File: eso.rst

package info (click to toggle)
astroquery 0.4.11%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 26,584 kB
  • sloc: python: 53,596; xml: 36,604; makefile: 140; ansic: 69
file content (404 lines) | stat: -rw-r--r-- 21,513 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
.. _astroquery.eso:

******************************
ESO Queries (`astroquery.eso`)
******************************

Getting started
===============

This is a python interface for querying the ESO archive web service.
For now, it supports the following:

- listing available instruments
- listing available surveys (phase 3)
- searching all instrument specific raw data: http://archive.eso.org/cms/eso-data/instrument-specific-query-forms.html
- searching data products (phase 3): http://archive.eso.org/wdb/wdb/adp/phase3_main/form
- downloading data by dataset identifiers: http://archive.eso.org/cms/eso-data/eso-data-direct-retrieval.html


Requirements
============

The following packages are required for the use of this module:

* keyring
* lxml
* requests >= 2.4.0


Authentication with ESO User Portal
===================================

Most of the datasets in the ESO Science Archive are public and can be downloaded anonymously
without authenticating with the ESO User Portal (https://www.eso.org/sso/login).
Data with restricted access like datasets under proprietary period can be downloaded by authorised users
(for example PIs of the corresponding observing programmes and their delegates)
after authentication with the ESO User Portal.
This authentication is performed directly with the provided :meth:`~astroquery.query.QueryWithLogin.login` command,
as illustrated in the example below. This method uses your keyring to securely
store the password in your operating system. As such you should have to enter your
correct password only once, and later be able to use this package for automated
interaction with the ESO archive.

.. doctest-skip::

    >>> from astroquery.eso import Eso
    >>> eso = Eso()
    >>> # First example: TEST is not a valid username, it will fail
    >>> eso.login(username="TEST") # doctest: +SKIP
    WARNING: No password was found in the keychain for the provided username. [astroquery.query]
    TEST, enter your password:

    INFO: Authenticating TEST on https://www.eso.org/sso ... [astroquery.eso.core]
    ERROR: Authentication failed! [astroquery.eso.core]
    >>> # Second example: pretend ICONDOR is a valid username
    >>> eso.login(username="ICONDOR", store_password=True) # doctest: +SKIP
    WARNING: No password was found in the keychain for the provided username. [astroquery.query]
    ICONDOR, enter your password:

    INFO: Authenticating ICONDOR on https://www.eso.org/sso ... [astroquery.eso.core]
    INFO: Authentication successful! [astroquery.eso.core]
    >>> # After the first login, your password has been stored
    >>> eso.login(username="ICONDOR") # doctest: +SKIP
    INFO: Authenticating ICONDOR on https://www.eso.org/sso ... [astroquery.eso.core]
    INFO: Authentication successful! [astroquery.eso.core]

    >>> # Successful download of a public file (with or without login)
    >>> eso.retrieve_data('AMBER.2006-03-14T07:40:19.830') # doctest: +SKIP
    INFO: Downloading file 1/1 https://dataportal.eso.org/dataPortal/file/AMBER.2006-03-14T07:40:19.830
    INFO: Successfully downloaded dataset AMBER.2006-03-14T07:40:19.830

    >>> # Access denied to a restricted-access file (as anonymous user or as authenticated but not authorised user)
    >>> eso.retrieve_data('ADP.2023-03-02T01:01:24.355') # doctest: +SKIP
    INFO: Downloading file 1/1 https://dataportal.eso.org/dataPortal/file/ADP.2023-03-02T01:01:24.355
    ERROR: Access denied to https://dataportal.eso.org/dataPortal/file/ADP.2023-03-02T01:01:24.355

Automatic password
------------------

As shown above, your password can be stored by the `keyring
<https://pypi.org/project/keyring>`_ module, if you
pass the argument ``store_password=True`` to ``Eso.login()``.
For security reason, storing the password is turned off by default.

