File: cadc.rst

package info (click to toggle)
astroquery 0.4.7%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 21,752 kB
  • sloc: python: 45,923; xml: 33,841; makefile: 140; ansic: 69
file content (644 lines) | stat: -rw-r--r-- 28,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
.. _astroquery.cadc:

************************
CADC (`astroquery.cadc`)
************************

The Canadian Astronomy Data Centre (CADC) is a world-wide distribution
centre for astronomical data obtained from telescopes. The CADC
specializes in data mining, processing, distribution and transferring
of very large astronomical datasets.

This package allows the access to the data at the `CADC
<https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/>`_.

============
Basic Access
============

The CADC hosts a number of collections and
`~astroquery.cadc.CadcClass.get_collections` returns a list of all
these collections:


.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> for collection, details in sorted(cadc.get_collections().items()):
    ...    print(f'{collection} : {details}')
    ...
    APASS : {'Description': 'The APASS collection at the CADC', 'Bands': ['Optical', 'Infrared|Optical', '']}
    BLAST : {'Description': 'The BLAST collection at the CADC', 'Bands': ['', 'Millimeter']}
    BRITE-Constellation : {'Description': 'The BRITE-Constellation collection at the CADC', 'Bands': ['Optical']}
    CFHT : {'Description': 'The CFHT collection at the CADC', 'Bands': ['Infrared|Optical', 'Optical|UV|EUV|X-ray|Gamma-ray', 'Infrared|Optical|UV', '', 'Optical', 'Infrared']}
    CFHTMEGAPIPE : {'Description': 'The CFHTMEGAPIPE collection at the CADC', 'Bands': ['', 'Infrared|Optical', 'Optical']}
    CFHTTERAPIX : {'Description': 'The CFHTTERAPIX collection at the CADC', 'Bands': ['Infrared|Optical', 'Optical', 'Infrared']}
    CFHTWIRWOLF : {'Description': 'The CFHTWIRWOLF collection at the CADC', 'Bands': ['Infrared']}
    CGPS : {'Description': 'The CGPS collection at the CADC', 'Bands': ['Infrared', 'Radio', 'Millimeter', '', 'Millimeter|Infrared']}
    ...
    SUBARU : {'Description': 'The SUBARU collection at the CADC', 'Bands': ['Optical']}
    SUBARUCADC : {'Description': 'The SUBARUCADC collection at the CADC', 'Bands': ['Optical', 'Infrared|Optical']}
    TESS : {'Description': 'The TESS collection at the CADC', 'Bands': ['Optical']}
    UKIRT : {'Description': 'The UKIRT collection at the CADC', 'Bands': ['Infrared|Optical', '', 'Optical', 'Infrared']}
    VGPS : {'Description': 'The VGPS collection at the CADC', 'Bands': ['Radio']}
    VLASS : {'Description': 'The VLASS collection at the CADC', 'Bands': ['', 'Radio']}
    WALLABY : {'Description': 'The WALLABY collection at the CADC', 'Bands': ['Radio']}
    XMM : {'Description': 'The XMM collection at the CADC', 'Bands': ['Optical', 'UV', 'X-ray']}


The most basic ways to access the CADC data and metadata is by
region or by name. The following example queries CADC for Canada
France Hawaii Telescope (CFHT) data for a given region and resolves
the URLs for downloading the corresponding data.

