1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*****
* path.cc
* John Bowman
*
* Compute information for a three-dimensional path.
*****/
#include <cfloat>
#include "path.h"
#include "triple.h"
namespace camp {
// Calculate coefficients of Bezier derivative.
static inline void derivative(triple& a, triple& b, triple& c,
triple z0, triple z0p, triple z1m, triple z1)
{
a=z1-z0+3.0*(z0p-z1m);
b=2.0*(z0+z1m)-4.0*z0p;
c=z0p-z0;
}
static triple a,b,c;
static double ds(double t)
{
double dx=quadratic(a.getx(),b.getx(),c.getx(),t);
double dy=quadratic(a.gety(),b.gety(),c.gety(),t);
double dz=quadratic(a.getz(),b.getz(),c.getz(),t);
return sqrt(dx*dx+dy*dy+dz*dz);
}
// Calculates arclength of a cubic using adaptive simpson integration.
double cubiclength(triple z0, triple z0p, triple z1m, triple z1, double goal)
{
double L,integral;
derivative(a,b,c,z0,z0p,z1m,z1);
if(!simpson(integral,ds,0.0,1.0,DBL_EPSILON,1.0))
reportError("nesting capacity exceeded in computing arclength");
L=3.0*integral;
if(goal < 0 || goal > L) return L;
static const double third=1.0/3.0;
goal *= third;
double t=0.5;
if(!unsimpson(goal,ds,0.0,t,100.0*DBL_EPSILON,integral,1.0))
reportError("nesting capacity exceeded in computing arctime");
return -t;
}
struct bbox3 {
bool empty;
double left,bottom,lower;
double right,top,upper;
public:
bbox3()
: empty(true), left(0.0), bottom(0.0), lower(0.0), right(0.0), top(0.0),
upper(0.0) {}
void add(triple v) {
double x=v.getx();
double y=v.gety();
double z=v.getz();
if(empty) {
left=right=x;
bottom=top=y;
lower=upper=z;
empty=false;
} else {
if (x < left)
left = x;
if (x > right)
right = x;
if (y < bottom)
bottom = y;
if (y > top)
top = y;
if (z < lower)
lower = z;
if (z > upper)
upper = z;
}
}
triple Min() {
return triple(left,bottom,lower);
}
triple Max() {
return triple(right,top,upper);
}
double diameter() {
return (Max()-Min()).length();
}
};
inline triple split(double t, triple x, triple y) {return x+t*(y-x);}
inline void splitCubic(node sn[], double t, node left_, node right_)
{
node &left=(sn[0]=left_), &mid=sn[1], &right=(sn[2]=right_);
triple x=split(t,left.post,right.pre);
left.post=split(t,left.point,left.post);
right.pre=split(t,right.pre,right.point);
mid.pre=split(t,left.post,x);
mid.post=split(t,x,right.pre);
mid.point=split(t,mid.pre,mid.post);
}
static unsigned count;
extern unsigned maxIntersectCount;
pair intersectcubics(node left1, node right1, node left2, node right2,
double fuzz, unsigned depth=DBL_MANT_DIG)
{
const pair F(-1,-1);
bbox3 box1, box2;
box1.add(left1.point); box1.add(left1.post);
box1.add(right1.pre); box1.add(right1.point);
box2.add(left2.point); box2.add(left2.post);
box2.add(right2.pre); box2.add(right2.point);
double lambda=box1.diameter()+box2.diameter();
if (box1.Max().getx()+fuzz >= box2.Min().getx() &&
box1.Max().gety()+fuzz >= box2.Min().gety() &&
box1.Max().getz()+fuzz >= box2.Min().getz() &&
box2.Max().getx()+fuzz >= box1.Min().getx() &&
box2.Max().gety()+fuzz >= box1.Min().gety() &&
box2.Max().getz()+fuzz >= box1.Min().getz()) {
if(lambda <= fuzz || depth == 0 || count == 0)
return pair(0,0);
--depth;
--count;
node sn1[3], sn2[3];
splitCubic(sn1,0.5,left1,right1);
splitCubic(sn2,0.5,left2,right2);
pair t;
if ((t=intersectcubics(sn1[0],sn1[1],sn2[0],sn2[1],fuzz,depth)) != F)
return t*0.5;
if ((t=intersectcubics(sn1[0],sn1[1],sn2[1],sn2[2],fuzz,depth)) != F)
return t*0.5+pair(0,1);
if ((t=intersectcubics(sn1[1],sn1[2],sn2[0],sn2[1],fuzz,depth)) != F)
return t*0.5+pair(1,0);
if ((t=intersectcubics(sn1[1],sn1[2],sn2[1],sn2[2],fuzz,depth)) != F)
return t*0.5+pair(1,1);
}
return F;
}
pair intersect(int L1, int L2, node n1[], node n2[], double fuzz=0.0)
{
pair F=pair(-1,-1);
for (int i=0; i < L1; ++i) {
node left1=n1[i];
node right1=n1[i+1];
for (int j=0; j < L2; ++j) {
count=maxIntersectCount;
pair t=intersectcubics(left1,right1,n2[j],n2[j+1],fuzz);
if (t != F) return t*0.5 + pair(i,j);
}
}
return F;
}
} //namespace camp
|