np.random.default_rng(99)
>>> reorder = np.arange(covar.shape[0])
>>> rng.shuffle(reorder)
>>> reorder
array([4, 6, 0, 3, 8, 1, 2, 5, 7, 9])
>>> reorder_covar = covar.match_to_data_slice(reorder)
>>> reorder_covar.to_dense()
array([[1. , 0.2, 0. , 0.5, 0. , 0. , 0.2, 0.5, 0. , 0. ],
[0.2, 1. , 0. , 0. , 0.2, 0. , 0. , 0.5, 0.5, 0. ],
[0. , 0. , 1. , 0. , 0. , 0.5, 0.2, 0. , 0. , 0. ],
[0.5, 0. , 0. , 1. , 0. , 0.2, 0.5, 0.2, 0. , 0. ],
[0. , 0.2, 0. , 0. , 1. , 0. , 0. , 0. , 0.5, 0.5],
[0. , 0. , 0.5, 0.2, 0. , 1. , 0.5, 0. , 0. , 0. ],
[0.2, 0. , 0.2, 0.5, 0. , 0.5, 1. , 0. , 0. , 0. ],
[0.5, 0.5, 0. , 0.2, 0. , 0. , 0. , 1. , 0.2, 0. ],
[0. , 0.5, 0. , 0. , 0.5, 0. , 0. , 0.2, 1. , 0.2],
[0. , 0. , 0. , 0. , 0.5, 0. , 0. , 0. , 0.2, 1. ]])
.. _covariance-nd-indexing:
Data-to-covariance Indexing Transformations
-------------------------------------------
For higher dimensional arrays, two methods are provided to ease conversion
between data array and covariance matrix indexing. Following examples above,
define the ten elements in the covariance matrix as coming from a :math:`5
\times 2` array, then find the indices in the data array for the covariance
values at indices covariance values at matrix locations ``(0,3)``, ``(1,4)``,
and ``(2,3)``:
.. doctest-requires:: scipy
>>> covar = Covariance(array=c, data_shape=data_array_shape)
>>> i_data, j_data = covar.covariance_to_data_indices([0,1,2], [3,4,3])
>>> i_data
(array([0, 0, 1]), array([0, 1, 0]))
>>> j_data
(array([1, 2, 1]), array([1, 0, 1]))
This shows that the covariance elements provide the covariance between
``data[0,0]`` and ``data[1,1]``, elements ``data[0,1]`` and ``data[2,0]``, and
elements ``data[1,0]`` and ``data[1,1]``.
The inverse operation gives the covariance indices for a specified set of
data-array indices. Keeping the indices we defined above:
.. doctest-requires:: scipy
>>> i_cov, j_cov = covar.data_to_covariance_indices(i_data, j_data)
>>> i_cov, j_cov
(array([0, 1, 2]), array([3, 4, 3]))
|