.. Remove IGNORE_WARNINGS once https://github.com/astropy/astroquery/issues/2523 is fixed
.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> result = cadc.query_region('08h45m07.5s +54d18m00s', collection='CFHT')
    >>> print(result)  # doctest: +IGNORE_OUTPUT
      observationURI  sequenceNumber ...     maxLastModified2
                                     ...
    ----------------- -------------- ... -----------------------
    caom:CFHT/2366432        2366432 ... 2020-09-14T04:24:28.932
    caom:CFHT/2366188        2366188 ... 2020-09-14T06:58:23.094
    caom:CFHT/2366432        2366432 ... 2020-09-14T04:24:28.932
    caom:CFHT/2480747        2480747 ... 2020-09-09T12:47:39.890
    caom:CFHT/2366188        2366188 ... 2020-09-14T06:58:23.094
    caom:CFHT/2480747        2480747 ... 2021-02-26T14:40:21.695
    caom:CFHT/2583703        2583703 ... 2021-02-18T01:32:51.542
    caom:CFHT/2583527        2583527 ... 2021-09-01T20:37:05.647
    caom:CFHT/2583527        2583527 ... 2021-09-01T20:37:05.647
    caom:CFHT/2583703        2583703 ... 2021-02-26T10:37:42.355
    caom:CFHT/2376828        2376828 ... 2021-09-01T23:48:18.790
    caom:CFHT/2376828        2376828 ... 2021-09-01T23:48:18.790
    >>> urls = cadc.get_data_urls(result)  # doctest: +IGNORE_WARNINGS
    >>> for url in urls:
    ...     print(url)   #doctest: +IGNORE_OUTPUT
    ...
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2366432o.fits.fz?RUNID=queoo1qg8y4pgiep
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2366432p.fits.fz?RUNID=queoo1qg8y4pgiep
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2366188p.fits.fz?RUNID=queoo1qg8y4pgiep
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828o.fits.fz?RUNID=queoo1qg8y4pgiep
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828p.fits.fz?RUNID=queoo1qg8y4pgiep
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2366188o.fits.fz?RUNID=queoo1qg8y4pgiep
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2480747o.fits.fz?RUNID=queoo1qg8y4pgiep
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2480747p.fits.fz?RUNID=queoo1qg8y4pgiep


The next example queries all the data in the same region and filters
the results on the name of the target (as an example - any other
filtering possible) and resolves the URLs for both the primary and
auxiliary data (in this case preview files)

.. Remove IGNORE_WARNINGS once https://github.com/astropy/astroquery/issues/2523 is fixed
.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> result = cadc.query_region('08h45m07.5s +54d18m00s')
    >>> urls = cadc.get_data_urls(result[result['target_name'] == 'Nr3491_1'],
    ...                           include_auxiliaries=True)  # doctest: +IGNORE_WARNINGS
    >>> for url in urls:
    ...    print(url)  # doctest: +IGNORE_OUTPUT
    ...
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828o_preview_zoom_1024.jpg?RUNID=tqlxhnxndjs1xhd3
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828o_preview_256.jpg?RUNID=tqlxhnxndjs1xhd3
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828o_preview_1024.jpg?RUNID=tqlxhnxndjs1xhd3
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828o.fits.fz?RUNID=tqlxhnxndjs1xhd3
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828p_preview_1024.jpg?RUNID=tqlxhnxndjs1xhd3
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828p_preview_256.jpg?RUNID=tqlxhnxndjs1xhd3
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828p_preview_zoom_1024.jpg?RUNID=tqlxhnxndjs1xhd3
    https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/data/pub/CFHT/2376828p.fits.fz?RUNID=tqlxhnxndjs1xhd3


CADC data can also be queried on the target name. Note that the name
is not resolved. Instead it is matched against the target name in
the CADC metadata.


.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> result_m31 = cadc.query_name('M31')
    >>>
    >>> result = cadc.query_name('Nr3491_1')
    >>> print(result)  # doctest: +IGNORE_OUTPUT
      observationURI  sequenceNumber ...     maxLastModified2
                                     ...
    ----------------- -------------- ... -----------------------
    caom:CFHT/2376828        2376828 ... 2021-09-01T23:48:18.790
    caom:CFHT/2376828        2376828 ... 2021-09-01T23:48:18.790


If only a subsection of the FITS file is needed, CADC can query an
area and resolve the cutout of a result.

.. Remove IGNORE_WARNINGS once https://github.com/astropy/astroquery/issues/2523 is fixed
.. doctest-remote-data::

    >>> from astropy import units as u
    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> coords = '01h45m07.5s +23d18m00s'
    >>> radius = 0.01*u.deg
    >>> images = cadc.get_images(coords, radius, collection='CFHT')  # doctest: +IGNORE_WARNINGS
    >>> images  # doctest: +IGNORE_OUTPUT
    [<astropy.io.fits.hdu.image.PrimaryHDU object at 0x7f3805a06ef0>]
    [<astropy.io.fits.hdu.image.PrimaryHDU object at 0x7f3805b23b38>]


Alternatively, if the query result is large and data does not need to be
in memory, lazy access to the downloaded FITS file can be used.

