1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
.. _nddata_details:
NDData
******
Overview
========
:class:`~astropy.nddata.NDData` is based on `numpy.ndarray`-like ``data`` with
additional meta attributes:
+ ``meta`` for general metadata
+ ``unit`` represents the physical unit of the data
+ ``uncertainty`` for the uncertainty of the data
+ ``mask`` indicates invalid points in the data
+ ``wcs`` represents the relationship between the data grid and world
coordinates
+ ``psf`` holds an image representation of the point spread function (PSF)
Each of these attributes can be set during initialization or directly on the
instance. Only the ``data`` cannot be directly set after creating the instance.
Data
====
The data is the base of `~astropy.nddata.NDData` and is required to be
`numpy.ndarray`-like. It is the only property that is required to create an
instance and it cannot be directly set on the instance.
Example
-------
..
EXAMPLE START
Creating Instances with NumPy NDarray-like Data
To create an instance::
>>> import numpy as np
>>> from astropy.nddata import NDData
>>> array = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
>>> ndd = NDData(array)
>>> ndd
NDData([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
And access by the ``data`` attribute::
>>> ndd.data
array([[0, 1, 0],
[1, 0, 1],
[0, 1, 0]])
As already mentioned, it is not possible to set the data directly. So
``ndd.data = np.arange(9)`` will raise an exception. But the data can be
modified in place::
>>> ndd.data[1,1] = 100
>>> ndd.data
array([[ 0, 1, 0],
[ 1, 100, 1],
[ 0, 1, 0]])
..
EXAMPLE END
Data During Initialization
--------------------------
During initialization it is possible to provide data that is not a
`numpy.ndarray` but convertible to one.
Examples
^^^^^^^^
..
EXAMPLE START
Data Convertible to a NumPy NDarray During Initialization
To provide data that is convertible to a `numpy.ndarray`, you can pass a `list`
containing numerical values::
>>> alist = [1, 2, 3, 4]
>>> ndd = NDData(alist)
>>> ndd.data # data will be a numpy-array:
array([1, 2, 3, 4])
A nested `list` or `tuple` is possible, but if these contain non-numerical
values the conversion might fail.
Besides input that is convertible to such an array, you can also use the
``data`` parameter to pass implicit additional information. For example, if the
data is another `~astropy.nddata.NDData` object it implicitly uses its
properties::
>>> ndd = NDData(ndd, unit = 'm')
>>> ndd2 = NDData(ndd)
>>> ndd2.data # It has the same data as ndd
array([1, 2, 3, 4])
>>> ndd2.unit # but it also has the same unit as ndd
Unit("m")
Another possibility is to use a `~astropy.units.Quantity` as a ``data``
parameter::
>>> import astropy.units as u
>>> quantity = np.ones(3) * u.cm # this will create a Quantity
>>> ndd3 = NDData(quantity)
>>> ndd3.data # doctest: +FLOAT_CMP
array([1., 1., 1.])
>>> ndd3.unit
Unit("cm")
Or a `numpy.ma.MaskedArray`::
>>> masked_array = np.ma.array([5,10,15], mask=[False, True, False])
>>> ndd4 = NDData(masked_array)
>>> ndd4.data
array([ 5, 10, 15])
>>> ndd4.mask
array([False, True, False]...)
If such an implicitly passed property conflicts with an explicit parameter, the
explicit parameter will be used and an info message will be issued::
>>> quantity = np.ones(3) * u.cm
>>> ndd6 = NDData(quantity, unit='m')
INFO: overwriting Quantity's current unit with specified unit. [astropy.nddata.nddata]
>>> ndd6.data # doctest: +FLOAT_CMP
array([0.01, 0.01, 0.01])
>>> ndd6.unit
Unit("m")
The unit of the `~astropy.units.Quantity` is being ignored and the unit is set
to the explicitly passed one.
It might be possible to pass other classes as a ``data`` parameter as long as
they have the properties ``shape``, ``dtype``, ``__getitem__``, and
``__array__``.
The purpose of this mechanism is to allow considerable flexibility in the
objects used to store the data while providing a useful default (``numpy``
array).
