1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
"""
Query ALMA archive for M83 pointings and plotting them on a 2MASS image
"""
import numpy as np
from astroquery.alma import Alma
from astroquery.skyview import SkyView
import string
from astropy import units as u
from astropy.io import fits
from astropy import wcs
from astropy import log
import pylab as pl
import aplpy
import pyregion
# Retrieve M83 2MASS K-band image:
m83_images = SkyView.get_images(position='M83', survey=['2MASS-K'],
pixels=1500)
# Retrieve ALMA archive information *including* private data and non-science
# fields:
m83 = Alma.query_object('M83', public=False, science=False)
# Parse components of the ALMA data. Specifically, find the frequency support
# - the frequency range covered - and convert that into a central frequency for
# beam radius estimation.
def parse_frequency_support(frequency_support_str):
supports = frequency_support_str.split("U")
freq_ranges = [(float(sup.strip('[] ').split("..")[0]),
float(sup.strip('[] ')
.split("..")[1]
.split(', ')[0]
.strip(string.ascii_letters)))
*u.Unit(sup.strip('[] ')
.split("..")[1]
.split(', ')[0]
.strip(string.punctuation+string.digits))
for sup in supports]
return u.Quantity(freq_ranges)
def approximate_primary_beam_sizes(frequency_support_str):
freq_ranges = parse_frequency_support(frequency_support_str)
beam_sizes = [(1.22*fr.mean().to(u.m,
u.spectral())/(12*u.m)).to(u.arcsec,
u.dimensionless_angles())
for fr in freq_ranges]
return u.Quantity(beam_sizes)
primary_beam_radii = [approximate_primary_beam_sizes(row['Frequency support']) for row in m83]
# Compute primary beam parameters for the public and private components of the data for plotting below.
print("The bands used include: ", np.unique(m83['Band']))
private_circle_parameters = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']!=b'' and row['Band']==3]
public_circle_parameters = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']==b'' and row['Band']==3]
unique_private_circle_parameters = np.array(list(set(private_circle_parameters)))
unique_public_circle_parameters = np.array(list(set(public_circle_parameters)))
print("BAND 3")
print("PUBLIC: Number of rows: {0}. Unique pointings: {1}".format(len(m83), len(unique_public_circle_parameters)))
print("PRIVATE: Number of rows: {0}. Unique pointings: {1}".format(len(m83), len(unique_private_circle_parameters)))
private_circle_parameters_band6 = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']!=b'' and row['Band']==6]
public_circle_parameters_band6 = [(row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
for row, rad in zip(m83, primary_beam_radii)
if row['Release date']==b'' and row['Band']==6]
# Show all of the private observation pointings that have been acquired
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
fig.show_circles(unique_private_circle_parameters[:, 0],
unique_private_circle_parameters[:, 1],
unique_private_circle_parameters[:, 2],
color='r', alpha=0.2)
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
fig.show_circles(unique_public_circle_parameters[:, 0],
unique_public_circle_parameters[:, 1],
unique_public_circle_parameters[:, 2],
color='b', alpha=0.2)
# Use pyregion to write the observed regions to disk. Pyregion has a very
# awkward API; there is (in principle) work in progress to improve that
# situation but for now one must do all this extra work.
import pyregion
from pyregion.parser_helper import Shape
prv_regions = pyregion.ShapeList([Shape('circle', [x, y, r]) for x, y, r in private_circle_parameters])
pub_regions = pyregion.ShapeList([Shape('circle', [x, y, r]) for x, y, r in public_circle_parameters])
for r, (x, y, c) in zip(prv_regions+pub_regions,
np.vstack([private_circle_parameters,
public_circle_parameters])):
r.coord_format = 'fk5'
r.coord_list = [x, y, c]
r.attr = ([], {'color': 'green', 'dash': '0 ', 'dashlist': '8 3 ', 'delete': '1 ', 'edit': '1 ',
'fixed': '0 ', 'font': '"helvetica 10 normal roman"', 'highlite': '1 ',
'include': '1 ', 'move': '1 ', 'select': '1 ', 'source': '1', 'text': '',
'width': '1 '})
prv_regions.write('M83_observed_regions_private_March2015.reg')
pub_regions.write('M83_observed_regions_public_March2015.reg')
prv_mask = fits.PrimaryHDU(prv_regions.get_mask(m83_images[0][0]).astype('int'),
header=m83_images[0][0].header)
pub_mask = fits.PrimaryHDU(pub_regions.get_mask(m83_images[0][0]).astype('int'),
header=m83_images[0][0].header)
pub_mask.writeto('public_m83_almaobs_mask.fits', clobber=True)
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
fig.show_contour(prv_mask, levels=[0.5, 1], colors=['r', 'r'])
fig.show_contour(pub_mask, levels=[0.5, 1], colors=['b', 'b'])
# ## More advanced ##
#
# Now we create a 'hit mask' showing the relative depth of each observed field in each band
hit_mask_band3_public = np.zeros_like(m83_images[0][0].data)
hit_mask_band3_private = np.zeros_like(m83_images[0][0].data)
hit_mask_band6_public = np.zeros_like(m83_images[0][0].data)
hit_mask_band6_private = np.zeros_like(m83_images[0][0].data)
mywcs = wcs.WCS(m83_images[0][0].header)
def pyregion_subset(region, data, mywcs):
"""
Return a subset of an image (`data`) given a region.