.. Remove IGNORE_WARNINGS once https://github.com/astropy/astroquery/issues/2523 is fixed
.. doctest-remote-data::

    >>> from astropy import units as u
    >>> from astropy.coordinates import SkyCoord
    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> coords = SkyCoord(10, 20, unit='deg')
    >>> radius = 0.01*u.deg
    >>> readable_objs = cadc.get_images_async(coords, radius, collection='CFHT')  # doctest: +IGNORE_WARNINGS
    >>> readable_objs  # doctest: +IGNORE_OUTPUT
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2234132o.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451168112
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2368279p.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451142576
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2228383o.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045452176880
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2228675o.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045452234864
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2234131o.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451147584
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2228675p.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451345584
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2228383p.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451344912
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2234131p.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451345104
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2234132p.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451343808
    Downloaded object from URL https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2368279o.fits.fz&RUNID=pot39nwwtaht03wc&POS=CIRCLE+26.2812589776878+23.299999818906816+0.01 with ID 140045451344768


If the cutout URLs from a complicated query
are needed, the result table can be passed into the
`~astroquery.cadc.CadcClass.get_image_list` function, along with the
cutout coordinates and radius.

.. Remove IGNORE_WARNINGS once https://github.com/astropy/astroquery/issues/2523 is fixed
.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> from astropy import units as u
    >>> cadc = Cadc()
    >>> coords = '01h45m07.5s +23d18m00s'
    >>> results = cadc.query_region(coords, radius=0.1*u.deg, collection='CFHT')
    >>> filtered_results = results[results['time_exposure'] > 120.0]
    >>> image_list = cadc.get_image_list(filtered_results, coords, radius)  # doctest: +IGNORE_WARNINGS
    >>> print(image_list)   # doctest: +IGNORE_OUTPUT
    ['https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2368278o.fits.fz&RUNID=dbuswaj4zwruzi92&POS=CIRCLE+26.2812589776878+23.299999818906816+0.1',
    'https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2368278p.fits.fz&RUNID=dbuswaj4zwruzi92&POS=CIRCLE+26.2812589776878+23.299999818906816+0.1',
    'https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2368279p.fits.fz&RUNID=dbuswaj4zwruzi92&POS=CIRCLE+26.2812589776878+23.299999818906816+0.1',
    'https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID=ad%3ACFHT%2F2368279o.fits.fz&RUNID=dbuswaj4zwruzi92&POS=CIRCLE+26.2812589776878+23.299999818906816+0.1']


Note that the examples above are for accessing data anonymously. Users
with access to proprietary data can use authenticated sessions
to instantiate the `~astroquery.cadc.CadcClass` class or call
`~astroquery.cadc.CadcClass.login` on it before querying or accessing
the data.

CADC metadata is available through a TAP service. While the above
interfaces offer a quick and simple access to the data, the TAP
interface presented in the next sections allows for more complex
queries.


=============================
Query CADC metadata using TAP
=============================

Cadc TAP access is based on a TAP+ REST service. TAP+ is an extension
of `Table Access Protocol (TAP) <http://www.ivoa.net/documents/TAP>`_
specified by the `International Virtual Observatory Alliance (IVOA)
<http://www.ivoa.net>`_.

The TAP query language is `Astronomical Data Query Language (ADQL)
<http://www.ivoa.net/documents/ADQL/2.0>`_, which is similar to
Structured Query Language (SQL), widely used to query databases.

TAP provides two operation modes:

* Synchronous: the response to the request will be generated as soon
  as the request received by the server.  (In general, avoid using
  this method for queries that take a long time to run before the first
  rows are returned as it might lead to timeouts on the client side.)
* Asynchronous: the server will start a job that will execute the
  request.  The first response to the request is the required
  information (a link) to obtain the job status.  Once the job is
  finished, the results can be retrieved.