..
EXAMPLE END
Mask
====
The ``mask`` is being used to indicate if data points are valid or invalid.
`~astropy.nddata.NDData` does not restrict this mask in any way but it is
expected to follow the `numpy.ma.MaskedArray` convention in that the mask:
+ Returns ``True`` for data points that are considered **invalid**.
+ Returns ``False`` for those points that are **valid**.
Examples
--------
..
EXAMPLE START
Masks Used to Indicate Valid or Invalid Data Points in NDData
One possibility is to create a mask by using ``numpy``'s comparison operators::
>>> array = np.array([0, 1, 4, 0, 2])
>>> mask = array == 0 # Mask points containing 0
>>> mask
array([ True, False, False, True, False]...)
>>> other_mask = array > 1 # Mask points with a value greater than 1
>>> other_mask
array([False, False, True, False, True]...)
And initialize the `~astropy.nddata.NDData` instance using the ``mask``
parameter::
>>> ndd = NDData(array, mask=mask)
>>> ndd.mask
array([ True, False, False, True, False]...)
Or by replacing the mask::
>>> ndd.mask = other_mask
>>> ndd.mask
array([False, False, True, False, True]...)
There is no requirement that the mask actually be a ``numpy`` array; for
example, a function which evaluates a mask value as needed is acceptable as
long as it follows the convention that ``True`` indicates a value that should
be ignored.
..
EXAMPLE END
Unit
====
The ``unit`` represents the unit of the data values. It is required to be
`~astropy.units.Unit`-like or a string that can be converted to such a
`~astropy.units.Unit`::
>>> import astropy.units as u
>>> ndd = NDData([1, 2, 3, 4], unit="meter") # using a string
>>> ndd.unit
Unit("m")
..note::
Setting the ``unit`` on an instance is not possible.
Uncertainties
=============
The ``uncertainty`` represents an arbitrary representation of the error of the
data values. To indicate which kind of uncertainty representation is used, the
``uncertainty`` should have an ``uncertainty_type`` property. If no such
property is found it will be wrapped inside a
`~astropy.nddata.UnknownUncertainty`.
The ``uncertainty_type`` should follow the `~astropy.nddata.StdDevUncertainty`
convention in that it returns a short string like ``"std"`` for an uncertainty
given in standard deviation. Other examples are
`~astropy.nddata.VarianceUncertainty` and `~astropy.nddata.InverseVariance`.
Examples
--------
..
EXAMPLE START
Setting Uncertainties During Initialization in NDData
Like the other properties the ``uncertainty`` can be set during
initialization::
>>> from astropy.nddata import StdDevUncertainty, InverseVariance
>>> array = np.array([10, 7, 12, 22])
>>> uncert = StdDevUncertainty(np.sqrt(array))
>>> ndd = NDData(array, uncertainty=uncert)
>>> ndd.uncertainty # doctest: +FLOAT_CMP
StdDevUncertainty([3.16227766, 2.64575131, 3.46410162, 4.69041576])
Or on the instance directly::
>>> other_uncert = StdDevUncertainty([2,2,2,2])
>>> ndd.uncertainty = other_uncert
>>> ndd.uncertainty
StdDevUncertainty([2, 2, 2, 2])
But it will print an info message if there is no ``uncertainty_type``::
>>> ndd.uncertainty = np.array([5, 1, 2, 10])
INFO: uncertainty should have attribute uncertainty_type. [astropy.nddata.nddata]
>>> ndd.uncertainty
UnknownUncertainty([ 5, 1, 2, 10])
It is also possible to convert between uncertainty types::
>>> uncert.represent_as(InverseVariance)
InverseVariance([0.1 , 0.14285714, 0.08333333, 0.04545455])
..
EXAMPLE END
Covariance
----------
A `~astropy.nddata.Covariance` uncertainty type is also implemented; however,
its functionality is generally limited to construction and storage of sparse
covariance matrices. Additional functionality will be implemented as requested.
See :ref:`nddata-covariance` for more description and example usage.