MAKE SURE YOU TRUST THE MACHINE WHERE YOU USE THIS FUNCTIONALITY!!!

NB: You can delete your password later with the command
``keyring.delete_password('astroquery:www.eso.org', 'username')``.

Automatic login
---------------

You can further automate the authentication process by configuring a default username.
The astroquery configuration file, which can be found following the procedure
detailed in `astropy.config <https://docs.astropy.org/en/stable/config/index.html>`_,
needs to be edited by adding ``username = ICONDOR`` in the ``[eso]`` section.

When configured, the username in the ``login()`` method call can be omitted
as follows:

.. doctest-skip::

    >>> from astroquery.eso import Eso
    >>> eso = Eso()
    >>> eso.login() # doctest: +SKIP
    ICONDOR, enter your ESO password:

NB: If an automatic login is configured, other Eso methods can log you in
automatically when needed.


Query the ESO archive for raw data
==================================

Identifying available instrument-specific queries
-------------------------------------------------

The direct retrieval of datasets is better explained with a running example, continuing from the
authentication example above. The first thing to do is to identify the instrument to query. The
list of available instrument-specific queries can be obtained with the
:meth:`~astroquery.eso.EsoClass.list_instruments` method.

.. doctest-remote-data::

    >>> from astroquery.eso import Eso
    >>> eso = Eso()
    >>> eso.list_instruments()
    ['fors1', 'fors2', 'sphere', 'vimos', 'omegacam', 'eris', 'hawki', 'isaac', 'naco', 'visir',
     'vircam', 'apex', 'giraffe', 'uves', 'xshooter', 'espresso', 'muse', 'crires',
     'kmos', 'sinfoni', 'amber', 'gravity', 'matisse', 'midi', 'pionier', 'wlgsu']


In the example above, 22 instruments are available, they correspond to the instruments listed on
the following web page: http://archive.eso.org/cms/eso-data/instrument-specific-query-forms.html.

Inspecting available query options
----------------------------------

Once an instrument is chosen, ``midi`` in our case, the query options for that instrument can be
inspected by setting the ``help=True`` keyword of the :meth:`~astroquery.eso.EsoClass.query_instrument`
method.

.. doctest-remote-data::

    >>> eso.query_instrument('midi', help=True)  # doctest: +IGNORE_OUTPUT
    List of the column_filters parameters accepted by the midi instrument query.
    The presence of a column in the result table can be controlled if prefixed with a [ ] checkbox.
    The default columns in the result table are shown as already ticked: [x].

    Target Information
    ------------------
        target:
        resolver: simbad (SIMBAD name), ned (NED name), none (OBJECT as specified by the observer)
        coord_sys: eq (Equatorial (FK5)), gal (Galactic)
        coord1:
        coord2:
        box:
        format: sexagesimal (Sexagesimal), decimal (Decimal)
    [x] wdb_input_file:

    Observation  and proposal parameters
    ------------------------------------
    [ ] night:
        stime:
        starttime: 00 (00 hrs [UT]), 01 (01 hrs [UT]), 02 (02 hrs [UT]), 03 (03 hrs [UT]), 04 (04 hrs [UT]), 05 (05 hrs [UT]), 06 (06 hrs [UT]), 07 (07 hrs [UT]), 08 (08 hrs [UT]), 09 (09 hrs [UT]), 10 (10 hrs [UT]), 11 (11 hrs [UT]), 12 (12 hrs [UT]), 13 (13 hrs [UT]), 14 (14 hrs [UT]), 15 (15 hrs [UT]), 16 (16 hrs [UT]), 17 (17 hrs [UT]), 18 (18 hrs [UT]), 19 (19 hrs [UT]), 20 (20 hrs [UT]), 21 (21 hrs [UT]), 22 (22 hrs [UT]), 23 (23 hrs [UT]), 24 (24 hrs [UT])
        etime:
        endtime: 00 (00 hrs [UT]), 01 (01 hrs [UT]), 02 (02 hrs [UT]), 03 (03 hrs [UT]), 04 (04 hrs [UT]), 05 (05 hrs [UT]), 06 (06 hrs [UT]), 07 (07 hrs [UT]), 08 (08 hrs [UT]), 09 (09 hrs [UT]), 10 (10 hrs [UT]), 11 (11 hrs [UT]), 12 (12 hrs [UT]), 13 (13 hrs [UT]), 14 (14 hrs [UT]), 15 (15 hrs [UT]), 16 (16 hrs [UT]), 17 (17 hrs [UT]), 18 (18 hrs [UT]), 19 (19 hrs [UT]), 20 (20 hrs [UT]), 21 (21 hrs [UT]), 22 (22 hrs [UT]), 23 (23 hrs [UT]), 24 (24 hrs [UT])
    [x] prog_id:
    [ ] prog_type: % (Any), 0 (Normal), 1 (GTO), 2 (DDT), 3 (ToO), 4 (Large), 5 (Short), 6 (Calibration)
    [ ] obs_mode: % (All modes), s (Service), v (Visitor)
    [ ] pi_coi:
        pi_coi_name: PI_only (as PI only), none (as PI or CoI)
    [ ] prog_title:
    ...

Only the first two sections, of the parameters accepted by the ``midi`` instrument query,
are shown in the example above: ``Target Information`` and ``Observation and proposal parameters``.

As stated at the beginning of the help message, the parameters accepted by the query are given just before
the first ``:`` sign (e.g. ``target``, ``resolver``, ``stime``, ``etime``...). When a parameter is prefixed
by ``[ ]``, the presence of the associated column in the query result can be controlled.

Note: the instrument query forms can be opened in your web browser directly using the ``open_form`` option of
the :meth:`~astroquery.eso.EsoClass.query_instrument` method. This should also help with the identification of
acceptable keywords.

Querying with constraints
-------------------------

It is now time to query the ``midi`` instrument for datasets. In the following example, observations of
target ``NGC 4151`` between ``2007-01-01`` and ``2008-01-01`` are searched, and the query is configured to
return the observation date column.

.. doctest-remote-data::

    >>> table = eso.query_instrument('midi', column_filters={'target':'NGC 4151',
    ...                                                      'stime':'2007-01-01',
    ...                                                      'etime':'2008-01-01'},
    ...                              columns=['night'])
    >>> print(len(table))
    38
    >>> print(table.columns)
    <TableColumns names=('Release Date','Object','RA','DEC','Target Ra Dec','Target l b','DATE OBS','Program ID','DP.ID','OB.ID','OBS.TARG.NAME','DPR.CATG','DPR.TYPE','DPR.TECH','INS.MODE','DIMM Seeing-avg')>
    >>> table.pprint(max_width=100)
    Release Date          Object             RA     ...       DPR.TECH       INS.MODE DIMM Seeing-avg
    ------------ ----------------------- ---------- ... -------------------- -------- ---------------
      2008-02-07                 NGC4151 182.635969 ...         IMAGE,WINDOW STARINTF     0.69 [0.03]
      2008-02-07                 NGC4151 182.635969 ...         IMAGE,WINDOW STARINTF     0.68 [0.01]
      2008-02-07                 NGC4151 182.635969 ...         IMAGE,WINDOW STARINTF     0.68 [0.01]
      2008-02-07                 NGC4151 182.635969 ...         IMAGE,WINDOW STARINTF     0.69 [0.06]
      2008-02-07                 NGC4151 182.635969 ...         IMAGE,WINDOW STARINTF     0.69 [0.05]
      2008-02-07                 NGC4151 182.635969 ...         IMAGE,WINDOW STARINTF     0.74 [0.01]
             ...                     ...        ... ...                  ...      ...             ...
      2007-02-07 SEARCH,OBJECT,DISPERSED 182.635969 ...       INTERFEROMETRY STARINTF     0.54 [0.03]
      2007-02-07 SEARCH,OBJECT,DISPERSED 182.635969 ...       INTERFEROMETRY STARINTF     0.53 [0.04]
      2007-02-07  TRACK,OBJECT,DISPERSED 182.635969 ...       INTERFEROMETRY STARINTF     0.51 [0.02]
      2007-02-07  TRACK,OBJECT,DISPERSED 182.635969 ...       INTERFEROMETRY STARINTF     0.51 [0.02]
      2007-02-07  TRACK,OBJECT,DISPERSED 182.635969 ...       INTERFEROMETRY STARINTF     0.51 [0.01]
      2007-02-07       PHOTOMETRY,OBJECT 182.635969 ... IMAGE,WINDOW,CHOPNOD STARINTF     0.54 [0.02]
      2007-02-07       PHOTOMETRY,OBJECT 182.635969 ... IMAGE,WINDOW,CHOPNOD STARINTF     0.54 [0.03]
    Length = 38 rows