The functions can be run as an authenticated user, the
`~astroquery.cadc.CadcClass.list_async_jobs` function will error if
not authenticated. For authentication you need an account with the
CADC, go to http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/, choose a
language, click on Login in the top right area, click on the Request
an Account link, enter your information and wait for confirmation of
your account creation.

There are two types of authentication:

* Username/Password:
  :code:`Cadc().login(user='yourusername', password='yourpassword')`

* Certificate:
  :code:`Cadc().login(certificate_file='path/to/certificate/file')`

For certificate authentication to get a certificate go to
https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/, choose a language,
login, click on your name where the login button used to be,
from the drop-down menu click Obtain a Certificate and save the
certificate. When adding authentication used the path to where you
saved the certificate. Remember that certificates expire and you will
need to get a new one.

When logging in, both forms of authentication are
allowed. Authentication will be applied to each subsequent call. When
a job is created with authentication any further calls will require
authentication.

There is one way to logout which will cancel any kind of authentication
that was used:

* Logout:
  :code:`Cadc.logout()`

CADC metadata is modeled using the `CAOM (Common Archive Observation
Model) <https://www.opencadc.org/caom2/>`_.


======================
Examples of TAP access
======================

---------------------------
1. Non authenticated access
---------------------------

1.1. Get tables
~~~~~~~~~~~~~~~~~

To get a list of table objects:


.. doctest-remote-data::


    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> tables = cadc.get_tables(only_names=True)
    >>> for table in tables:
    ...     print(table)
    ...
    caom2.Observation
    caom2.Plane
    caom2.Artifact
    caom2.Part
    caom2.Chunk
    caom2.ObservationMember
    caom2.ProvenanceInput
    caom2.EnumField
    caom2.ObsCoreEnumField
    caom2.distinct_proposal_id
    caom2.distinct_proposal_pi
    caom2.distinct_proposal_title
    caom2.HarvestSkipURI
    caom2.HarvestState
    caom2.SIAv1
    ivoa.ObsCore
    ivoa.ObsFile
    ivoa.ObsPart
    tap_schema.schemas
    tap_schema.tables
    tap_schema.columns
    tap_schema.keys
    tap_schema.key_columns


1.2. Get table
~~~~~~~~~~~~~~~~

To get a single table object:


.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> table=cadc.get_table(table='caom2.Observation')
    >>> for col in table.columns:
    ...     print(col.name)
    ...
    observationURI
    obsID
    collection
    observationID
    algorithm_name
    type
    intent
    sequenceNumber
    metaRelease
    metaReadGroups
    proposal_id
    proposal_pi
    proposal_project
    proposal_title
    proposal_keywords
    target_name
    target_targetID
    target_type
    target_standard
    target_redshift
    target_moving
    target_keywords
    targetPosition_coordsys
    targetPosition_coordinates_cval1
    targetPosition_equinox
    targetPosition_coordinates_cval2
    telescope_name
    telescope_geoLocationX
    telescope_geoLocationY
    telescope_geoLocationZ
    telescope_keywords
    requirements_flag
    instrument_name
    instrument_keywords
    environment_seeing
    environment_humidity
    environment_elevation
    environment_tau
    environment_wavelengthTau
    environment_ambientTemp
    environment_photometric
    members
    typeCode
    metaProducer
    lastModified
    maxLastModified
    metaChecksum
    accMetaChecksum