WCS
===
The ``wcs`` should contain a mapping from the gridded data to world
coordinates. There are no restrictions placed on the property currently but it
may be restricted to an `~astropy.wcs.WCS` object or a more generalized WCS
object in the future.
.. note::
Like the unit the ``wcs`` cannot be set on an instance.
Metadata
=========
The ``meta`` property contains all further meta information that does not fit
any other property.
Examples
--------
..
EXAMPLE START
Metadata in NDData
If the ``meta`` property is given it must be `dict`-like::
>>> ndd = NDData([1,2,3], meta={'observer': 'myself'})
>>> ndd.meta
{'observer': 'myself'}
`dict`-like means it must be a mapping from some keys to some values. This
also includes `~astropy.io.fits.Header` objects::
>>> from astropy.io import fits
>>> header = fits.Header()
>>> header['observer'] = 'Edwin Hubble'
>>> ndd = NDData(np.zeros([10, 10]), meta=header)
>>> ndd.meta['observer']
'Edwin Hubble'
If the ``meta`` property is not provided or explicitly set to ``None``, it will
default to an empty `collections.OrderedDict`::
>>> ndd.meta = None
>>> ndd.meta
OrderedDict()
>>> ndd = NDData([1,2,3])
>>> ndd.meta
OrderedDict()
The ``meta`` object therefore supports adding or updating these values::
>>> ndd.meta['exposure_time'] = 340.
>>> ndd.meta['filter'] = 'J'
Elements of the metadata dictionary can be set to any valid Python object::
>>> ndd.meta['history'] = ['calibrated', 'aligned', 'flat-fielded']
..
EXAMPLE END
Initialization with Copy
========================
The default way to create an `~astropy.nddata.NDData` instance is to try saving
the parameters as references to the original rather than as copy. Sometimes
this is not possible because the internal mechanics do not allow for this.
Examples
--------
..
EXAMPLE START
Creating an NDData Instance with Copy
If the ``data`` is a `list` then during initialization this is copied
while converting to a `~numpy.ndarray`. But it is also possible to enforce
copies during initialization by setting the ``copy`` parameter to ``True``::
>>> array = np.array([1, 2, 3, 4])
>>> ndd = NDData(array)
>>> ndd.data[2] = 10
>>> array[2] # Original array has changed
np.int64(10)
>>> ndd2 = NDData(array, copy=True)
>>> ndd2.data[2] = 3
>>> array[2] # Original array hasn't changed.
np.int64(10)
.. note::
In some cases setting ``copy=True`` will copy the ``data`` twice. Known
cases are if the ``data`` is a `list` or `tuple`.
..
EXAMPLE END
Collapsing an NDData object along one or more axes
==================================================
..
EXAMPLE START
Collapsing an NDData object along one or more axes
A common operation on an `~numpy.ndarray` is to take the sum, mean,
maximum, or minimum along one or more axes, reducing the dimensions
of the output. These four operations are implemented on
`~astropy.nddata.NDData` with appropriate propagation of uncertainties,
masks, and units.
For example, let's work on the following ``data`` with a mask, unit, and
(uniform) uncertainty::
>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.nddata import NDDataArray, StdDevUncertainty
>>>
>>> data = [
... [1, 2, 3],
... [2, 3, 4]
... ]
>>> mask = [
... [True, False, False],
... [False, False, False]
... ]
>>> uncertainty = StdDevUncertainty(np.ones_like(data))
>>> nddata = NDDataArray(data=data, uncertainty=uncertainty, mask=mask, unit='m')
The sum along axis ``1`` gives one result per row::
>>> sum_axis_1 = nddata.sum(axis=1) # this is a new NDDataArray
>>> print(np.asanyarray(sum_axis_1)) # this converts data to a numpy masked array. doctest: +FLOAT_CMP
[-- 9.0]
>>> print(sum_axis_1.uncertainty) # doctest: +FLOAT_CMP
StdDevUncertainty([1.41421356, 1.73205081])
The result has one masked value derived from the logical OR of the original mask
along ``axis=1``. The uncertainties are the square-root of the sum of the squares
of the input uncertainties. Since the original uncertainties were all unity, the
result is the square root of the number of unmasked data entries,
:math:`[\sqrt{2},\,\sqrt{3}]`.