And indeed, 38 datasets are found, and the ``DATE OBS`` column is in the result table.

Querying all instruments
------------------------

The ESO database can also be queried without a specific instrument in mind.
This is what the method :meth:`~astroquery.eso.EsoClass.query_main` is for.
The associated query form on the ESO archive website is http://archive.eso.org/wdb/wdb/eso/eso_archive_main/form.
Except for the keyword specifying the instrument the behaviour of :meth:`~astroquery.eso.EsoClass.query_main`
is identical to :meth:`~astroquery.eso.EsoClass.query_instrument`.

ESO instruments without a specific query interface can be queried with
:meth:`~astroquery.eso.EsoClass.query_main`, specifying the ``instrument`` constraint.
This is the case of e.g. ``harps``, ``feros`` or the all sky cameras APICAM and MASCOT. Here is an example to
query all-sky images from APICAM with ``luminance`` filter.

.. doctest-remote-data::

    >>> eso.ROW_LIMIT = -1   # Return all results
    >>> table = eso.query_main(column_filters={'instrument': 'APICAM', 'filter_path': 'LUMINANCE',
    ...                                        'stime':'2019-04-26', 'etime':'2019-04-27'}, cache=False)
    >>> print(len(table))
    207
    >>> print(table.columns)
    <TableColumns names=('OBJECT','RA','DEC','Program_ID','Instrument','Category','Type','Mode','Dataset ID','Release_Date','TPL ID','TPL START','Exptime','Exposure','filter_lambda_min','filter_lambda_max','MJD-OBS','Airmass','DIMM Seeing at Start')>
    >>> table.pprint(max_width=100)
     OBJECT      RA         DEC      Program_ID  ...   MJD-OBS    Airmass DIMM Seeing at Start
    ------- ----------- ----------- ------------ ... ------------ ------- --------------------
    ALL SKY 09:18:37.39 -24:32:32.7 60.A-9008(A) ... 58599.987766     1.0                  N/A
    ALL SKY 09:21:07.68 -24:32:30.1 60.A-9008(A) ... 58599.989502     1.0                  N/A
    ALL SKY 09:23:38.98 -24:32:27.5 60.A-9008(A) ...  58599.99125     1.0                  N/A
    ALL SKY 09:26:10.28 -24:32:24.9 60.A-9008(A) ... 58599.992998     1.0                  N/A
    ALL SKY 09:28:40.58 -24:32:22.4 60.A-9008(A) ... 58599.994734     1.0                  N/A
    ALL SKY 09:31:43.93 -24:32:19.4 60.A-9008(A) ... 58599.996852     1.0                  N/A
    ALL SKY 09:34:15.23 -24:32:17.0 60.A-9008(A) ...   58599.9986     1.0                  N/A
    ALL SKY 09:36:47.53 -24:32:14.5 60.A-9008(A) ... 58600.000359     1.0                  N/A
    ALL SKY 09:39:18.82 -24:32:12.2 60.A-9008(A) ... 58600.002106     1.0                  N/A
    ALL SKY 09:41:49.11 -24:32:09.9 60.A-9008(A) ... 58600.003843     1.0                  N/A
        ...         ...         ...          ... ...          ...     ...                  ...
    ALL SKY 19:07:39.21 -24:39:35.1 60.A-9008(A) ... 58600.395914     1.0                  N/A
    ALL SKY 19:10:11.68 -24:39:39.1 60.A-9008(A) ... 58600.397674     1.0                  N/A
    ALL SKY 19:12:44.15 -24:39:43.2 60.A-9008(A) ... 58600.399433     1.0                  N/A
    ALL SKY 19:15:15.62 -24:39:47.1 60.A-9008(A) ... 58600.401181     1.0                  N/A
    ALL SKY 19:17:46.09 -24:39:51.1 60.A-9008(A) ... 58600.402917     1.0                  N/A
    ALL SKY 19:20:46.65 -24:39:55.8 60.A-9008(A) ...    58600.405     1.0                  N/A
    ALL SKY 19:23:18.12 -24:39:59.7 60.A-9008(A) ... 58600.406748     1.0                  N/A
    ALL SKY 19:25:51.60 -24:40:03.7 60.A-9008(A) ... 58600.408519     1.0                  N/A
    ALL SKY 19:28:22.08 -24:40:07.6 60.A-9008(A) ... 58600.410255     1.0                  N/A
    ALL SKY 19:30:52.55 -24:40:11.4 60.A-9008(A) ... 58600.411991     1.0                  N/A
    Length = 207 rows