1.3 Run synchronous query
~~~~~~~~~~~~~~~~~~~~~~~~~~

A synchronous query will not store the results at server side. These
queries must be used when the amount of data to be retrieved is
'small'.

There is a limit of 2000 rows. If you need more than that, you must
use asynchronous queries.

The results can be saved in memory (default) or in a file.

Query without saving results in a file:


.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> results = cadc.exec_sync("SELECT top 100 observationID, intent FROM caom2.Observation")
    >>> print(results)  # doctest: +IGNORE_OUTPUT
              observationID               intent
    ---------------------------------- -----------
        VLASS2.2.T18t28.J204443+293000     science
            c4d_141029_044031_oki_g_v1     science
        VLASS2.2.T18t28.J203534+293000     science
                                   ...         ...
                          C170323_0155 calibration
                          C180513_0208     science
                         2019101223440     science
     Length = 100 rows


Query saving results in a file:


.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> job = cadc.exec_sync("SELECT TOP 10 observationID, obsID FROM caom2.Observation",
    ...                      output_file='test_output_noauth.xml')


1.5 Synchronous query with temporary uploaded table
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A temporary table can be uploaded to the server from a local file and used in a query.
The ``uploads`` argument in ``exec_sync`` is a map where the key is the name of the
table and the value is the name of the ``VOTable`` temporary file with the content.
In the query, the temporary table is referred to as ``tap_upload.table_name``.
For example, if ``uploads = {'temp_table': 'table_file_name'}``, then the simplest query
to return the content of that table would be ``SELECT * FROM tap_upload.temp_table``.
Multiple temporary tables to be used at once can be specified as such.

More details about temporary table upload can be found in the IVOA TAP specification.

.. TODO: remove the IGNORE_WARNINGS once https://github.com/astropy/astroquery/issues/2538 is fixed
.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> # save a few observations on a local file
    >>> results = cadc.exec_sync("SELECT TOP 3 observationID FROM caom2.Observation",
    ...                          output_file='my_observations.xml')
    >>> print(results)  # doctest: +IGNORE_OUTPUT
                  observationID
    ----------------------------------
                c13a_060826_044314_ori
    tess2021167190903-s0039-1-3-0210-s
                             tu1657207
    >>> # now use them to join with the remote table
    >>> results = cadc.exec_sync("SELECT o.observationID, intent FROM caom2.Observation o "
    ...                          "JOIN tap_upload.test_upload tu ON o.observationID=tu.observationID",
    ...                          uploads={'test_upload': 'my_observations.xml'})  # doctest: +IGNORE_WARNINGS
    >>> print(results)  # doctest: +IGNORE_OUTPUT
              observationID             intent
    ---------------------------------- -------
                c13a_060826_044314_ori science
    tess2021167190903-s0039-1-3-0210-s science
                             tu1657207 science


The feature allows a user to save the results of a query to use them later or
correlate them with data in other TAP services.


1.6 Asynchronous query
~~~~~~~~~~~~~~~~~~~~~~

Asynchronous queries save results at server side. These queries can
be accessed at any time.

The results can be saved in memory (default) or in a file.

Query without saving results in a file:


.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> job = cadc.create_async("SELECT TOP 100 observationID, instrument_name, target_name FROM caom2.Observation AS Observation")
    >>> job.run().wait()  # doctest: +IGNORE_OUTPUT
    >>> job.raise_if_error()
    >>> print(job.fetch_result().to_table())  # doctest: +IGNORE_OUTPUT
                     observationID                     intent
    ----------------------------------------------- -----------
                                          j8eh03boq     science
                                          j8f635020     science
                                          jbfkb1peq     science
                                          j8ff06s2q     science
                                          icdx40oxq     science
                                          j8fd13rgq     science
                                          j8ff03020     science
                            GN-2014B-SV-101-761-010     science
                                          j8ff07020     science
                                          jbfh14020     science
                                                ...         ...
               hst_10476_50_acs_wfc_f850lp_j9fo50ul     science
                       GS-CAL20181018-10-026-G-BIAS calibration
                              GN-2020B-Q-120-40-050 calibration
                       GS-CAL20181018-10-021-G-BIAS calibration
                       GS-CAL20181018-10-036-G-BIAS calibration
                       GS-CAL20181018-10-061-G-BIAS calibration
                                          icdx13u2q     science
                        GS-CAL20181117-2-046-G-BIAS calibration
    tess2019357164649-s0020-0000000159539617-0165-s     science
                        GS-CAL20181117-2-061-G-BIAS calibration
                       GS-CAL20181018-10-086-G-BIAS calibration
    Length = 100 rows