"""
shapelist = pyregion.ShapeList([region])
if shapelist[0].coord_format not in ('physical', 'image'):
# Requires astropy >0.4...
# pixel_regions = shapelist.as_imagecoord(self.wcs.celestial.to_header())
# convert the regions to image (pixel) coordinates
celhdr = mywcs.sub([wcs.WCSSUB_CELESTIAL]).to_header()
pixel_regions = shapelist.as_imagecoord(celhdr)
else:
# For this to work, we'd need to change the reference pixel after cropping.
# Alternatively, we can just make the full-sized mask... todo....
raise NotImplementedError("Can't use non-celestial coordinates with regions.")
pixel_regions = shapelist
# This is a hack to use mpl to determine the outer bounds of the regions
# (but it's a legit hack - pyregion needs a major internal refactor
# before we can approach this any other way, I think -AG)
mpl_objs = pixel_regions.get_mpl_patches_texts()[0]
# Find the minimal enclosing box containing all of the regions
# (this will speed up the mask creation below)
extent = mpl_objs[0].get_extents()
xlo, ylo = extent.min
xhi, yhi = extent.max
all_extents = [obj.get_extents() for obj in mpl_objs]
for ext in all_extents:
xlo = int(xlo if xlo < ext.min[0] else ext.min[0])
ylo = int(ylo if ylo < ext.min[1] else ext.min[1])
xhi = int(xhi if xhi > ext.max[0] else ext.max[0])
yhi = int(yhi if yhi > ext.max[1] else ext.max[1])
log.debug("Region boundaries: ")
log.debug("xlo={xlo}, ylo={ylo}, xhi={xhi}, yhi={yhi}".format(xlo=xlo,
ylo=ylo,
xhi=xhi,
yhi=yhi))
subwcs = mywcs[ylo:yhi, xlo:xhi]
subhdr = subwcs.sub([wcs.WCSSUB_CELESTIAL]).to_header()
subdata = data[ylo:yhi, xlo:xhi]
mask = shapelist.get_mask(header=subhdr,
shape=subdata.shape)
log.debug("Shapes: data={0}, subdata={2}, mask={1}".format(data.shape, mask.shape, subdata.shape))
return (xlo, xhi, ylo, yhi), mask
for row, rad in zip(m83, primary_beam_radii):
shape = Shape('circle', (row['RA'], row['Dec'], np.mean(rad).to(u.deg).value))
shape.coord_format = 'fk5'
shape.coord_list = (row['RA'], row['Dec'], np.mean(rad).to(u.deg).value)
shape.attr = ([], {'color': 'green', 'dash': '0 ', 'dashlist': '8 3 ',
'delete': '1 ', 'edit': '1 ', 'fixed': '0 ',
'font': '"helvetica 10 normal roman"', 'highlite': '1 ',
'include': '1 ', 'move': '1 ', 'select': '1 ',
'source': '1', 'text': '', 'width': '1 '})
if row['Release date']==b'' and row['Band']==3:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band3_private, mywcs)
hit_mask_band3_private[ylo:yhi, xlo:xhi] += row['Integration']*mask
elif row['Release date'] and row['Band']==3:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band3_public, mywcs)
hit_mask_band3_public[ylo:yhi, xlo:xhi] += row['Integration']*mask
elif row['Release date'] and row['Band']==6:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band6_public, mywcs)
hit_mask_band6_public[ylo:yhi, xlo:xhi] += row['Integration']*mask
elif row['Release date']==b'' and row['Band']==6:
(xlo, xhi, ylo, yhi), mask = pyregion_subset(shape, hit_mask_band6_private, mywcs)
hit_mask_band6_private[ylo:yhi, xlo:xhi] += row['Integration']*mask
fig = aplpy.FITSFigure(m83_images[0])
fig.show_grayscale(stretch='arcsinh', vmid=0.1)
for mask, color in zip([hit_mask_band3_public,
hit_mask_band3_private,
hit_mask_band6_public,
hit_mask_band6_private,
],
'rycb'):
if np.any(mask):
fig.show_contour(fits.PrimaryHDU(data=mask, header=m83_images[0][0].header),
levels=np.logspace(0, 5, base=2, num=6), colors=[color]*6)
|