Query the ESO archive for reduced data
======================================

In addition to raw data, ESO makes available processed data.
In this section, we show how to obtain these processed survey data from the archive.

Identify available surveys
--------------------------

The list of available surveys can be obtained with :meth:`astroquery.eso.EsoClass.list_surveys` as follows:

.. doctest-remote-data::

    >>> surveys = eso.list_surveys()

Query a specific survey with constraints
----------------------------------------

Let's assume that we work with the ``HARPS`` survey, and that we are interested in
target ``HD203608``.
The archive can be queried as follows:


.. doctest-remote-data::

    >>> table = eso.query_surveys(surveys='HARPS', cache=False, target="HD203608")

The returned table has an ``ARCFILE`` column. It can be used to retrieve the datasets with
:meth:`astroquery.eso.EsoClass.retrieve_data` (see next section).


Obtaining extended information on data products
===============================================

Only a small subset of the keywords presents in the data products can be obtained
with :meth:`~astroquery.eso.EsoClass.query_instrument` or :meth:`~astroquery.eso.EsoClass.query_main`.
There is however a way to get the full primary header of the FITS data products,
using :meth:`~astroquery.eso.EsoClass.get_headers`.
This method is detailed in the example below.


.. doctest-remote-data::

    >>> table = eso.query_instrument('midi', column_filters={'target':'NGC 4151',
    ...                                                      'stime':'2007-01-01',
    ...                                                      'etime':'2008-01-01'},
    ...                              columns=['night'])
    >>> table_headers = eso.get_headers(table['DP.ID'])
    >>> table_headers.pprint()  # doctest: +IGNORE_OUTPUT
               DP.ID             SIMPLE BITPIX ... HIERARCH ESO OCS TPL NFILE   HIERARCH ESO OCS EXPO1 FNAME3
    ---------------------------- ------ ------ ... -------------------------- ---------------------------------
    MIDI.2007-02-07T07:01:51.000   True     16 ...                          0
    MIDI.2007-02-07T07:02:49.000   True     16 ...                          0
    MIDI.2007-02-07T07:03:30.695   True     16 ...                          0
    MIDI.2007-02-07T07:05:47.000   True     16 ...                          0
    MIDI.2007-02-07T07:06:28.695   True     16 ...                          0
    MIDI.2007-02-07T07:09:03.000   True     16 ...                          0
    MIDI.2007-02-07T07:09:44.695   True     16 ...                          0
    MIDI.2007-02-07T07:13:09.000   True     16 ...                          0
    MIDI.2007-02-07T07:13:50.695   True     16 ...                          0
    MIDI.2007-02-07T07:15:55.000   True     16 ...                          0
                             ...    ...    ... ...                        ...                               ...
    MIDI.2007-02-07T07:52:27.992   True     16 ...                          8 MIDI.2007-02-07T07:52:27.992.fits
    MIDI.2007-02-07T07:56:21.000   True     16 ...                          0