1.7 Load job
~~~~~~~~~~~~

Asynchronous jobs can be loaded. You need the jobid in order to load
the job.


.. doctest-remote-data::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> job = cadc.create_async("SELECT TOP 100 observationID, instrument_name, target_name FROM caom2.Observation AS Observation")
    >>> job.run().wait()  # doctest: +IGNORE_OUTPUT
    >>> job.raise_if_error()
    >>> loaded_job = cadc.load_async_job(jobid=job.job_id)
    >>> print(loaded_job.fetch_result().to_table())     # doctest: +IGNORE_OUTPUT
           observationID         instrument_name            target_name
    ---------------------------- ---------------- --------------------------------
                    C090503_0500           CPAPIR                             SH87
      c4d_151207_032018_opd_u_v3            decam                          Field14
                       ct3264072          andicam                          2227-08
                        tu558265         mosaic_2                    xcs0058940301
                       ct2318747         ccd_spec                             test
                       tu1826354            decam                               B1
           c4d_150601_015113_ori            decam                             junk
                        tu212518          newfirm Mask for K4N09B_20091129_783db2b
           k4i_041101_174620_zri        ir_imager                        TEST bias
                        tu072083          newfirm Mask for K4N07B_20071113_776684b
           psg_170118_012214_ori          goodman                          NGC1672
    k4n_131022_051755_opd_KXs_v3          newfirm Mask for K4N13B_20131020_89c812c
          c15s_080828_031158_ori         ccd_spec                              082
      c4d_160214_072405_opi_r_v1            decam        MAGLITES field: 5354-01-r
      c4d_141122_004603_oki_u_v3            decam                           Field4
     c4d_140505_000543_opw_VR_v1            decam                          AiYN1Qv
                             ...              ...                              ...
          c09i_140321_044944_ori       ccd_imager twhya filter1 = dia, filter2 = g
      c4d_150902_000343_opd_i_v1            decam                         C6p13c1A
          c09i_141005_231309_sri       ccd_imager                            sflat
          kcfs_081028_074111_ori         ccd_spec                         HD 22780
                        tu802011       mosaic_1_1                            86326
      c4d_141122_004603_oow_u_v3            decam                           Field4
          c15s_071230_081528_ori         ccd_spec                         HD 95578
          c15s_070924_203941_zri         ccd_spec                             Bias
                       tu1116697         mosaic_2                             sm43
                       ct3429663         mosaic_2                             test
            dao_c182_2020_005631 Newtonian Imager                  s2020ihc(150@0)
            dao_c182_2020_005632 Newtonian Imager                  s2020ihc(150@0)
                    C090317_0114           CPAPIR                           2M1106
                        cp828585          spartan             WISEJ1741+2533 x-6y5
          c09i_060720_044639_ori       ccd_imager                    G2239n05d1243
            GS-2004A-Q-27-43-006           GMOS-S                            LMCF4
    Length = 100 rows


-----------------------
2. Authenticated access
-----------------------

Some capabilities (shared tables, persistent jobs, etc.) are only
available to authenticated users.

One authentication option is to instantiate the
`~astroquery.cadc.CadcClass` class with a pre-existing,
`pyvo.auth.authsession.AuthSession` or `requests.Session` object that
contains the necessary credentials. Note that the session will be
used for all the service interaction. The former session attempts to
pair the credentials with the auth methods in the service capabilities
while the latter sends the credentials with all requests.

The second option is to use the `~astroquery.cadc.CadcClass.login`
method.

After a successful authentication, user credentials will be used
until the `~astroquery.cadc.CadcClass.logout` method is called.

All previous methods (`~astroquery.cadc.CadcClass.get_tables`,
`~astroquery.cadc.CadcClass.get_table`) explained for non authenticated
users are applicable for authenticated ones.


2.1 Login/Logout
~~~~~~~~~~~~~~~~~

Login with username and password:

.. doctest-skip::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> cadc.login(user='userName', password='userPassword')


Login with certificate:

.. doctest-skip::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> cadc.login(certificate_file='/path/to/cert/file')


To perform a logout:


.. doctest-skip::

    >>> from astroquery.cadc import Cadc
    >>> cadc = Cadc()
    >>> cadc.logout()


Reference/API
=============

.. automodapi:: astroquery.cadc
    :no-inheritance-diagram:


.. testcleanup::

    >>> from astroquery.utils import cleanup_saved_downloads
    >>> cleanup_saved_downloads(['my_observations.xml', 'test_output_noauth.xml'])