We can similarly take the mean along ``axis=1``::
>>> mean_axis_1 = nddata.mean(axis=1)
>>> print(np.asanyarray(mean_axis_1)) # doctest: +FLOAT_CMP
[2.5 3.0]
>>> print(mean_axis_1.uncertainty) # doctest: +FLOAT_CMP
StdDevUncertainty([0.70710678, 0.57735027])
The result is the mean of the values where ``mask==False``, and in this example,
the result would only have ``mask==True`` if an entire row was masked. Since the
uncertainties were given as `~astropy.nddata.StdDevUncertainty`, the propagated
uncertainties decrease proportional to the number of unmasked measurements in each
row, following :math:`[2^{-1/2},\,3^{-1/2}]`.
There's no single, correct way of defining the uncertainties associated
with the ``min`` or ``max`` of a set of measurements, so
`~astropy.nddata.NDData` resists the temptation to guess, and returns
the minimum data value along the axis/axes, and the propagated mask, but
no uncertainties::
>>> min_axis_1 = nddata.min(axis=1)
>>> print(np.asanyarray(min_axis_1)) # doctest: +FLOAT_CMP
[2.0 2.0]
>>> print(min_axis_1.uncertainty)
None
For some use cases, it may be helpful to return the uncertainty
at the same index as the minimum/maximum ``data`` value, so that
the original ``data`` retains its uncertainty. You can get this
behavior with::
>>> min_axis_1 = nddata.min(axis=1, propagate_uncertainties=True)
>>> print(np.asanyarray(min_axis_1)) # doctest: +FLOAT_CMP
[2.0 2.0]
>>> print(min_axis_1.uncertainty) # doctest: +FLOAT_CMP
StdDevUncertainty([1, 1])
Finally, in some cases it may be useful to do perform a collapse
operation only on the unmasked values, and only return a masked
result when all of the input values are masked. If we refer back to
the first example in this section, we see that the underlying
``data`` attribute has been summed over all values, including
masked ones::
>>> sum_axis_1 # doctest: +FLOAT_CMP
NDDataArray([——, 9.], unit='m')
where the first data element is masked. We can instead get the sum
for only unmasked values with the ``operation_ignores_mask`` option::
>>> nddata.sum(axis=1, operation_ignores_mask=True)
NDDataArray([5, 9], unit='m')
..
EXAMPLE END
Converting NDData to Other Classes
==================================
There is limited support to convert a `~astropy.nddata.NDData` instance to
other classes. In the process some properties might be lost.
>>> data = np.array([1, 2, 3, 4])
>>> mask = np.array([True, False, False, True])
>>> unit = 'm'
>>> ndd = NDData(data, mask=mask, unit=unit)
`numpy.ndarray`
---------------
Converting the ``data`` to an array::
>>> array = np.asarray(ndd.data)
>>> array
array([1, 2, 3, 4])
Though using ``np.asarray`` is not required, in most cases it will ensure that
the result is always a `numpy.ndarray`
`numpy.ma.MaskedArray`
----------------------
Converting the ``data`` and ``mask`` to a MaskedArray::
>>> masked_array = np.ma.array(ndd.data, mask=ndd.mask)
>>> masked_array
masked_array(data=[--, 2, 3, --],
mask=[ True, False, False, True],
fill_value=999999)
`~astropy.units.Quantity`
-------------------------
Converting the ``data`` and ``unit`` to a Quantity::
>>> quantity = u.Quantity(ndd.data, unit=ndd.unit)
>>> quantity # doctest: +FLOAT_CMP
<Quantity [1., 2., 3., 4.] m>
MaskedQuantity
--------------
Converting the ``data``, ``unit``, and ``mask`` to a ``MaskedQuantity``::
>>> from astropy.utils.masked import Masked
>>> Masked(u.Quantity(ndd.data, ndd.unit), ndd.mask) # doctest: +FLOAT_CMP
<MaskedQuantity [——, 2., 3., ——] m>
|