    MIDI.2007-02-07T07:57:35.485   True     16 ...                          0
    MIDI.2007-02-07T07:59:46.000   True     16 ...                          0
    MIDI.2007-02-07T08:01:00.486   True     16 ...                          0
    MIDI.2007-02-07T08:03:42.000   True     16 ...                          8
    MIDI.2007-02-07T08:04:56.506   True     16 ...                          8
    MIDI.2007-02-07T08:06:11.013   True     16 ...                          8 MIDI.2007-02-07T08:06:11.013.fits
    MIDI.2007-02-07T08:08:19.000   True     16 ...                          8 MIDI.2007-02-07T08:06:11.013.fits
    MIDI.2007-02-07T08:09:33.506   True     16 ...                          8 MIDI.2007-02-07T08:06:11.013.fits
    Length = 38 rows
    >>> len(table_headers.columns)
    340

As shown above, for each data product ID (``DP.ID``), the full header (570 columns in our case) of the archive
FITS file is collected. In the above table ``table_headers``, there are as many rows as in the column ``table['DP.ID']``.


Downloading datasets from the archive
=====================================

Continuing from the query with constraints example, the first two datasets are selected,
using their data product IDs ``DP.ID`` (or ``ARCFILE`` for surveys), and retrieved from the ESO archive.

.. doctest-skip::

    >>> data_files = eso.retrieve_data(table['DP.ID'][:2])
    INFO: Downloading datasets ...
    INFO: Downloading 2 files ...
    INFO: Downloading file 1/2 https://dataportal.eso.org/dataPortal/file/MIDI.2007-02-07T07:01:51.000 to ...
    INFO: Successfully downloaded dataset MIDI.2007-02-07T07:01:51.000 to ...
    INFO: Downloading file 2/2 https://dataportal.eso.org/dataPortal/file/MIDI.2007-02-07T07:02:49.000 to ...
    INFO: Successfully downloaded dataset MIDI.2007-02-07T07:02:49.000 to ...
    INFO: Uncompressing file /Users/szampier/.astropy/cache/astroquery/Eso/MIDI.2007-02-07T07:01:51.000.fits.Z
    INFO: Uncompressing file /Users/szampier/.astropy/cache/astroquery/Eso/MIDI.2007-02-07T07:02:49.000.fits.Z
    INFO: Done!

The file names, returned in data_files, points to the decompressed datasets
(without the .Z extension) that have been locally downloaded.
They are ready to be used with `~astropy.io.fits`.

The default location (in the astropy cache) of the decompressed datasets can be adjusted by providing
a ``destination`` keyword in the call to :meth:`~astroquery.eso.EsoClass.retrieve_data`.

By default, if a requested dataset is already found, it is not downloaded again from the archive.
To force the retrieval of data that are present in the destination directory, use ``continuation=True``
in the call to :meth:`~astroquery.eso.EsoClass.retrieve_data`.


Troubleshooting
===============

If you are repeatedly getting failed queries, or bad/out-of-date results, try clearing your cache:

.. code-block:: python

    >>> from astroquery.eso import Eso
    >>> Eso.clear_cache()

If this function is unavailable, upgrade your version of astroquery.
The ``clear_cache`` function was introduced in version 0.4.7.dev8479.


Reference/API
=============

.. automodapi:: astroquery.eso
    :no-inheritance-diagram: