1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654
|
\input texinfo @c -*-texinfo-*-
@setfilename asymptote.info
@settitle Asymptote: the Vector Graphics Language
@include version.texi
@finalout
@copying
This file documents @code{Asymptote}, version @value{VERSION}.
@url{http://asymptote.sourceforge.net}
Copyright @copyright{} 2004-11 Andy Hammerlindl, John Bowman, and Tom Prince.
@quotation
Permission is granted to copy, distribute and/or modify this document
under the terms of the @acronym{GNU} Lesser General Public License. On
Debian systems, the @acronym{LGPL} can be found at
/usr/share/common-licenses/LGPL.
@end quotation
@end copying
@dircategory Languages
@direntry
* asymptote: (asymptote). Vector graphics language.
@end direntry
@titlepage
@title Asymptote: the Vector Graphics Language
@subtitle For version @value{VERSION}
@sp 1
@center @image{logo}
@page
@vskip 0pt plus 1filll
@insertcopying
@end titlepage
@c So the toc is printed at the start.
@contents
@ifnottex
@node Top
@top Asymptote
@insertcopying
@end ifnottex
@menu
* Description:: What is @code{Asymptote}?
* Installation:: Downloading and installing
* Tutorial:: Getting started
* Drawing commands:: Four primitive graphics commands
* Bezier curves:: Path connectors and direction specifiers
* Programming:: The @code{Asymptote} vector graphics language
* LaTeX usage:: Embedding @code{Asymptote} commands within @code{LaTeX}
* Base modules:: Base modules shipped with @code{Asymptote}
* Options:: Command-line options
* Interactive mode:: Typing @code{Asymptote} commands interactively
* GUI:: Graphical user interface
* PostScript to Asymptote:: @code{Asymptote} backend to @code{pstoedit}
* Help:: Where to get help and submit bug reports
* Debugger:: Squish those bugs!
* Credits:: Contributions and acknowledgments
* Index:: General index
@detailmenu
--- The Detailed Node Listing ---
Installation
* UNIX binary distributions:: Prebuilt @code{UNIX} binaries
* MacOS X binary distributions:: Prebuilt @code{MacOS X} binaries
* Microsoft Windows:: Prebuilt @code{Microsoft Windows} binary
* Configuring:: Configuring @code{Asymptote} for your system
* Search paths:: Where @code{Asymptote} looks for your files
* Compiling from UNIX source:: Building @code{Asymptote} from scratch
* Editing modes:: Convenient @code{emacs} and @code{vim} modes
* Subversion:: Getting the latest development source
* Uninstall:: Goodbye, @code{Asymptote}!
Drawing commands
* draw:: Draw a path on a picture or frame
* fill:: Fill a cyclic path on a picture or frame
* clip:: Clip a picture or frame to a cyclic path
* label:: Label a point on a picture
Programming
* Data types:: void, bool, int, real, pair, triple, string
* Paths and guides::
* Pens:: Colors, line types, line widths, font sizes
* Transforms:: Affine transforms
* Frames and pictures:: Canvases for immediate and deferred drawing
* Files:: Reading and writing your data
* Variable initializers:: Initialize your variables
* Structures:: Organize your data
* Operators:: Arithmetic and logical operators
* Implicit scaling:: Avoiding those ugly *s
* Functions:: Traditional and high-order functions
* Arrays:: Dynamic vectors
* Casts:: Implicit and explicit casts
* Import:: Importing external @code{Asymptote} modules
* Static:: Where to allocate your variable?
Operators
* Arithmetic & logical:: Basic mathematical operators
* Self & prefix operators:: Increment and decrement
* User-defined operators:: Overloading operators
Functions
* Default arguments:: Default values can appear anywhere
* Named arguments:: Assigning function arguments by keyword
* Rest arguments:: Functions with a variable number of arguments
* Mathematical functions:: Standard libm functions
Arrays
* Slices:: Python-style array slices
Base modules
* plain:: Default @code{Asymptote} base file
* simplex:: Linear programming: simplex method
* math:: Extend @code{Asymptote}'s math capabilities
* interpolate:: Interpolation routines
* geometry:: Geometry routines
* trembling:: Wavy lines
* stats:: Statistics routines and histograms
* patterns:: Custom fill and draw patterns
* markers:: Custom path marker routines
* tree:: Dynamic binary search tree
* binarytree:: Binary tree drawing module
* drawtree:: Tree drawing module
* syzygy:: Syzygy and braid drawing module
* feynman:: Feynman diagrams
* roundedpath:: Round the sharp corners of paths
* animation:: Embedded @acronym{PDF} and @acronym{MPEG} movies
* embed:: Embedding movies, sounds, and 3D objects
* slide:: Making presentations with @code{Asymptote}
* MetaPost:: @code{MetaPost} compatibility routines
* unicode:: Accept @code{unicode} (UTF-8) characters
* latin1:: Accept @code{ISO 8859-1} characters
* babel:: Interface to @code{LaTeX} @code{babel} package
* labelpath:: Drawing curved labels
* labelpath3:: Drawing curved labels in 3D
* annotate:: Annotate your @acronym{PDF} files
* CAD:: 2D CAD pen and measurement functions (DIN 15)
* graph:: 2D linear & logarithmic graphs
* palette:: Color density images and palettes
* three:: 3D vector graphics
* obj:: 3D obj files
* graph3:: 3D linear & logarithmic graphs
* grid3:: 3D grids
* solids:: 3D solid geometry
* tube:: 3D rotation minimizing tubes
* flowchart:: Flowchart drawing routines
* contour:: Contour lines
* contour3:: Contour surfaces
* slopefield:: Slope fields
* ode:: Ordinary differential equations
Graphical User Interface
* GUI installation:: Installing @code{xasy}
* GUI usage::
@end detailmenu
@end menu
@node Description
@chapter Description
@cindex description
@code{Asymptote} is a powerful descriptive vector graphics language that
provides a mathematical coordinate-based framework for technical drawings.
Labels and equations are typeset with @code{LaTeX}, for overall document
consistency, yielding the same high-quality level of typesetting that
@code{LaTeX} provides for scientific text. By default it produces
@code{PostScript} output, but it can also generate any format that the
@code{ImageMagick} package can produce.
A major advantage of @code{Asymptote} over other graphics packages is
that it is a high-level programming language, as opposed to just a graphics
program: it can therefore exploit the best features of the script
(command-driven) and graphical-user-interface (@acronym{GUI}) methods for
producing figures. The rudimentary @acronym{GUI} @code{xasy} included with the
package allows one to move script-generated objects
around. To make @code{Asymptote} accessible to the average user, this
@acronym{GUI} is currently being developed into a full-fledged interface
that can generate objects directly. However, the script portion of the language
is now ready for general use by users who are willing to learn a few
simple @code{Asymptote} graphics commands (@pxref{Drawing commands}).
@code{Asymptote} is mathematically oriented (e.g.@ one can
use complex multiplication to rotate a vector) and uses
@code{LaTeX} to do the
typesetting of labels. This is an important feature for scientific
applications. It was inspired by an earlier drawing program (with a weaker
syntax and capabilities) called @code{MetaPost}.
The @code{Asymptote} vector graphics language provides:
@itemize @bullet
@item a standard for typesetting mathematical figures, just
as @TeX{}/@code{LaTeX} is the de-facto standard for typesetting equations.
@item @code{LaTeX} typesetting of labels, for overall document consistency;
@item the ability to generate and embed 3D vector @acronym{PRC} graphics within @acronym{PDF} files;
@item a natural coordinate-based framework for technical drawings,
inspired by @code{MetaPost}, with a much cleaner, powerful C++-like programming
syntax;
@item compilation of figures into virtual machine code for speed, without
sacrificing portability;
@item the power of a script-based language coupled to the convenience of
a @acronym{GUI};
@item customization using its own C++-like graphics programming language;
@item sensible defaults for graphical features, with the ability to override;
@item a high-level mathematically oriented interface to the
@code{PostScript} language for vector graphics, including affine transforms
and complex variables;
@item functions that can create new (anonymous) functions;
@item deferred drawing that uses the simplex method to solve overall size
constraint issues between fixed-sized objects (labels and arrowheads) and
objects that should scale with figure size;
@end itemize
Many of the features of @code{Asymptote} are written in the
@code{Asymptote} language itself. While the stock version of
@code{Asymptote} is designed for mathematics typesetting needs, one can
write @code{Asymptote} modules that tailor it to specific
applications. A scientific graphing module has already been written
(@pxref{graph}). Examples of @code{Asymptote} code and output,
including animations, are available at
@quotation
@url{http://asymptote.sourceforge.net/gallery/}.
@end quotation
@noindent
Links to many external resources, including an excellent user-written
@code{Asymptote} tutorial can be found at
@quotation
@url{http://asymptote.sourceforge.net/links.html}.
@end quotation
@cindex reference
@cindex quick reference
A quick reference card for @code{Asymptote} is available at
@quotation
@url{http://asymptote.sourceforge.net/asyRefCard.pdf}.
@end quotation
@node Installation
@chapter Installation
@cindex installation
@menu
* UNIX binary distributions:: Prebuilt @code{UNIX} binaries
* MacOS X binary distributions:: Prebuilt @code{MacOS X} binaries
* Microsoft Windows:: Prebuilt @code{Microsoft Windows} binary
* Configuring:: Configuring @code{Asymptote} for your system
* Search paths:: Where @code{Asymptote} looks for your files
* Compiling from UNIX source:: Building @code{Asymptote} from scratch
* Editing modes:: Convenient @code{emacs} and @code{vim} modes
* Subversion:: Getting the latest development source
* Uninstall:: Goodbye, @code{Asymptote}!
@end menu
After following the instructions for your specific distribution,
please see also @ref{Configuring}.
@noindent
We recommend subscribing to new release announcements at
@quotation
@url{http://freshmeat.net/projects/asy}
@end quotation
@noindent
Users may also wish to monitor the @code{Asymptote} forum:
@quotation
@url{http://sourceforge.net/projects/asymptote/forums/forum/409349}
@end quotation
@noindent
@node UNIX binary distributions
@section UNIX binary distributions
@cindex UNIX binary distributions
@cindex @acronym{RPM}
@cindex @code{tgz}
We release both @code{tgz} and @acronym{RPM} binary distributions of
@code{Asymptote}. The root user can install the @code{Linux i386} @code{tgz}
distribution of version @code{x.xx} of @code{Asymptote} with the commands:
@verbatim
tar -C / -zxf asymptote-x.xx.i386.tgz
texhash
@end verbatim
@noindent
The @code{texhash} command, which installs LaTeX style files, is optional.
The executable file will be @code{/usr/local/bin/asy}) and example code
will be installed by default in @code{@value{Datadir}/doc/asymptote/examples}.
@noindent
@cindex Fedora
Fedora users can easily install the most recent version of @code{Asymptote}
with the command
@verbatim
yum --enablerepo=rawhide install asymptote
@end verbatim
@cindex Debian
@noindent
To install the latest version of @code{Asymptote} on a Debian-based distribution
(e.g.@ Ubuntu, Mepis, Linspire) follow the instructions for compiling
from @code{UNIX} source (@pxref{Compiling from UNIX source}).
Alternatively, Debian users can install one of Hubert Chan's
prebuilt @code{Asymptote} binaries from
@quotation
@url{http://ftp.debian.org/debian/pool/main/a/asymptote}
@end quotation
@node MacOS X binary distributions
@section MacOS X binary distributions
@cindex @code{MacOS X} binary distributions
@code{MacOS X} users can either compile the @code{UNIX} source code
(@pxref{Compiling from UNIX source})
or install the contributed @code{Asymptote} binary available at
@url{http://www.hmug.org/pub/MacOS_X/X/Applications/Publishing/asymptote/}
@noindent
Because these preconfigured binary distributions have
strict architecture and library dependencies that many installations do
not satisfy, we recommend installing @code{Asymptote} directly from the
official source:
@url{http://sourceforge.net/project/showfiles.php?group_id=120000}
@noindent
Note that many @code{MacOS X} (and FreeBSD) systems lack the
@acronym{GNU} @code{readline} library. For full interactive
functionality, @acronym{GNU} @code{readline} version 4.3 or later must
be installed.
@node Microsoft Windows
@section Microsoft Windows
@cindex Microsoft Windows
Users of the @code{Microsoft Windows} operating system can install the
self-extracting @code{Asymptote} executable @code{asymptote-x.xx-setup.exe},
where @code{x.xx} denotes the latest version.
A working @TeX{} implementation (such as the one available at
@url{http://www.miktex.org}) will be required to typeset labels.
You will also need to install @code{GPL Ghostscript} from
@url{http://sourceforge.net/projects/ghostscript/}.
To view the default @code{PostScript} output, you can install the
program @code{gsview} available from
@url{http://www.cs.wisc.edu/~ghost/gsview/}.
@cindex @code{psview}
@anchor{psview}
A better (and free) @code{PostScript} viewer available at
@url{http://psview.sourceforge.net/} (which in particular works properly
in interactive mode) unfortunately currently requires some manual
configuration. Specifically, if version @code{x.xx} of @code{psview} is
extracted to the directory @code{c:\Program Files} one needs to put
@verbatim
import settings;
psviewer="c:\Program Files\psview-x.xx\psv.exe";
@end verbatim
@noindent
in the optional @code{Asymptote} configuration file;
@pxref{configuration file}).
The @code{ImageMagick} package from
@url{http://www.imagemagick.org/script/binary-releases.php}
@noindent
is required to support output formats other than @acronym{EPS},
@acronym{PDF}, @acronym{SVG}, and @acronym{PNG} (@pxref{convert}).
The @code{Python} interpreter from @url{http://www.python.org} is only required
if you wish to try out the graphical user interface (@pxref{GUI}).
@noindent
Example code will be installed by default in the @code{examples}
subdirectory of the installation directory (by default,
@code{C:\Program Files\Asymptote}).
@node Configuring
@section Configuring
@cindex configuring
@cindex @code{-V}
@cindex @code{psviewer}
@cindex @code{pdfviewer}
@cindex @code{gs}
In interactive mode, or when given the @code{-V} option (the default
when running @code{Asymptote} on a single file under @code{MSDOS}),
@code{Asymptote} will automatically invoke the @code{PostScript}
viewer @code{gv} (under @code{UNIX}) or @code{gsview} (under
@code{MSDOS} to display graphical output. These defaults may be
overridden with the configuration variable @code{psviewer}.
The @code{PostScript} viewer should be capable of automatically
redrawing whenever the output file is updated. The default @code{UNIX}
@code{PostScript} viewer @code{gv} supports this (via a @code{SIGHUP}
signal). Version @code{gv-3.6.3} or later (from
@url{http://ftp.gnu.org/gnu/gv/}) is required for interactive mode to
work properly.
Users of @code{ggv} will need to enable @code{Watch file} under
@code{Edit/Postscript Viewer Preferences}.
Users of @code{gsview} will need to enable @code{Options/Auto Redisplay}
(however, under @code{MSDOS} it is still necessary to click on the
@code{gsview} window; under @code{UNIX} one must manually redisplay by
pressing the @code{r} key). A better (and free) multiplatform
alternative to @code{gsview} is @code{psview} (@pxref{psview}).
@cindex @code{settings}
@cindex configuration file
Configuration variables are most easily set as @code{Asymptote}
variables in an optional configuration file @code{config.asy}
@pxref{configuration file}).
Here are the default values of several important configuration
variables under @code{UNIX}:
@noindent
@verbatim
import settings;
psviewer="gv";
pdfviewer="xpdf";
gs="gs";
@end verbatim
@noindent
@cindex @code{cmd}
Under @code{MSDOS}, the (installation-dependent) default values of
these configuration variables are determined automatically from the
@code{Microsoft Windows} registry. Viewer settings (such as
@code{psviewer} and @code{pdfviewer}) can be set to the string
@code{cmd} to request the application normally associated with the
corresponding file type.
For @acronym{PDF} format output, the @code{gs} setting specifies the
location of the @code{PostScript}-to-@acronym{PDF} processor @code{Ghostscript},
available from @url{http://sourceforge.net/projects/ghostscript/}.
The setting @code{pdfviewer} specifies the location of the @acronym{PDF}
viewer. On @code{UNIX} systems, to support automatic document
reloading in @code{Adobe Reader}, we recommend copying the file
@code{reload.js} from the @code{Asymptote} system directory (by default,
@code{@value{Datadir}/asymptote} under @code{UNIX} to
@code{~/.adobe/Acrobat/x.x/JavaScripts/},
where @code{x.x} represents the appropriate @code{Adobe Reader}
version number. The automatic document reload feature must then be
explicitly enabled by putting
@verbatim
import settings;
pdfreload=true;
pdfreloadOptions="-tempFile";
@end verbatim
@noindent
in the @code{Asymptote} configuration file. This reload feature is not
useful under @code{MSDOS} since the document cannot be updated anyway on
that operating system until it is first closed by @code{Adobe Reader}.
The configuration variable @code{dir} can be used to adjust the
search path (@pxref{Search paths}).
@cindex @code{papertype}
@cindex @code{paperwidth}
@cindex @code{paperheight}
@cindex @code{letter}
@cindex @code{a4}
By default, @code{Asymptote} attempts to center the figure on the
page, assuming that the paper type is @code{letter}. The default paper
type may be changed to @code{a4} with the configuration variable
@code{papertype}. Alignment to other paper sizes can be obtained by setting the
configuration variables @code{paperwidth} and @code{paperheight}.
@cindex @code{texpath}
@cindex @code{texcommand}
@cindex @code{dvips}
@cindex @code{dvisvgm}
@cindex @code{convert}
@cindex @code{display}
@cindex @code{animate}
@cindex @code{ImageMagick}
The following configuration variables normally do not require adjustment:
@verbatim
texpath
texcommand
dvips
dvisvgm
convert
display
animate
@end verbatim
@noindent
Warnings (such as "writeoverloaded") may be enabled or disabled with
the functions
@verbatim
warn(string s);
nowarn(string s);
@end verbatim
@noindent
or by directly modifying the string array @code{settings.suppress}, which lists
all disabled warnings.
@cindex command-line options
Configuration variables may also be set or overwritten with a
command-line option:
@verbatim
asy -psviewer=gsview -V venn
@end verbatim
@cindex environment variables
Alternatively, system environment versions of the above configuration
variables may be set in the conventional way. The corresponding
environment variable name is obtained by converting the configuration
variable name to upper case and prepending @code{ASYMPTOTE_}:
for example, to set the environment variable
@verbatim
ASYMPTOTE_PSVIEWER="C:\Program Files\Ghostgum\gsview\gsview32.exe";
@end verbatim
@noindent
under @code{Microsoft Windows XP}:
@enumerate
@item Click on the @code{Start} button;
@item Right-click on @code{My Computer};
@item Choose @code{View system information};
@item Click the @code{Advanced} tab;
@item Click the @code{Environment Variables} button.
@end enumerate
@node Search paths
@section Search paths
@cindex search paths
In looking for @code{Asymptote} system
files, @code{asy} will search the following paths, in the order listed:
@enumerate
@item
The current directory;
@item
@cindex @code{dir}
A list of one or more directories specified by the configuration
variable @code{dir} (separated by @code{:} under UNIX and
@code{;} under @code{MSDOS});
@item
@cindex @code{.asy}
The directory specified by the environment variable
@code{ASYMPTOTE_HOME}; if this variable is not set,
the directory @code{.asy} in the user's home directory
(@code{%USERPROFILE%\.asy} under @code{MSDOS}) is used;
@item
The @code{Asymptote} system directory (by default,
@code{@value{Datadir}/asymptote} under @code{UNIX} and
@code{C:\Program Files\Asymptote} under @code{MSDOS}).
@end enumerate
@node Compiling from UNIX source
@section Compiling from UNIX source
@cindex Compiling from UNIX source
To compile and install a @code{UNIX} executable from
a source release
@code{x.xx}, first execute the commands:
@verbatim
gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx
@end verbatim
By default the system version of the Boehm garbage collector will be
used; if it is old we recommend first putting
@url{http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc-7.1.tar.gz}
in the @code{Asymptote} source directory.
@cindex @code{freeglut}
@cindex 3D rendering
@cindex antialiasing
@cindex multisampling
@anchor{multisampling}
@noindent
If your graphics card supports multisampling, we recommend using version
@code{2.6.0} (or later) of @code{freeglut} to support antialiasing in
@code{Asymptote}'s adaptive @code{OpenGL} 3D renderer
(@code{MacOS X} users can skip this step since @code{Asymptote} is configured
to use the native glut library on that platform). Download
@quotation
@url{http://prdownloads.sourceforge.net/freeglut/freeglut-2.6.0.tar.gz}
@end quotation
@noindent
and type (as the root user):
@verbatim
tar -zxf freeglut-2.6.0.tar.gz
cd freeglut-2.6.0
./configure --prefix=/usr
make install
cd ..
@end verbatim
@noindent
Then compile @code{Asymptote} with the commands
@verbatim
./configure
make all
make install
@end verbatim
@noindent
Be sure to use @acronym{GNU} @code{make} (on non-@acronym{GNU} systems
this command may be called @code{gmake}).
To build the documentation, you may need to install the
@code{texinfo-tex} package. If you get errors from a broken @code{texinfo}
or @code{pdftex} installation, simply put
@quotation
@url{http://asymptote.sourceforge.net/asymptote.pdf}
@end quotation
@noindent
in the directory @code{doc} and repeat the command @code{make all}.
@noindent
For a (default) system-wide installation, the last command should be
done as the root user. To install without root privileges, change the
@code{./configure} command to
@verbatim
./configure --prefix=$HOME/asymptote
@end verbatim
One can disable use of the Boehm garbage collector by configuring
with @code{./configure --disable-gc}. For a list of other configuration
options, say @code{./configure --help}. For example, one can tell
configure to look for header files and libraries in nonstandard locations:
@verbatim
./configure CFLAGS=-I/opt/usr/include LDFLAGS=-L/opt/usr/lib
@end verbatim
If you are compiling @code{Asymptote} with @code{gcc}, you will need a
relatively recent version (e.g.@ 3.4.4 or later). For full interactive
functionality, you will need version 4.3 or later of the @acronym{GNU}
@code{readline} library.
The file @code{gcc3.3.2curses.patch} in the @code{patches} directory can
be used to patch the broken curses.h header file (or a local copy thereof
in the current directory) on some @code{AIX} and @code{IRIX} systems.
@cindex @code{FFTW}
@cindex @code{GSL}
The @code{FFTW} library is only required if you want @code{Asymptote}
to be able to take Fourier transforms of data (say, to compute an
audio power spectrum). The @code{GSL} library is only required if you
require the special functions that it supports.
If you don't want to install @code{Asymptote} system wide, just make
sure the compiled binary @code{asy} and @acronym{GUI} script @code{xasy} are in
your path and set the configuration variable @code{dir} to point
to the directory @code{base} (in the top level directory of the
@code{Asymptote} source code).
@node Editing modes
@section Editing modes
@cindex Editing modes
@cindex @code{emacs}
@cindex @code{asy-mode}
@cindex @code{lasy-mode}
Users of @code{emacs} can edit @code{Asymptote} code with the mode
@code{asy-mode}, which is installed and enabled by default in the Debian
package.
Particularly useful key bindings in this mode are @code{C-c C-c}, which compiles
and displays the current buffer, and the key binding @code{C-c ?}, which
shows the available function prototypes for the command at the cursor.
For full functionality you should also install the Apache Software Foundation
package @code{two-mode-mode}:
@quotation
@url{http://www.dedasys.com/freesoftware/files/two-mode-mode.el}
@end quotation
@noindent
Once installed, you can use the hybrid mode @code{lasy-mode} to edit a
LaTeX file containing embedded @code{Asymptote} code (@pxref{LaTeX usage}).
This mode can be enabled within @code{latex-mode}
with the key sequence @code{M-x lasy-mode <RET>}.
On @code{UNIX} systems, additional keywords will be generated from
all @code{asy} files in the space-separated list of directories
specified by the environment variable @code{ASYMPTOTE_SITEDIR}.
Further documentation of @code{asy-mode} is available within
@code{emacs} by pressing the sequence keys @code{C-h f asy-mode <RET>}.
@cindex @code{vim}
@cindex @code{asy.vim}
Fans of @code{vim} can customize @code{vim} for @code{Asymptote} with
@verbatim
cp @value{Datadir}/doc/asymptote/examples/asy.vim.gz ~/.vim/syntax/asy.vim.gz
gunzip ~/.vim/syntax/asy.vim.gz
@end verbatim
@noindent
and add the following to their @code{~/.vimrc} file:
@verbatim
augroup filetypedetect
au BufNewFile,BufRead *.asy setf asy
augroup END
filetype plugin on
@end verbatim
If any of these directories or files don't exist, just create them.
To set @code{vim} up to run the current asymptote script using @code{:make}
just add to @code{~/.vim/ftplugin/asy.vim}:
@verbatim
setlocal makeprg=asy\ %
setlocal errorformat=%f:\ %l.%c:\ %m
@end verbatim
@cindex @code{KDE editor}
@cindex @code{Kate}
@cindex @code{asymptote.xml}
Syntax highlighting support for the @acronym{KDE} editor @code{Kate}
can be enabled by running @code{asy-kate.sh} in the
@code{@value{Datadir}/asymptote} directory and putting the generated
@code{asymptote.xml} file in @code{~/.kde/share/apps/katepart/syntax/}.
@node Subversion
@section Subversion (SVN)
@cindex Subversion
@cindex SVN
The following commands are needed to install the latest development version of
@code{Asymptote} using @code{Subversion}:
@verbatim
svn co http://asymptote.svn.sourceforge.net/svnroot/asymptote/trunk/asymptote
cd asymptote
./autogen.sh
./configure
make all
make install
@end verbatim
@noindent
To compile without optimization, use the command @code{make CFLAGS=-g}.
@node Uninstall
@section Uninstall
@cindex Uninstall
To uninstall an @code{Linux i386} binary distribution, use the commands
@verbatim
tar -zxvf asymptote-x.xx.i386.tgz | xargs --replace=% rm /%
texhash
@end verbatim
@noindent
To uninstall all @code{Asymptote} files installed from a source
distribution, use the command
@verbatim
make uninstall
@end verbatim
@node Tutorial
@chapter Tutorial
@cindex tutorial
@cindex batch mode
@section Drawing in batch mode
To draw a line from coordinate (0,0) to coordinate (100,100),
create a text file @code{test.asy} containing
@verbatiminclude diagonal.asy
@noindent
Then execute the command
@verbatim
asy -V test
@end verbatim
@noindent
Alternatively, @code{MSDOS} users can drag and drop @code{test.asy} onto the
Desktop @code{asy} icon (or make @code{Asymptote} the default
application for the extension @code{asy}).
@noindent
@cindex @code{-V}
This method, known as @emph{batch mode}, outputs a @code{PostScript}
file @code{test.eps}. If you prefer @acronym{PDF} output, use
the command line
@verbatim
asy -V -f pdf test
@end verbatim
In either case, the @code{-V} option opens up a viewer window so you
can immediately view the result:
@sp 1
@center @image{diagonal}
@cindex @code{bp}
@noindent
Here, the @code{--} connector joins the two points @code{(0,0)} and
@code{(100,100)} with a line segment.
@section Drawing in interactive mode
Another method is @emph{interactive mode}, where @code{Asymptote} reads
individual commands as they are entered by the user. To try this out, enter
@code{Asymptote}'s interactive mode by clicking on the
@code{Asymptote} icon or typing the command @code{asy}.
Then type
@verbatim
draw((0,0)--(100,100));
@end verbatim
@noindent
followed by @code{Enter}, to obtain the above image.
@cindex tab completion
@cindex arrow keys
@cindex erase
@cindex quit
@noindent
At this point you can type further @code{draw} commands, which will be added
to the displayed figure, @code{erase} to clear the canvas,
@verbatim
input test;
@end verbatim
@noindent
to execute all of the commands contained in the file @code{test.asy},
or @code{quit} to exit interactive mode.
You can use the arrow keys in interactive mode to edit previous lines.
The tab key will automatically complete unambiguous words;
otherwise, hitting tab again will show the possible choices. Further
commands specific to interactive mode are described in @ref{Interactive mode}.
@section Figure size
@cindex @code{pair}
In @code{Asymptote}, coordinates like @code{(0,0)} and @code{(100,100)},
called @emph{pairs},
are expressed in @code{PostScript} "big points" (1 @code{bp} = 1/72
@code{inch}) and the default line width is @code{0.5bp}.
However, it is often inconvenient to work directly in
@code{PostScript} coordinates.
The next example produces identical output to the previous example, by
scaling the line @code{(0,0)--(1,1)} to fit a rectangle of width
@code{100.5 bp} and height @code{100.5 bp} (the extra @code{0.5bp}
accounts for the line width):
@verbatim
size(100.5,100.5);
draw((0,0)--(1,1));
@end verbatim
@sp 1
@center @image{diagonal}
@cindex @code{inches}
@cindex @code{cm}
@cindex @code{mm}
@cindex @code{pt}
One can also specify the size in @code{pt} (1 @code{pt} = 1/72.27 @code{inch}),
@code{cm}, @code{mm}, or @code{inches}.
Two nonzero size arguments (or a single size argument) restrict the
size in both directions, preserving the aspect ratio.
If 0 is given as a size argument, no restriction is made in that direction;
the overall scaling will be determined by the other direction (@pxref{size}):
@verbatiminclude bigdiagonal.asy
@sp 1
@center @image{bigdiagonal}
@cindex @code{cycle}
To connect several points and create a cyclic path, use the
@code{cycle} keyword:
@verbatiminclude square.asy
@sp 1
@center @image{square}
@noindent
For convenience, the path @code{(0,0)--(1,0)--(1,1)--(0,1)--cycle}
may be replaced with the predefined variable
@code{unitsquare}, or equivalently, @code{box((0,0),(1,1))}.
@cindex user coordinates
@cindex @code{unitsize}
To make the user coordinates represent multiples of exactly @code{1cm}:
@verbatim
unitsize(1cm);
draw(unitsquare);
@end verbatim
@noindent
@section Labels
Adding labels is easy in @code{Asymptote}; one specifies the
label as a double-quoted @code{LaTeX} string, a
coordinate, and an optional alignment direction:
@verbatiminclude labelsquare.asy
@sp 1
@center @image{labelsquare}
@cindex compass directions
@cindex @code{N}
@cindex @code{E}
@cindex @code{W}
@cindex @code{S}
@code{Asymptote} uses the standard compass directions @code{E=(1,0)},
@code{N=(0,1)}, @code{NE=unit(N+E)}, and @code{ENE=unit(E+NE)}, etc.,
which along with the directions @code{up}, @code{down}, @code{right},
and @code{left} are defined as pairs in the @code{Asymptote} base
module @code{plain} (a user who has a local variable named @code{E}
may access the compass direction @code{E} by prefixing it with the name
of the module where it is defined: @code{plain.E}).
@section Paths
This example draws a path that approximates a quarter circle,
terminated with an arrowhead:
@verbatiminclude quartercircle.asy
@sp 1
@center @image{quartercircle}
@noindent
Here the directions @code{up} and @code{left} in braces specify the
incoming and outgoing directions at the points @code{(1,0)} and
@code{(0,1)}, respectively.
In general, a path is specified as a list of points (or other paths)
interconnected with
@cindex @code{cycle}
@cindex @code{--}
@cindex @code{..}
@code{--}, which denotes a straight line segment, or @code{..}, which
denotes a cubic spline (@pxref{Bezier curves}).
@cindex @code{unitcircle}
@anchor{unitcircle}
@cindex @code{unitcircle}
Specifying a final @code{..cycle} creates a cyclic path that
connects smoothly back to the initial node, as in this approximation
(accurate to within 0.06%) of a unit circle:
@verbatim
path unitcircle=E..N..W..S..cycle;
@end verbatim
@cindex @code{PostScript} subpath
@cindex @code{^^}
@cindex @code{path[]}
@cindex superpath
@noindent
An @code{Asymptote} path, being connected, is equivalent to a
@code{Postscript subpath}. The @code{^^} binary operator, which
requests that the pen be moved (without drawing or affecting
endpoint curvatures) from the final point of the left-hand path to the
initial point of the right-hand path, may be used to group several
@code{Asymptote} paths into a @code{path[]} array (equivalent to a
@code{PostScript} path):
@verbatiminclude superpath.asy
@sp 1
@center @image{superpath}
@cindex evenodd
@noindent
The @code{PostScript} even-odd fill rule here specifies that only the
region bounded between the two unit circles is filled (@pxref{fillrule}).
In this example, the same effect can be achieved by using the default
zero winding number fill rule, if one is careful to alternate the
orientation of the paths:
@verbatim
filldraw(unitcircle^^reverse(g),yellow,black);
@end verbatim
@cindex @code{unitbox}
The @code{^^} operator is used by the @code{box(triple, triple)} function in
the module @code{three.asy} to construct the edges of a
cube @code{unitbox} without retracing steps (@pxref{three}):
@verbatiminclude cube.asy
@sp 1
@center @image{cube}
See section @ref{graph} (or the online @code{Asymptote} gallery and
external links posted at @url{http://asymptote.sourceforge.net}) for
further examples, including two-dimensional and interactive
three-dimensional scientific graphs. Additional examples have been
posted by Philippe Ivaldi at @url{http://www.piprime.fr/asymptote}.
A user-written @code{Asymptote} tutorial is available at
@verbatim
http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics
@end verbatim
@node Drawing commands
@chapter Drawing commands
@cindex drawing commands
All of @code{Asymptote}'s graphical capabilities are based on four primitive
commands. The three @code{PostScript} drawing commands @code{draw},
@code{fill}, and @code{clip} add objects to a picture in the order in
which they are executed, with the most recently drawn object appearing on top.
The labeling command @code{label} can be used to add text
labels and external @acronym{EPS} images, which will appear on top of the
@code{PostScript} objects (since this is normally what one wants), but
again in the relative order in which they were executed. After drawing
objects on a picture, the picture can be output with the
@code{shipout} function (@pxref{shipout}).
@cindex @code{layer}
If you wish to draw @code{PostScript} objects on top of labels (or verbatim
@code{tex} commands; @pxref{tex}), the @code{layer} command may be
used to start a
new @code{PostScript/LaTeX} layer:
@verbatim
void layer(picture pic=currentpicture);
@end verbatim
The @code{layer} function gives one full control over the order in which
objects are drawn. Layers are drawn sequentially, with the most recent
layer appearing on top. Within each layer, labels, images, and
verbatim @code{tex} commands are always drawn after the
@code{PostScript} objects in that layer.
While some of these drawing commands take many options, they all have sensible
default values (for example, the picture argument defaults to
currentpicture).
@cindex legend
@cindex @code{draw}
@cindex @code{arrow}
@menu
* draw:: Draw a path on a picture or frame
* fill:: Fill a cyclic path on a picture or frame
* clip:: Clip a picture or frame to a cyclic path
* label:: Label a point on a picture
@end menu
@node draw
@section draw
@verbatim
void draw(picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen,
arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
Label legend="", marker marker=nomarker);
@end verbatim
Draw the path @code{g} on the picture @code{pic} using pen @code{p}
for drawing, with optional drawing attributes (Label @code{L},
explicit label alignment @code{align},
arrows and bars @code{arrow} and @code{bar}, margins @code{margin},
legend, and markers @code{marker}). Only one parameter, the path, is
required. For convenience, the arguments @code{arrow} and @code{bar} may be
specified in either order. The argument @code{legend} is a Label to
use in constructing an optional legend entry.
@cindex @code{None}
@cindex @code{BeginBar}
@cindex @code{EndBar}
@cindex @code{Bar}
@cindex @code{Bars}
@cindex @code{barsize}
Bars are useful for indicating dimensions. The possible values of
@code{bar} are @code{None}, @code{BeginBar}, @code{EndBar} (or
equivalently @code{Bar}), and @code{Bars} (which draws a bar at both
ends of the path). Each of these bar specifiers (except for
@code{None}) will accept an optional real argument that denotes the
length of the bar in @code{PostScript} coordinates. The default
bar length is @code{barsize(pen)}.
@cindex arrows
@anchor{arrows}
@cindex @code{None}
@cindex @code{Blank}
@cindex @code{BeginArrow}
@cindex @code{MidArrow}
@cindex @code{EndArrow}
@cindex @code{Arrow}
@cindex @code{Arrows}
@cindex @code{FillDraw}
@cindex @code{Fill}
@cindex @code{Draw}
@cindex @code{NoFill}
@cindex @code{UnFill}
@cindex @code{BeginArcArrow}
@cindex @code{MidArcArrow}
@cindex @code{EndArcArrow}
@cindex @code{ArcArrow}
@cindex @code{ArcArrows}
@cindex @code{DefaultHead}
@cindex @code{SimpleHead}
@cindex @code{HookHead}
@cindex @code{TeXHead}
The possible values of @code{arrow} are @code{None}, @code{Blank}
(which draws no arrows or path), @code{BeginArrow}, @code{MidArrow},
@code{EndArrow} (or equivalently @code{Arrow}),
and @code{Arrows} (which draws an arrow at both ends of the path).
All of the arrow specifiers except for @code{None} and @code{Blank}
may be given the optional arguments arrowhead @code{arrowhead} (one of
the predefined arrowhead styles @code{DefaultHead}, @code{SimpleHead},
@code{HookHead}, @code{TeXHead}),
real @code{size} (arrowhead size in @code{PostScript} coordinates),
real @code{angle} (arrowhead angle
in degrees), filltype @code{filltype} (one of @code{FillDraw}, @code{Fill},
@code{NoFill}, @code{UnFill}, @code{Draw}) and (except for
@code{MidArrow} and @code{Arrows}) a real @code{position} (in the
sense of @code{point(path p, real t)}) along the path where the tip of
the arrow should be placed. The default arrowhead size when drawn
with a pen @code{p} is @code{arrowsize(p)}. There are also arrow versions with
slightly modified default values of @code{size} and @code{angle} suitable for
curved arrows: @code{BeginArcArrow}, @code{EndArcArrow} (or equivalently
@code{ArcArrow}), @code{MidArcArrow}, and @code{ArcArrows}.
@cindex @code{NoMargin}
@cindex @code{BeginMargin}
@cindex @code{EndMargin}
@cindex @code{Margin}
@cindex @code{Margins}
@cindex @code{BeginPenMargin}
@cindex @code{EndPenMargin}
@cindex @code{PenMargin}
@cindex @code{PenMargins}
@cindex @code{BeginDotMargin}
@cindex @code{EndDotMargin}
@cindex @code{DotMargin}
@cindex @code{DotMargins}
@cindex @code{Margin}
@cindex @code{TrueMargin}
Margins can be used to shrink the visible portion of a path by
@code{labelmargin(p)} to avoid overlap with other drawn objects.
Typical values of @code{margin}
are @code{NoMargin}, @code{BeginMargin}, @code{EndMargin} (or
equivalently @code{Margin}), and @code{Margins} (which leaves a margin
at both ends of the path). One may use @code{Margin(real begin, real end)}
to specify the size of the beginning and ending margin, respectively,
in multiples of the units @code{labelmargin(p)} used for aligning labels.
Alternatively, @code{BeginPenMargin}, @code{EndPenMargin}
(or equivalently @code{PenMargin}), @code{PenMargins},
@code{PenMargin(real begin, real end)} specify a margin in units of
the pen line width, taking account of the pen line width when drawing
the path or arrow. For example, use @code{DotMargin}, an
abbreviation for @code{PenMargin(-0.5*dotfactor,0.5*dotfactor)},
to draw from the usual beginning point just up to the boundary of an
end dot of width @code{dotfactor*linewidth(p)}. The qualifiers
@code{BeginDotMargin}, @code{EndDotMargin}, and @code{DotMargins} work
similarly. The qualifier @code{TrueMargin(real begin, real end)} allows one to
specify a margin directly in @code{PostScript} units, independent of
the pen line width.
The use of arrows, bars, and margins is illustrated by the examples
@code{Pythagoras.asy}, @code{sqrtx01.asy}, and @code{triads.asy}.
The legend for a picture @code{pic} can be fit and aligned to a frame
with the routine:
@cindex @code{legend}
@verbatim
frame legend(picture pic=currentpicture, int perline=1,
real xmargin=legendmargin, real ymargin=xmargin,
real linelength=legendlinelength,
real hskip=legendhskip, real vskip=legendvskip,
real maxwidth=0, real maxheight=0,
bool hstretch=false, bool vstretch=false, pen p=currentpen);
@end verbatim
@noindent
Here @code{xmargin} and @code{ymargin} specify the surrounding @math{x}
and @math{y} margins, @code{perline} specifies the number of entries
per line (default 1; 0 means choose this number automatically),
@code{linelength} specifies the length of the path lines, @code{hskip}
and @code{vskip} specify the line skip (as a multiple of the legend entry
size), @code{maxwidth} and @code{maxheight} specify optional upper limits
on the width and height of the resulting legend (0 means unlimited),
@code{hstretch} and @code{vstretch} allow the legend to stretch
horizontally or vertically, and @code{p} specifies the pen used to draw
the bounding box. The legend frame can then be added and aligned about a
point on a picture @code{dest} using @code{add} or @code{attach}
(@pxref{add about}).
@cindex @code{dot}
To draw a dot, simply draw a path containing a single point.
The @code{dot} command defined in the module @code{plain} draws a
dot having a diameter equal to an explicit pen line width or the
default line width magnified by @code{dotfactor} (6 by default),
using the specified filltype (@pxref{filltype}):
@verbatim
void dot(picture pic=currentpicture, pair z, pen p=currentpen,
filltype filltype=Fill);
void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
string format=defaultformat, pen p=currentpen, filltype filltype=Fill);
void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,
align align=NoAlign, string format=defaultformat, pen p=currentpen,
filltype filltype=Fill)
void dot(picture pic=currentpicture, Label L, pen p=currentpen,
filltype filltype=Fill);
@end verbatim
@cindex @code{Label}
If the variable @code{Label} is given as the @code{Label}
argument to the second routine, the @code{format} argument will be
used to format a string based on the dot location (here @code{defaultformat}
is @code{"$%.4g$"}).
The third routine draws a dot at every point of a pair array @code{z}.
One can also draw a dot at every node of a path:
@verbatim
void dot(picture pic=currentpicture, Label[] L=new Label[],
path g, align align=RightSide, string format=defaultformat,
pen p=currentpen, filltype filltype=Fill);
@end verbatim
See @ref{pathmarkers} and @ref{markers} for more general
methods for marking path nodes.
To draw a fixed-sized object (in @code{PostScript} coordinates) about
the user coordinate @code{origin}, use the routine
@cindex @code{draw}
@verbatim
void draw(pair origin, picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
arrowbar bar=None, margin margin=NoMargin, Label legend="",
marker marker=nomarker);
@end verbatim
@cindex @code{fill}
@node fill
@section fill
@verbatim
void fill(picture pic=currentpicture, path g, pen p=currentpen);
@end verbatim
Fill the interior region bounded by the cyclic path @code{g} on the picture
@code{pic}, using the pen @code{p}.
@cindex @code{filldraw}
There is also a convenient @code{filldraw} command, which fills the path
and then draws in the boundary. One can specify separate pens for each
operation:
@verbatim
void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
pen drawpen=currentpen);
@end verbatim
@cindex @code{fill}
This fixed-size version of @code{fill} allows one to fill an object
described in @code{PostScript} coordinates about the user coordinate
@code{origin}:
@verbatim
void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
@end verbatim
@noindent
This is just a convenient abbreviation for the commands:
@verbatim
picture opic;
fill(opic,g,p);
add(pic,opic,origin);
@end verbatim
The routine
@cindex @code{filloutside}
@verbatim
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
@end verbatim
@noindent
fills the region exterior to the path @code{g}, out to the current
boundary of picture @code{pic}.
@anchor{gradient shading}
@cindex gradient shading
@cindex shading
@cindex @code{latticeshade}
Lattice gradient shading varying smoothly over a two-dimensional
array of pens @code{p}, using fill rule @code{fillrule}, can be produced with
@verbatim
void latticeshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[][] p)
@end verbatim
@cindex @code{stroke}
If @code{stroke=true}, the region filled is the same as the region that
would be drawn by @code{draw(pic,g,fillrule+zerowinding)}; in this case the path
@code{g} need not be cyclic.
The pens in @code{p} must belong to the same color space. One can use the
functions @code{rgb(pen)} or @code{cmyk(pen)} to promote pens to a
higher color space, as illustrated in the example file
@code{latticeshading.asy}.
@cindex @code{axialshade}
Axial gradient shading varying smoothly from @code{pena} to @code{penb} in the
direction of the line segment @code{a--b} can be achieved with
@verbatim
void axialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a,
pen penb, pair b);
@end verbatim
@cindex @code{radialshade}
Radial gradient shading varying smoothly from
@code{pena} on the circle with center @code{a} and radius @code{ra} to
@code{penb} on the circle with center @code{b} and radius @code{rb}
is similar:
@verbatim
void radialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, real ra,
pen penb, pair b, real rb);
@end verbatim
@noindent
Illustrations of radial shading are provided in the example files
@code{shade.asy}, @code{ring.asy}, and @code{shadestroke.asy}.
@cindex @code{gouraudshade}
Gouraud shading using fill rule @code{fillrule} and the vertex colors in the
pen array @code{p} on a triangular lattice defined by the vertices
@code{z} and edge flags @code{edges} is implemented with
@verbatim
void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, pair[] z,
int[] edges);
void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, int[] edges);
@end verbatim
@noindent
In the second form, the elements of @code{z} are taken to be successive
nodes of path @code{g}. The pens in @code{p} must belong to the same
color space. Illustrations of Gouraud shading are provided in the example file
@code{Gouraud.asy} and in the solid geometry module @code{solids.asy}.
The edge flags used in Gouraud shading are documented here:
@quotation
@url{http://partners.adobe.com/public/developer/en/ps/sdk/TN5600.SmoothShading.pdf}.
@end quotation
@cindex Coons shading
@cindex tensor product shading
@cindex @code{tensorshade}
Tensor product shading using fill rule @code{fillrule} on patches
bounded by the @math{n} cyclic paths of length 4 in path array @code{b},
using the vertex colors specified in the @math{n \times 4} pen array
@code{p} and internal control points in the @math{n \times 4}
array @code{z}, is implemented with
@verbatim
void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[][] p, path[] b=g,
pair[][] z=new pair[][]);
@end verbatim
@noindent
If the array @code{z} is empty, Coons shading, in which the color
control points are calculated automatically, is used.
The pens in @code{p} must belong to the same color space.
A simpler interface for the case of a single patch (@math{n=1}) is also
available:
@verbatim
void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, path b=g,
pair[] z=new pair[]);
@end verbatim
One can also smoothly shade the regions between consecutive paths of a
sequence using a given array of pens:
@verbatim
void draw(picture pic=currentpicture, pen fillrule=currentpen, path[] g,
pen[] p);
@end verbatim
@noindent
Illustrations of tensor product and Coons shading are provided in the
example files @code{tensor.asy}, @code{Coons.asy}, @code{BezierSurface.asy},
and @code{rainbow.asy}.
@cindex Function shading
@cindex function shading
@cindex @code{functionshade}
More general shading possibilities are available with the @code{pdflatex},
@code{context}, and @code{pdftex} @TeX{} engines: the routine
@verbatim
void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, string shader);
@end verbatim
@noindent
shades on picture @code{pic} the interior of path @code{g} according
to fill rule @code{fillrule} using the @code{PostScript} calculator routine
specified by the string @code{shader}; this routine takes 2 arguments,
each in [0,1], and returns @code{colors(fillrule).length} color components.
Function shading is illustrated in the example @code{functionshading.asy}.
@cindex unfill
The following routine uses @code{evenodd} clipping together with the
@code{^^} operator to unfill a region:
@verbatim
void unfill(picture pic=currentpicture, path g);
@end verbatim
@cindex @code{clip}
@cindex @code{stroke}
@node clip
@section clip
@verbatim
void clip(picture pic=currentpicture, path g, stroke=false,
pen fillrule=currentpen);
@end verbatim
Clip the current contents of picture @code{pic} to the region bounded
by the path @code{g}, using fill rule @code{fillrule} (@pxref{fillrule}).
If @code{stroke=true}, the clipped portion is the same as the region
that would be drawn with @code{draw(pic,g,fillrule+zerowinding)}; in
this case the path @code{g} need not be cyclic. For an illustration of
picture clipping, see the first example in @ref{LaTeX usage}.
@cindex @code{label}
@node label
@section label
@verbatim
void label(picture pic=currentpicture, Label L, pair position,
align align=NoAlign, pen p=nullpen, filltype filltype=NoFill)
@end verbatim
Draw Label @code{L} on picture @code{pic} using pen @code{p}. If
@code{align} is @code{NoAlign}, the label will be centered at user
coordinate @code{position}; otherwise it will be aligned in the
direction of @code{align} and displaced from @code{position} by
the @code{PostScript} offset @code{align*labelmargin(p)}.
@cindex @code{Align}
The constant @code{Align} can be used to align the
bottom-left corner of the label at @code{position}.
@cindex @code{nullpen}
If @code{p} is @code{nullpen}, the pen specified within the
Label, which defaults to @code{currentpen}, will be used.
@cindex @code{Label}
@anchor{Label}
The Label @code{L} can either be a string or the structure obtained by calling
one of the functions
@verbatim
Label Label(string s="", pair position, align align=NoAlign,
pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,
pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(Label L, pair position, align align=NoAlign,
pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,
pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
@end verbatim
The text of a Label can be scaled, slanted, rotated, or shifted by
multiplying it on the left by an affine transform (@pxref{Transforms}).
For example, @code{rotate(45)*xscale(2)*L} first scales @code{L} in the
@math{x} direction and then rotates it counterclockwise by 45
degrees. The final position of a Label can also be shifted by a
@code{PostScript} coordinate translation: @code{shift(10,0)*L}.
The @code{embed} argument determines how the Label should transform with the
embedding picture:
@table @code
@item Shift
@cindex @code{Shift}
only shift with embedding picture;
@item Rotate
@cindex @code{Rotate}
only shift and rotate with embedding picture (default);
@item Rotate(pair z)
@cindex @code{Rotate(pair z)}
rotate with (picture-transformed) vector @code{z}.
@item Slant
@cindex @code{Slant}
only shift, rotate, slant, and reflect with embedding picture;
@item Scale
@cindex @code{Scale}
shift, rotate, slant, reflect, and scale with embedding picture.
@end table
To add a label to a path, use
@verbatim
void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
pen p=nullpen, filltype filltype=NoFill);
@end verbatim
@cindex @code{Relative}
By default the label will be positioned at the midpoint of the path.
An alternative label position (in the sense of @code{point(path p, real t)})
may be specified as a real value for @code{position} in constructing
the Label. The position @code{Relative(real)} specifies a location
relative to the total arclength of the path. These convenient
abbreviations are predefined:
@cindex @code{BeginPoint}
@cindex @code{MidPoint}
@cindex @code{EndPoint}
@verbatim
position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(1);
@end verbatim
@cindex @code{Relative}
@cindex @code{LeftSide}
@cindex @code{Center}
@cindex @code{RightSide}
Path labels are aligned in the direction @code{align}, which may
be specified as an absolute compass direction (pair) or a direction
@code{Relative(pair)} measured relative to a north axis
in the local direction of the path. For convenience @code{LeftSide},
@code{Center}, and @code{RightSide} are defined as @code{Relative(W)},
@code{Relative((0,0))}, and @code{Relative(E)}, respectively.
Multiplying @code{LeftSide}, @code{Center}, @code{RightSide} on the
left by a real scaling factor will move the label further away from or
closer to the path.
A label with a fixed-size arrow of length @code{arrowlength} pointing
to @code{b} from direction @code{dir} can be produced with the routine
@cindex @code{arrow}
@verbatim
void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
real length=arrowlength, align align=NoAlign,
pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin);
@end verbatim
If no alignment is specified (either in the Label or as an explicit
argument), the optional Label will be aligned in the direction @code{dir},
using margin @code{margin}.
@cindex including images
@cindex @code{graphic}
@cindex @acronym{EPS}
The function @code{string graphic(string name, string options="")}
returns a string that can be used to include an encapsulated
@code{PostScript} (@acronym{EPS}) file. Here, @code{name} is the name
of the file to include and @code{options} is a string containing a
comma-separated list of optional bounding box (@code{bb=llx lly urx
ury}), width (@code{width=value}), height (@code{height=value}),
rotation (@code{angle=value}), scaling (@code{scale=factor}), clipping
(@code{clip=bool}), and draft mode (@code{draft=bool}) parameters. The
@code{layer()} function can be used to force future objects to be
drawn on top of the included image:
@verbatim
label(graphic("file.eps","width=1cm"),(0,0),NE);
layer();
@end verbatim
@cindex @code{baseline}
The @code{string baseline(string s, string template="\strut")}
function can be used to enlarge the bounding box of labels to match a
given template, so that their baselines will be typeset on a
horizontal line. See @code{Pythagoras.asy} for an example.
One can prevent labels from overwriting one another with the
@code{overwrite} pen attribute (@pxref{overwrite}).
The structure @code{object} defined in @code{plain_Label.asy} allows Labels
and frames to be treated in a uniform manner.
A group of objects may be packed together into single frame with the routine
@cindex @code{pack}
@verbatim
frame pack(pair align=2S ... object inset[]);
@end verbatim
@noindent
To draw or fill a box (or ellipse or other path) around a Label and
return the bounding object, use one of the routines
@verbatim
object draw(picture pic=currentpicture, Label L, envelope e,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
object draw(picture pic=currentpicture, Label L, envelope e, pair position,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
@end verbatim
@noindent
Here @code{envelope} is a boundary-drawing routine such as @code{box},
@code{roundbox}, or @code{ellipse} defined in @code{plain_boxes.asy}
(@pxref{envelope}).
@cindex @code{texpath}
The function @code{path[] texpath(Label L)} returns the path array that
@TeX{} would fill to draw the Label @code{L}.
@cindex @code{minipage}
The @code{string minipage(string s, width=100pt)} function can be used
to format string @code{s} into a paragraph of width @code{width}.
This example uses @code{minipage}, @code{clip}, and @code{graphic} to
produce a CD label:
@sp 1
@center @image{CDlabel}
@verbatiminclude CDlabel.asy
@node Bezier curves
@chapter Bezier curves
@cindex Bezier curves
@cindex direction specifier
Each interior node of a cubic spline may be given a
direction prefix or suffix @code{@{dir@}}: the direction of the pair
@code{dir} specifies the direction of the incoming or outgoing tangent,
respectively, to the curve at that node. Exterior nodes may be
given direction specifiers only on their interior side.
A cubic spline between the node @math{z_0}, with postcontrol point
@math{c_0}, and the node @math{z_1}, with precontrol point @math{c_1},
is computed as the Bezier curve
@sp 1
@center @image{bezier,,,(1-t)^3*z_0+3t(1-t)^2*c_0+3t^2(1-t)*c_1+t^3*z_1 for 0 <=t <= 1.}
As illustrated in the diagram below, the third-order midpoint (@math{m_5})
constructed from two endpoints @math{z_0} and @math{z_1} and two control points
@math{c_0} and @math{c_1}, is the point corresponding to @math{t=1/2} on
the Bezier curve formed by the quadruple (@math{z_0}, @math{c_0},
@math{c_1}, @math{z_1}). This allows one to recursively construct the
desired curve, by using the newly extracted third-order midpoint as an
endpoint and the respective second- and first-order midpoints as control
points:
@sp 1
@center @image{bezier2}
Here @math{m_0}, @math{m_1} and @math{m_2} are the first-order
midpoints, @math{m_3} and @math{m_4} are the second-order midpoints, and
@math{m_5} is the third-order midpoint.
The curve is then constructed by recursively applying the algorithm to
(@math{z_0}, @math{m_0}, @math{m_3}, @math{m_5}) and
(@math{m_5}, @math{m_4}, @math{m_2}, @math{z_1}).
In fact, an analogous property holds for points located at any
fraction @math{t} in @math{[0,1]} of each segment, not just for
midpoints (@math{t=1/2}).
The Bezier curve constructed in this manner has the following properties:
@itemize @bullet
@item It is entirely contained in the convex hull of the given four points.
@item It starts heading from the first endpoint to the first control point
and finishes heading from the second control point to the second endpoint.
@end itemize
@cindex @code{controls}
The user can specify explicit control points between two nodes like this:
@verbatim
draw((0,0)..controls (0,100) and (100,100)..(100,0));
@end verbatim
However, it is usually more convenient to just use the
@code{..} operator, which tells @code{Asymptote} to choose its own
control points using the algorithms described in Donald Knuth's
monograph, The MetaFontbook, Chapter 14.
The user can still customize the guide (or path) by specifying
direction, tension, and curl values.
The higher the tension, the straighter the curve is, and the more
it approximates a straight line.
@cindex @code{tension}
@cindex @code{and}
@cindex @code{atleast}
One can change the spline tension from its default value of 1 to any
real value greater than or equal to 0.75 (cf. John D. Hobby, Discrete and
Computational Geometry 1, 1986):
@verbatim
draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 2 and 1 ..(100,100)..(0,100));
draw((100,0)..tension atleast 1 ..(100,100)..(0,100));
@end verbatim
@cindex @code{curl}
The curl parameter specifies the curvature at the endpoints of a path
(0 means straight; the default value of 1 means approximately circular):
@verbatim
draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));
@end verbatim
@cindex @code{MetaPost ...@ }
@cindex @code{::}
The @code{MetaPost ...} path connector, which requests, when possible, an
inflection-free curve confined to a triangle defined by the
endpoints and directions, is implemented in @code{Asymptote} as the
convenient abbreviation @code{::} for @code{..tension atleast 1 ..}
(the ellipsis @code{...} is used in @code{Asymptote} to indicate a
variable number of arguments; @pxref{Rest arguments}). For example,
compare
@verbatiminclude dots.asy
@sp 1
@center @image{dots}
@noindent
with
@verbatiminclude colons.asy
@sp 1
@center @image{colons}
@cindex @code{---}
@cindex @code{&}
The @code{---} connector is an abbreviation for @code{..tension atleast
infinity..} and the @code{&} connector concatenates two paths, after
first stripping off the last node of the first path (which normally
should coincide with the first node of the second path).
@node Programming
@chapter Programming
@cindex programming
Here is a short introductory example to the @code{Asymptote} programming
language that highlights the similarity of its control structures
with those of C, C++, and Java:
@cindex declaration
@cindex assignment
@cindex conditional
@cindex loop
@cindex @code{if}
@cindex @code{else}
@cindex @code{for}
@verbatim
// This is a comment.
// Declaration: Declare x to be a real variable;
real x;
// Assignment: Assign the real variable x the value 1.
x=1.0;
// Conditional: Test if x equals 1 or not.
if(x == 1.0) {
write("x equals 1.0");
} else {
write("x is not equal to 1.0");
}
// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
write(i);
}
@end verbatim
@cindex @code{while}
@cindex @code{do}
@cindex @code{break}
@cindex @code{continue}
@code{Asymptote} supports @code{while}, @code{do}, @code{break}, and
@code{continue} statements just as in C/C++. It also supports the Java-style
shorthand for iterating over all elements of an array:
@cindex array iteration
@anchor{array iteration}
@verbatim
// Iterate over an array
int[] array={1,1,2,3,5};
for(int k : array) {
write(k);
}
@end verbatim
@noindent
In addition, it supports many features beyond the ones found in those languages.
@menu
* Data types:: void, bool, int, real, pair, triple, string
* Paths and guides::
* Pens:: Colors, line types, line widths, font sizes
* Transforms:: Affine transforms
* Frames and pictures:: Canvases for immediate and deferred drawing
* Files:: Reading and writing your data
* Variable initializers:: Initialize your variables
* Structures:: Organize your data
* Operators:: Arithmetic and logical operators
* Implicit scaling:: Avoiding those ugly *s
* Functions:: Traditional and high-order functions
* Arrays:: Dynamic vectors
* Casts:: Implicit and explicit casts
* Import:: Importing external @code{Asymptote} modules
* Static:: Where to allocate your variable?
@end menu
@node Data types
@section Data types
@cindex data types
@code{Asymptote} supports the following data types (in addition to
user-defined types):
@table @code
@item void
@cindex @code{void}
The void type is used only by functions that take or return no arguments.
@item bool
@cindex @code{bool}
a boolean type that can only take on the values @code{true} or
@code{false}. For example:
@verbatim
bool b=true;
@end verbatim
@noindent
defines a boolean variable @code{b} and initializes it to the value
@code{true}. If no initializer is given:
@verbatim
bool b;
@end verbatim
@noindent
the value @code{false} is assumed.
@item bool3
@cindex @code{bool3}
an extended boolean type that can take on the values
@code{true}, @code{default}, or @code{false}. A bool3 type can be cast
to or from a bool. The default initializer for bool3 is @code{default}.
@item int
@cindex @code{int}
@cindex @code{intMin}
@cindex @code{intMax}
an integer type; if no initializer is given, the implicit value @code{0}
is assumed. The minimum allowed value of an integer is @code{intMin} and the
maximum value is @code{intMax}.
@item real
@cindex @code{real}
@cindex @code{realMin}
@cindex @code{realMax}
@cindex @code{realEpsilon}
@cindex @code{realDigits}
@cindex @code{mask}
@cindex @code{inf}
@cindex @code{isnan}
a real number; this should be set to the highest-precision native
floating-point type on the architecture. The implicit initializer for
reals is @code{0.0}. Real numbers have precision
@code{realEpsilon}, with @code{realDigits} significant digits.
The smallest positive real number is @code{realMin} and the largest
positive real number is @code{realMax}.
The variable @code{inf} and function @code{bool isnan(real x)}
are useful when floating-point exceptions are masked with
the @code{-mask} command-line option (the default in interactive mode).
@item pair
@cindex @code{pair}
complex number, that is, an ordered pair of real components @code{(x,y)}.
The real and imaginary parts of a pair @code{z} can read as @code{z.x}
and @code{z.y}. We say that @code{x} and @code{y} are virtual members of
the data element pair; they cannot be directly modified, however.
The implicit initializer for pairs is @code{(0.0,0.0)}.
There are a number of ways to take the complex conjugate of a pair:
@example
pair z=(3,4);
z=(z.x,-z.y);
z=z.x-I*z.y;
z=conj(z);
@end example
Here @code{I} is the pair @code{(0,1)}.
A number of built-in functions are defined for pairs:
@table @code
@item pair conj(pair z)
@cindex @code{conj}
returns the conjugate of @code{z};
@item real length(pair z)
@cindex @code{length}
@cindex @code{abs}
returns the complex modulus @code{|z|} of its argument @code{z}.
For example,
@example
pair z=(3,4);
length(z);
@end example
returns the result 5. A synonym for @code{length(pair)} is @code{abs(pair)};
@item real angle(pair z, bool warn=true)
@cindex @code{angle}
returns the angle of @code{z} in radians in the interval
[-@code{pi},@code{pi}] or @code{0} if @code{warn} is @code{false} and
@code{z=(0,0)} (rather than producing an error);
@item real degrees(pair z, bool warn=true)
@cindex @code{degrees}
returns the angle of @code{z} in degrees in the interval [0,360)
or @code{0} if @code{warn} is @code{false} and @code{z=(0,0)} (rather than
producing an error);
@item pair unit(pair z)
@cindex @code{unit}
returns a unit vector in the direction of the pair @code{z};
@item pair expi(real angle)
@cindex @code{expi}
returns a unit vector in the direction @code{angle} measured in radians;
@item pair dir(real degrees)
@cindex @code{dir}
returns a unit vector in the direction @code{degrees} measured in degrees;
@item real xpart(pair z)
@cindex @code{xpart}
returns @code{z.x};
@item real ypart(pair z)
@cindex @code{ypart}
returns @code{z.y};
@item pair realmult(pair z, pair w)
@cindex @code{realmult}
returns the element-by-element product @code{(z.x*w.x,z.y*w.y)};
@item real dot(explicit pair z, explicit pair w)
@cindex @code{dot}
returns the dot product @code{z.x*w.x+z.y*w.y};
@item pair minbound(pair z, pair w)
@cindex @code{minbound}
returns @code{(min(z.x,w.x),min(z.y,w.y))};
@item pair maxbound(pair z, pair w)
@cindex @code{maxbound}
returns @code{(max(z.x,w.x),max(z.y,w.y))}.
@end table
@item triple
@cindex @code{triple}
an ordered triple of real components @code{(x,y,z)} used for
three-dimensional drawings. The respective components of a triple
@code{v} can read as @code{v.x}, @code{v.y}, and @code{v.z}.
The implicit initializer for triples is @code{(0.0,0.0,0.0)}.
Here are the built-in functions for triples:
@table @code
@item real length(triple v)
@cindex @code{length}
returns the length @code{|v|} of the vector @code{v}.
A synonym for @code{length(triple)} is @code{abs(triple)};
@item real polar(triple v, bool warn=true)
@cindex @code{polar}
returns the colatitude of @code{v} measured from the @math{z} axis in radians
or @code{0} if @code{warn} is @code{false} and @code{v=O} (rather than
producing an error);
@item real azimuth(triple v, bool warn=true)
@cindex @code{azimuth}
returns the longitude of @code{v} measured from the @math{x} axis in radians
or @code{0} if @code{warn} is @code{false} and @code{v.x=v.y=0} (rather than
producing an error);
@item real colatitude(triple v, bool warn=true)
@cindex @code{colatitude}
returns the colatitude of @code{v} measured from the @math{z} axis in degrees
or @code{0} if @code{warn} is @code{false} and @code{v=O} (rather than
producing an error);
@item real latitude(triple v, bool warn=true)
@cindex @code{latitude}
returns the latitude of @code{v} measured from the @math{xy} plane in degrees
or @code{0} if @code{warn} is @code{false} and @code{v=O} (rather than
producing an error);
@item real longitude(triple v, bool warn=true)
@cindex @code{longitude}
returns the longitude of @code{v} measured from the @math{x} axis in degrees
or @code{0} if @code{warn} is @code{false} and @code{v.x=v.y=0} (rather than
producing an error);
@item triple unit(triple v)
@cindex @code{unit}
returns a unit triple in the direction of the triple @code{v};
@item triple expi(real polar, real azimuth)
@cindex @code{expi}
returns a unit triple in the direction @code{(polar,azimuth)}
measured in radians;
@item triple dir(real colatitude, real longitude)
@cindex @code{dir}
returns a unit triple in the direction @code{(colatitude,longitude)}
measured in degrees;
@item real xpart(triple v)
@cindex @code{xpart}
returns @code{v.x};
@item real ypart(triple v)
@cindex @code{ypart}
returns @code{v.y};
@item real zpart(triple v)
@cindex @code{zpart}
returns @code{v.z};
@item real dot(triple u, triple v)
@cindex @code{dot}
returns the dot product @code{u.x*v.x+u.y*v.y+u.z*v.z};
@item triple cross(triple u, triple v)
@cindex @code{cross}
returns the cross product
@code{(u.y*v.z-u.z*v.y,u.z*v.x-u.x*v.z,u.x*v.y-v.x*u.y)};
@item triple minbound(triple u, triple v)
@cindex @code{minbound}
returns @code{(min(u.x,v.x),min(u.y,v.y),min(u.z,v.z))};
@item triple maxbound(triple u, triple v)
@cindex @code{maxbound}
returns @code{(max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)}).
@end table
@item string
@cindex @code{string}
@cindex @TeX{} string
a character string, implemented using the STL @code{string} class.
Strings delimited by double quotes (@code{"}) are subject to the
following mappings to allow the use of double quotes in @TeX{} (e.g.@ for
using the @code{babel} package, @pxref{babel}):
@itemize @bullet
@item \" maps to "
@item \\ maps to \\
@end itemize
@cindex @code{C} string
Strings delimited by single quotes (@code{'}) have the same mappings as
character strings in ANSI @code{C}:
@itemize @bullet
@item \' maps to '
@item \" maps to "
@item \? maps to ?
@item \\ maps to backslash
@item \a maps to alert
@item \b maps to backspace
@item \f maps to form feed
@item \n maps to newline
@item \r maps to carriage return
@item \t maps to tab
@item \v maps to vertical tab
@item \0-\377 map to corresponding octal byte
@item \x0-\xFF map to corresponding hexadecimal byte
@end itemize
The implicit initializer for strings is the empty string @code{""}.
Strings may be concatenated with the @code{+} operator. In the following
string functions, position @code{0} denotes the start of the string:
@table @code
@cindex @code{length}
@item int length(string s)
returns the length of the string @code{s};
@cindex @code{find}
@item int find(string s, string t, int pos=0)
returns the position of the first occurrence of string @code{t} in string
@code{s} at or after position @code{pos}, or -1 if @code{t} is not a
substring of @code{s};
@cindex @code{rfind}
@item int rfind(string s, string t, int pos=-1)
returns the position of the last occurrence of string @code{t} in string
@code{s} at or before position @code{pos} (if @code{pos}=-1, at the end
of the string @code{s}), or -1 if @code{t} is not a substring of @code{s};
@cindex @code{insert}
@item string insert(string s, int pos, string t)
returns the string formed by inserting string @code{t} at position
@code{pos} in @code{s};
@cindex @code{erase}
@item string erase(string s, int pos, int n)
returns the string formed by erasing the string of length @code{n}
(if @code{n}=-1, to the end of the string @code{s}) at
position @code{pos} in @code{s};
@cindex @code{substr}
@item string substr(string s, int pos, int n=-1)
returns the substring of @code{s} starting at position @code{pos}
and of length @code{n} (if @code{n}=-1, until the end of the
string @code{s});
@cindex @code{reverse}
@item string reverse(string s)
returns the string formed by reversing string @code{s};
@item string replace(string s, string before, string after)
@cindex @code{replace}
returns a string with all occurrences of the string @code{before} in the
string @code{s} changed to the string @code{after};
@item string replace(string s, string[][] table)
returns a string constructed by translating in string @code{s} all
occurrences of the string @code{before} in an array @code{table} of
string pairs @{@code{before},@code{after}@} to the corresponding
string @code{after};
@cindex @code{split}
@item string[] split(string s, string delimiter="")
returns an array of strings obtained by splitting @code{s} into substrings
delimited by @code{delimiter} (an empty delimiter signifies a space,
but with duplicate delimiters discarded);
@anchor{format}
@item string format(string s, int n, string locale="")
@cindex @code{format}
returns a string containing @code{n} formatted according to the C-style
format string @code{s} using locale @code{locale} (or the current locale if an
empty string is specified);
@item string format(string s=defaultformat, real x, string locale="")
returns a string containing @code{x} formatted according to the C-style format
string @code{s} using locale @code{locale} (or the current locale if an
empty string is specified), following the behaviour of the C function
@code{fprintf}), except that only one data field is allowed, trailing
zeros are removed by default (unless @code{#} is specified), and
(if the format string specifies math mode) @TeX{} is used to typeset
scientific notation;
@cindex @code{hex}
@cindex @code{hexidecimal}
@item int hex(string s);
casts a hexidecimal string @code{s} to an integer;
@cindex @code{ascii}
@cindex @code{ascii}
@item int ascii(string s);
returns the ASCII code for the first character of string @code{s};
@cindex @code{string}
@item string string(real x, int digits=realDigits)
casts @code{x} to a string using precision @code{digits} and the C locale;
@cindex @code{locale}
@item string locale(string s="")
sets the locale to the given string, if nonempty, and returns the
current locale;
@item string time(string format="%a %b %d %T %Z %Y")
@cindex @code{time}
@cindex @code{date}
@cindex @code{strftime}
returns the current time formatted by the ANSI C routine
@code{strftime} according to the string @code{format} using the current
locale. Thus
@verbatim
time();
time("%a %b %d %H:%M:%S %Z %Y");
@end verbatim
@noindent
are equivalent ways of returning the current time in the default
format used by the @code{UNIX} @code{date} command;
@cindex @code{seconds}
@cindex @code{strptime}
@item int seconds(string t="", string format="")
returns the time measured in seconds after the Epoch (Thu Jan 01
00:00:00 UTC 1970) as determined by the ANSI C routine @code{strptime}
according to the string @code{format} using the current locale, or the
current time if @code{t} is the empty string.
Note that the @code{"%Z"} extension to the POSIX @code{strptime}
specification is ignored by the current GNU C Library. If an error occurs, the
value -1 is returned. Here are some examples:
@verbatim
seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
seconds(time("%b %d %r %z %Y"),"%b %d %r %z %Y");
seconds(time("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
1+(seconds()-seconds("Jan 1","%b %d"))/(24*60*60);
@end verbatim
The last example returns today's ordinal date, measured from the
beginning of the year.
@cindex @code{time}
@cindex @code{strftime}
@item string time(int seconds, string format="%a %b %d %T %Z %Y")
returns the time corresponding to @code{seconds} seconds after the Epoch
(Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C routine
@code{strftime} according to the string @code{format} using the current
locale. For example, to return the date corresponding to 24 hours ago:
@verbatim
time(seconds()-24*60*60);
@end verbatim
@cindex @code{abort}
@item void abort(string s="")
aborts execution (with a non-zero return code in batch mode); if string
@code{s} is nonempty, a diagnostic message constructed from the source
file, line number, and @code{s} is printed;
@cindex @code{assert}
@item void assert(bool b, string s="")
aborts execution with an error message constructed from @code{s} if
@code{b=false};
@cindex @code{exit}
@item void exit()
exits (with a zero error return code in batch mode);
@cindex @code{sleep}
@item void sleep(int seconds)
pauses for the given number of seconds;
@cindex @code{usleep}
@item void usleep(int microseconds)
pauses for the given number of microseconds;
@cindex @code{beep}
@item void beep()
produces a beep on the console;
@end table
@cindex @code{typedef}
@end table
As in C/C++, complicated types may be abbreviated with @code{typedef}
(see the example in @ref{Functions}).
@node Paths and guides
@section Paths and guides
@table @code
@item path
@cindex @code{path}
a cubic spline resolved into a fixed path.
The implicit initializer for paths is @code{nullpath}.
@cindex @code{circle}
@anchor{circle}
For example, the routine @code{circle(pair c, real r)}, which returns a
Bezier curve approximating a circle of radius @code{r} centered on @code{c},
is based on @code{unitcircle} (@pxref{unitcircle}):
@verbatim
path circle(pair c, real r)
{
return shift(c)*scale(r)*unitcircle;
}
@end verbatim
If high accuracy is needed, a true circle may be produced with the
routine @code{Circle} defined in the module @code{graph.asy}:
@cindex @code{Circle}
@verbatim
import graph;
path Circle(pair c, real r, int n=nCircle);
@end verbatim
A circular arc consistent with @code{circle} centered on
@code{c} with radius @code{r} from @code{angle1} to @code{angle2}
degrees, drawing counterclockwise if @code{angle2 >= angle1}, can be
constructed with
@cindex @code{arc}
@verbatim
path arc(pair c, real r, real angle1, real angle2);
@end verbatim
One may also specify the direction explicitly:
@verbatim
path arc(pair c, real r, real angle1, real angle2, bool direction);
@end verbatim
Here the direction can be specified as CCW (counter-clockwise) or CW
(clockwise). For convenience, an arc centered at @code{c} from pair
@code{z1} to @code{z2} (assuming @code{|z2-c|=|z1-c|}) in the may also
be constructed with @verbatim
path arc(pair c, explicit pair z1, explicit pair z2,
bool direction=CCW)
@end verbatim
If high accuracy is needed, true arcs may be produced with routines
in the module @code{graph.asy} that produce Bezier curves with @code{n}
control points:
@cindex @code{Arc}
@verbatim
import graph;
path Arc(pair c, real r, real angle1, real angle2, bool direction,
int n=nCircle);
path Arc(pair c, real r, real angle1, real angle2, int n=nCircle);
path Arc(pair c, explicit pair z1, explicit pair z2,
bool direction=CCW, int n=nCircle);
@end verbatim
An ellipse can be drawn with the routine
@cindex @code{ellipse}
@verbatim
path ellipse(pair c, real a, real b)
{
return shift(c)*scale(a,b)*unitcircle;
}
@end verbatim
This example illustrates the use of all five guide connectors discussed
in @ref{Tutorial} and @ref{Bezier curves}:
@verbatiminclude join.asy
@sp 1
@center @image{join}
Here are some useful functions for paths:
@table @code
@cindex @code{length}
@item int length(path p);
This is the number of (linear or cubic) segments in path @code{p}.
If @code{p} is cyclic, this is the same as the number of nodes in @code{p}.
@cindex @code{size}
@item int size(path p);
This is the number of nodes in the path @code{p}.
If @code{p} is cyclic, this is the same as @code{length(p)}.
@cindex @code{cyclic}
@item bool cyclic(path p);
returns @code{true} iff path @code{p} is cyclic.
@cindex @code{straight}
@item bool straight(path p, int i);
returns @code{true} iff the segment of path @code{p} between node
@code{i} and node @code{i+1} is straight.
@cindex @code{piecewisestraight}
@item bool piecewisestraight(path p)
returns @code{true} iff the path @code{p} is piecewise straight.
@cindex @code{point}
@item pair point(path p, int t);
If @code{p} is cyclic, return the coordinates of node @code{t} mod
@code{length(p)}. Otherwise, return the coordinates of node @code{t},
unless @code{t} < 0 (in which case @code{point(0)} is returned) or
@code{t} > @code{length(p)} (in which case @code{point(length(p))}
is returned).
@item pair point(path p, real t);
This returns the coordinates of the point between node @code{floor(t)}
and @code{floor(t)+1} corresponding to the cubic spline parameter
@code{t-floor(t)} (@pxref{Bezier curves}). If @code{t} lies outside the range
[0,@code{length(p)}], it is first reduced modulo @code{length(p)}
in the case where @code{p} is cyclic or else converted to the corresponding
endpoint of @code{p}.
@cindex @code{dir}
@item pair dir(path p, int t, int sign=0, bool normalize=true);
If @code{sign < 0}, return the direction (as a pair) of the incoming tangent
to path @code{p} at node @code{t}; if @code{sign > 0}, return the
direction of the outgoing tangent. If @code{sign=0}, the mean of these
two directions is returned.
@item pair dir(path p, real t, bool normalize=true);
returns the direction of the tangent to path @code{p} at the point
between node @code{floor(t)} and @code{floor(t)+1} corresponding to the
cubic spline parameter @code{t-floor(t)} (@pxref{Bezier curves}).
@item pair dir(path p)
returns dir(p,length(p)).
@item pair dir(path p, path q)
returns unit(dir(p)+dir(q)).
@cindex @code{accel}
@item pair accel(path p, int t, int sign=0);
If @code{sign < 0}, return the acceleration of the incoming path
@code{p} at node @code{t}; if @code{sign > 0}, return the
acceleration of the outgoing path. If @code{sign=0}, the mean of these
two accelerations is returned.
@cindex @code{accel}
@item pair accel(path p, real t);
returns the acceleration of the path @code{p} at the point @code{t}.
@cindex @code{radius}
@item real radius(path p, real t);
returns the radius of curvature of the path @code{p} at the point @code{t}.
@cindex @code{precontrol}
@item pair precontrol(path p, int t);
returns the precontrol point of @code{p} at node @code{t}.
@item pair precontrol(path p, real t);
returns the effective precontrol point of @code{p} at parameter @code{t}.
@cindex @code{postcontrol}
@item pair postcontrol(path p, int t);
returns the postcontrol point of @code{p} at node @code{t}.
@item pair postcontrol(path p, real t);
returns the effective postcontrol point of @code{p} at parameter @code{t}.
@cindex @code{arclength}
@item real arclength(path p);
returns the length (in user coordinates) of the piecewise linear
or cubic curve that path @code{p} represents.
@cindex @code{arctime}
@item real arctime(path p, real L);
returns the path "time", a real number between 0 and the length of
the path in the sense of @code{point(path p, real t)}, at which the
cumulative arclength (measured from the beginning of the path) equals @code{L}.
@cindex @code{arcpoint}
@item real arcpoint(path p, real L);
returns @code{point(p,arctime(p,L))}.
@cindex @code{dirtime}
@item real dirtime(path p, pair z);
returns the first "time", a real number between 0 and the length of
the path in the sense of @code{point(path, real)}, at which the tangent
to the path has the direction of pair @code{z}, or -1 if this never happens.
@cindex @code{reltime}
@item real reltime(path p, real l);
returns the time on path @code{p} at the relative fraction @code{l} of
its arclength.
@cindex @code{relpoint}
@item pair relpoint(path p, real l);
returns the point on path @code{p} at the relative fraction @code{l} of its
arclength.
@cindex @code{midpoint}
@item pair midpoint(path p);
returns the point on path @code{p} at half of its arclength.
@cindex @code{reverse}
@item path reverse(path p);
returns a path running backwards along @code{p}.
@cindex @code{subpath}
@item path subpath(path p, int a, int b);
returns the subpath of @code{p} running from node @code{a} to node @code{b}.
If @code{a} < @code{b}, the direction of the subpath is reversed.
@item path subpath(path p, real a, real b);
returns the subpath of @code{p} running from path time @code{a} to path
time @code{b}, in the sense of @code{point(path, real)}. If @code{a} <
@code{b}, the direction of the subpath is reversed.
@cindex @code{intersect}
@item real[] intersect(path p, path q, real fuzz=-1);
If @code{p} and @code{q} have at least one intersection point, return a
real array of length 2 containing the times representing the respective
path times along @code{p} and @code{q}, in the sense of
@code{point(path, real)}, for one such intersection point (as chosen by
the algorithm described on page 137 of @code{The MetaFontbook}).
The computations are performed to the absolute error specified by @code{fuzz},
or if @code{fuzz < 0}, to machine precision. If the paths do not
intersect, return a real array of length 0.
@cindex @code{intersections}
@item real[][] intersections(path p, path q, real fuzz=-1);
Return all (unless there are infinitely many) intersection times of
paths @code{p} and @code{q} as a sorted array of real arrays of length 2
(@pxref{sort}). The computations are performed to the absolute error
specified by @code{fuzz}, or if @code{fuzz < 0}, to machine precision.
@cindex @code{intersections}
@item real[] intersections(path p, explicit pair a, explicit pair b, real fuzz=-1);
Return all (unless there are infinitely many) intersection times of path
@code{p} with the (infinite) line through points @code{a} and @code{b}
as a sorted array. The intersections returned are guaranteed to be
correct to within the absolute error specified by @code{fuzz}, or if
@code{fuzz < 0}, to machine precision.
@cindex @code{times}
@item real[] times(path p, real x)
returns all intersection times of path @code{p} with the vertical line
through @code{(x,0)}.
@cindex @code{times}
@item real[] times(path p, explicit pair z)
returns all intersection times of path @code{p} with the horizontal line
through @code{(0,z.y)}.
@cindex @code{mintimes}
@item real[] mintimes(path p)
returns an array of length 2 containing times at which path @code{p}
reaches its minimal horizontal and vertical extents, respectively.
@cindex @code{maxtimes}
@item real[] maxtimes(path p)
returns an array of length 2 containing the times at which path @code{p}
reaches its maximal horizontal and vertical extents, respectively.
@cindex @code{intersectionpoint}
@item pair intersectionpoint(path p, path q, real fuzz=-1);
returns the intersection point @code{point(p,intersect(p,q,fuzz)[0])}.
@cindex @code{intersectionpoints}
@item pair[] intersectionpoints(path p, path q, real fuzz=-1);
returns an array containing all intersection points of the paths
@code{p} and @code{q}.
@anchor{extension}
@cindex @code{whatever}
@cindex @code{extension}
@item pair extension(pair P, pair Q, pair p, pair q);
returns the intersection point of the extensions of the line segments
@code{P--Q} and @code{p--q}, or if the lines are parallel,
@code{(infinity,infinity)}.
@cindex @code{cut}
@cindex @code{slice}
@item slice cut(path p, path knife, int n);
returns the portions of path @code{p} before and after the @code{n}th
intersection of @code{p} with path @code{knife} as a structure
@code{slice} (if no intersection exist is found, the entire path is
considered to be `before' the intersection):
@verbatim
struct slice {
path before,after;
}
@end verbatim
The argument @code{n} is treated as modulo the number of intersections.
@cindex @code{firstcut}
@cindex @code{slice}
@item slice firstcut(path p, path knife);
equivalent to @code{cut(p,knife,0);}
@cindex @code{MetaPost cutbefore}
Note that @code{firstcut.after} plays the role of the @code{MetaPost
cutbefore} command.
@cindex @code{lastcut}
@item slice lastcut(path p, path knife);
equivalent to @code{cut(p,knife,-1);}
@cindex @code{MetaPost cutafter}
Note that @code{lastcut.before} plays the role of the
@code{MetaPost cutafter} command.
@cindex @code{buildcycle}
@item path buildcycle(... path[] p);
This returns the path surrounding a region bounded by a list of two or more
consecutively intersecting paths, following the behaviour of the
@code{MetaPost buildcycle} command.
@cindex @code{min}
@item pair min(path p);
returns the pair (left,bottom) for the path bounding box of path @code{p}.
@cindex @code{max}
@item pair max(path p);
returns the pair (right,top) for the path bounding box of path @code{p}.
@cindex @code{windingnumber}
@cindex @code{undefined}
@item int windingnumber(path p, pair z);
returns the winding number of the cyclic path @code{p} relative to the point
@code{z}. The winding number is positive if the path encircles @code{z} in the
counterclockwise direction. If @code{z} lies on @code{p} the constant
@code{undefined} (defined to be the largest odd integer) is returned.
@cindex @code{interior}
@item bool interior(int windingnumber, pen fillrule)
returns true if @code{windingnumber} corresponds to an interior point
according to @code{fillrule}.
@cindex @code{inside}
@item bool inside(path p, pair z, pen fillrule=currentpen);
returns @code{true} iff the point @code{z} lies inside or on the edge of
the region bounded by the cyclic path @code{p} according to the fill
rule @code{fillrule} (@pxref{fillrule}).
@cindex @code{inside}
@item int inside(path p, path q, pen fillrule=currentpen);
returns @code{1} if the cyclic path @code{p} strictly contains @code{q}
according to the fill rule @code{fillrule} (@pxref{fillrule}), @code{-1}
if the cyclic path @code{q} strictly contains @code{p}, and @code{0}
otherwise.
@cindex @code{inside}
@item pair inside(path p, pen fillrule=currentpen);
returns an arbitrary point strictly inside a cyclic path @code{p}
according to the fill rule @code{fillrule} (@pxref{fillrule}).
@cindex @code{strokepath}
@item path[] strokepath(path g, pen p=currentpen);
returns the path array that @code{PostScript} would fill in drawing path
@code{g} with pen @code{p}.
@end table
@item guide
@cindex @code{guide}
an unresolved cubic spline (list of cubic-spline nodes and control points).
The implicit initializer for a guide is @code{nullpath}; this is useful
for building up a guide within a loop.
A guide is similar to a path except that the computation of the cubic spline is
deferred until drawing time (when it is resolved into a path); this allows
two guides with free endpoint conditions to be joined together smoothly.
The solid curve in the following example is built up incrementally as
a guide, but only resolved at drawing time; the dashed curve is
incrementally resolved at each iteration, before the entire set of nodes
(shown in red) is known:
@verbatiminclude mexicanhat.asy
@sp 1
@center @image{mexicanhat}
We point out an efficiency distinction in the use of guides and paths:
@verbatim
guide g;
for(int i=0; i < 10; ++i)
g=g--(i,i);
path p=g;
@end verbatim
@noindent
runs in linear time, whereas
@verbatim
path p;
for(int i=0; i < 10; ++i)
p=p--(i,i);
@end verbatim
@noindent
runs in quadratic time, as the entire path up to that point is copied at each
step of the iteration.
The following routines can be used to examine the individual elements of
a guide without actually resolving the guide to a fixed path (except for
internal cycles, which are resolved):
@table @code
@cindex @code{size}
@item int size(guide g);
Analogous to @code{size(path p)}.
@cindex @code{length}
@item int length(guide g);
Analogous to @code{length(path p)}.
@cindex @code{cyclic}
@item bool cyclic(path p);
Analogous to @code{cyclic(path p)}.
@cindex @code{point}
@item pair point(guide g, int t);
Analogous to @code{point(path p, int t)}.
@cindex @code{reverse}
@item guide reverse(guide g);
Analogous to @code{reverse(path p)}. If @code{g} is cyclic and
also contains a secondary cycle, it is first solved to a
path, then reversed. If @code{g} is not cyclic but contains an internal
cycle, only the internal cycle is solved before reversal. If there are
no internal cycles, the guide is reversed but not solved to a path.
@cindex @code{dirSpecifier}
@item pair[] dirSpecifier(guide g, int i);
This returns a pair array of length 2 containing the outgoing (in
element 0) and incoming (in element 1) direction specifiers (or
@code{(0,0)} if none specified) for the segment of guide @code{g}
between nodes @code{i} and @code{i+1}.
@cindex @code{controlSpecifier}
@item pair[] controlSpecifier(guide g, int i);
If the segment of guide @code{g} between nodes @code{i} and @code{i+1}
has explicit outgoing and incoming control points, they are returned as
elements 0 and 1, respectively, of a two-element array. Otherwise, an
empty array is returned.
@cindex @code{tensionSpecifier}
@item tensionSpecifier tensionSpecifier(guide g, int i);
This returns the tension specifier for the segment of guide @code{g} between
nodes @code{i} and @code{i+1}. The individual components of the
@code{tensionSpecifier} type can be accessed as the virtual members
@code{in}, @code{out}, and @code{atLeast}.
@cindex @code{curlSpecifier}
@item real[] curlSpecifier(guide g);
This returns an array containing the initial curl specifier (in element 0)
and final curl specifier (in element 1) for guide @code{g}.
@end table
As a technical detail we note that a direction specifier given to
@code{nullpath} modifies the node on the other side: the guides
@verbatim
a..{up}nullpath..b;
c..nullpath{up}..d;
e..{up}nullpath{down}..f;
@end verbatim
are respectively equivalent to
@verbatim
a..nullpath..{up}b;
c{up}..nullpath..d;
e{down}..nullpath..{up}f;
@end verbatim
@end table
@node Pens
@section Pens
@cindex @code{pen}
@cindex @code{currentpen}
@cindex @code{MetaPost pickup}
In @code{Asymptote}, pens provide a context for the four basic drawing
commands (@pxref{Drawing commands}). They are used to specify the
following drawing attributes: color, line type, line width, line cap,
line join, fill rule, text alignment, font, font size, pattern,
overwrite mode, and calligraphic transforms on the pen nib. The
default pen used by the drawing routines is called
@code{currentpen}. This provides the same functionality as the
@code{MetaPost} command @code{pickup}.
The implicit initializer for pens is @code{defaultpen}.
@cindex @code{+}
@cindex @code{*}
Pens may be added together with the nonassociative binary
operator @code{+}. This will add the colors of the two pens.
All other non-default attributes of the rightmost pen will
override those of the leftmost pen. Thus, one can obtain a yellow
dashed pen by saying @code{dashed+red+green} or @code{red+green+dashed}
or @code{red+dashed+green}. The binary operator @code{*}
can be used to scale the color of a pen by a real number, until it
saturates with one or more color components equal to 1.
@itemize @bullet
@item Colors are specified using one of the following colorspaces:
@cindex color
@table @code
@item pen gray(real g);
@cindex @code{gray}
@cindex grayscale
This produces a grayscale color, where the intensity @code{g} lies in the
interval [0,1], with 0.0 denoting black and 1.0 denoting white.
@item pen rgb(real r, real g, real b);
@cindex @code{rgb}
This produces an @acronym{RGB} color, where each of the red, green,
and blue intensities @code{r}, @code{g}, @code{b}, lies in the interval [0,1].
@item pen cmyk(real c, real m, real y, real k);
@cindex @code{cmyk}
This produces a @acronym{CMYK} color, where each of the cyan, magenta,
yellow, and black intensities @code{c}, @code{m}, @code{y}, @code{k},
lies in the interval [0,1].
@item pen invisible;
@cindex @code{invisible}
This special pen writes in invisible ink, but adjusts the bounding
box as if something had been drawn (like the @code{\phantom}
command in @TeX{}). The function @code{bool invisible(pen)} can be used
to test whether a pen is invisible.
@end table
@cindex @code{defaultpen}
The default color is @code{black}; this may be changed with the routine
@code{defaultpen(pen)}. The function @code{colorspace(pen p)} returns
the colorspace of pen @code{p} as a string (@code{"gray"}, @code{"rgb"},
@code{"cmyk"}, or @code{""}).
@cindex @code{colors}
The function @code{real[] colors(pen)} returns the color components of a pen.
The functions @code{pen gray(pen)}, @code{pen rgb(pen)}, and
@code{pen cmyk(pen)} return new pens obtained by converting their
arguments to the respective color spaces.
@cindex @code{colorless}
The function @code{colorless(pen=currentpen)} returns a copy of its argument
with the color attributes stripped (to avoid color mixing).
A 6-character RGB hexidecimal string can be converted to a pen with
the routine
@cindex @code{rgb}
@cindex @code{hexidecimal}
@verbatim
pen rgb(string s);
@end verbatim
@noindent
A pen can be converted to a hexidecimal string with
@cindex @code{hex}
@item string hex(pen p);
Various shades and mixtures of the grayscale primary colors
@code{black} and @code{white}, @acronym{RGB} primary colors
@code{red}, @code{green}, and @code{blue}, and
@acronym{RGB} secondary colors @code{cyan}, @code{magenta}, and @code{yellow}
are defined as named colors, along with the @acronym{CMYK} primary
colors @code{Cyan}, @code{Magenta}, @code{Yellow}, and @code{Black}, in
the module @code{plain}:
@sp 1
@center @image{colors}
The standard 140 @acronym{RGB} @code{X11} colors can be imported with
the command
@verbatim
import x11colors;
@end verbatim
and the standard 68 @acronym{CMYK} @TeX{} colors can be imported with
the command
@verbatim
import texcolors;
@end verbatim
Note that there is some overlap between these two standards
and the definitions of some colors (e.g.@ @code{Green}) actually disagree.
@code{Asymptote} also comes with a @code{asycolors.sty} @code{LaTeX} package
that defines to @code{LaTeX} @acronym{CMYK} versions of
@code{Asymptote}'s predefined colors, so that they can be used
directly within @code{LaTeX} strings. Normally, such colors are
passed to @code{LaTeX} via a pen argument; however, to change the
color of only a portion of a string, say for a slide presentation,
(@pxref{slide}) it may be desirable to specify the color directly to
@code{LaTeX}. This file can be passed to @code{LaTeX} with the
@code{Asymptote} command
@verbatim
usepackage("asycolors");
@end verbatim
The structure @code{hsv} defined in @code{plain_pens.asy} may be used
to convert between @acronym{HSV} and @acronym{RGB} spaces, where
the hue @code{h} is an angle in @math{[0,360)} and the saturation
@code{s} and value @code{v} lie in @code{[0,1]}:
@verbatim
pen p=hsv(180,0.5,0.75);
write(p); // ([default], red=0.375, green=0.75, blue=0.75)
hsv q=p;
write(q.h,q.s,q.v); // 180 0.5 0.75
@end verbatim
@item Line types are specified with the function
@code{pen linetype(real[] a, real offset=0, bool scale=true, bool adjust=true)},
@cindex @code{solid}
@cindex @code{dashed}
@cindex @code{dotted}
@cindex @code{longdashed}
@cindex @code{dashdotted}
@cindex @code{longdashdotted}
where @code{a} is an array of real array numbers.
The optional parameter @code{offset} specifies where in the pattern
to begin. The first number specifies how far (if @code{scale} is
@code{true}, in units of the pen line width; otherwise in
@code{PostScript} units) to draw with the pen on, the second number
specifies how far to draw with the pen off, and so on. If
@code{adjust} is @code{true}, these spacings are automatically
adjusted by @code{Asymptote} to fit the arclength of the path. Here
are the predefined line types:
@verbatim
pen solid=linetype(new real[]);
pen dotted=linetype(new real[] {0,4});
pen dashed=linetype(new real[] {8,8});
pen longdashed=linetype(new real[] {24,8});
pen dashdotted=linetype(new real[] {8,8,0,8});
pen longdashdotted=linetype(new real[] {24,8,0,8});
pen Dotted(pen p=currentpen) {return linetype(new real[] {0,3})+2*linewidth(p);}
pen Dotted=Dotted();
@end verbatim
@sp 1
@center @image{linetype}
@cindex @code{defaultpen}
The default line type is @code{solid}; this may be changed with
@code{defaultpen(pen)}.
@cindex @code{linetype}
@cindex @code{offset}
@cindex @code{scale}
@cindex @code{adjust}
The line type of a pen can be determined with the functions
@code{real[] linetype(pen p=currentpen)},
@code{real offset(pen p)}, @code{bool scale(pen p)}, and
@code{bool adjust(pen p)}.
@cindex @code{linewidth}
@cindex @code{defaultpen}
@item The pen line width is specified in @code{PostScript} units with
@code{pen linewidth(real)}. The default line width is 0.5 bp; this value
may be changed with @code{defaultpen(pen)}. The line width of a pen
is returned by @code{real linewidth(pen p=currentpen)}.
For convenience, in the module @code{plain_pens} we define
@verbatim
void defaultpen(real w) {defaultpen(linewidth(w));}
pen operator +(pen p, real w) {return p+linewidth(w);}
pen operator +(real w, pen p) {return linewidth(w)+p;}
@end verbatim
so that one may set the line width like this:
@verbatim
defaultpen(2);
pen p=red+0.5;
@end verbatim
@cindex @code{linecap}
@cindex @code{squarecap}
@cindex @code{roundcap}
@cindex @code{extendcap}
@cindex @code{defaultpen}
@item A pen with a specific @code{PostScript} line cap is returned on
calling @code{linecap} with an integer argument:
@verbatim
pen squarecap=linecap(0);
pen roundcap=linecap(1);
pen extendcap=linecap(2);
@end verbatim
@noindent
The default line cap, @code{roundcap}, may be changed with
@code{defaultpen(pen)}. The line cap of a pen is returned by
@code{int linecap(pen p=currentpen)}.
@cindex @code{linejoin}
@cindex @code{miterjoin}
@cindex @code{roundjoin}
@cindex @code{beveljoin}
@item A pen with a specific @code{PostScript} join style is returned on
calling @code{linejoin} with an integer argument:
@verbatim
pen miterjoin=linejoin(0);
pen roundjoin=linejoin(1);
pen beveljoin=linejoin(2);
@end verbatim
@noindent
The default join style, @code{roundjoin}, may be changed with
@code{defaultpen(pen)}.The join style of a pen is returned by
@code{int linejoin(pen p=currentpen)}.
@cindex @code{miterlimit}
@item A pen with a specific @code{PostScript} miter limit is returned by
calling @code{miterlimit(real)}.
The default miterlimit, @code{10.0}, may be changed with
@code{defaultpen(pen)}. The miter limit of a pen is returned by
@code{real miterlimit(pen p=currentpen)}.
@cindex @code{fillrule}
@cindex @code{zerowinding}
@cindex @code{evenodd}
@anchor{fillrule}
@item A pen with a specific @code{PostScript} fill rule is returned on
calling @code{fillrule} with an integer argument:
@verbatim
pen zerowinding=fillrule(0);
pen evenodd=fillrule(1);
@end verbatim
@noindent
The fill rule, which identifies the algorithm used to determine the
insideness of a path or array of paths, only affects the @code{clip},
@code{fill}, and @code{inside} functions. For the @code{zerowinding}
fill rule, a point @code{z} is outside the region bounded by a path if
the number of upward intersections of the path with the horizontal
line @code{z--z+infinity} minus the number of downward intersections
is zero. For the @code{evenodd} fill rule, @code{z} is considered to
be outside the region if the total number of such intersections is even.
The default fill rule, @code{zerowinding}, may be changed with
@code{defaultpen(pen)}. The fill rule of a pen is returned by
@code{int fillrule(pen p=currentpen)}.
@cindex @code{nobasealign}
@cindex @code{basealign}
@anchor{basealign}
@item A pen with a specific text alignment setting is returned on
calling @code{basealign} with an integer argument:
@verbatim
pen nobasealign=basealign(0);
pen basealign=basealign(1);
@end verbatim
@noindent
The default setting, @code{nobasealign},which may be changed with
@code{defaultpen(pen)}, causes the label alignment routines to use the
full label bounding box for alignment. In contrast, @code{basealign}
requests that the @TeX{} baseline be respected.
The base align setting of a pen is returned by
@code{int basealigin(pen p=currentpen)}.
@cindex @code{fontsize}
@cindex @code{lineskip}
@cindex @code{defaultpen}
@cindex @code{type1cm}
@item The font size is specified in @TeX{} points (1 pt = 1/72.27 inches) with
the function @code{pen fontsize(real size, real lineskip=1.2*size)}.
The default font size, 12pt, may be changed with @code{defaultpen(pen)}.
Nonstandard font sizes may require inserting
@verbatim
import fontsize;
@end verbatim
at the beginning of the file (this requires the @code{type1cm} package
available from
@quotation
@url{http://www.ctan.org/tex-archive/macros/latex/contrib/type1cm/}
@end quotation
and included in recent @code{LaTeX} distributions). The font size and line
skip of a pen can be examined with the routines
@code{real fontsize(pen p=currentpen)} and
@code{real lineskip(pen p=currentpen)}, respectively.
@cindex @code{font}
@cindex @code{LaTeX fonts}
@cindex @code{NFSS}
@cindex @code{font command}
@item A pen using a specific @code{LaTeX} @code{NFSS} font is returned
by calling the function @code{pen font(string encoding, string family,
string series, string shape)}. The default setting,
@code{font("OT1","cmr","m","n")}, corresponds to 12pt Computer Modern Roman;
this may be changed with @code{defaultpen(pen)}.
The font setting of a pen is returned by
@code{string font(pen p=currentpen)}.
Support for standardized international characters is provided by the
@code{unicode} package (@pxref{unicode}).
@cindex @code{TeX fonts}
Alternatively, one may select a fixed-size @TeX{} font (on which
@code{fontsize} has no effect) like @code{"cmr12"} (12pt Computer Modern
Roman) or @code{"pcrr"} (Courier) using the function @code{pen font(string
name)}. An optional size argument can also be given to scale the font
to the requested size: @code{pen font(string name, real size)}.
@cindex @code{fontcommand}
A nonstandard font command can be generated with
@code{pen fontcommand(string)}.
@cindex @code{PostScript fonts}
A convenient interface to the following standard @code{PostScript}
fonts is also provided:
@verbatim
pen AvantGarde(string series="m", string shape="n");
pen Bookman(string series="m", string shape="n");
pen Courier(string series="m", string shape="n");
pen Helvetica(string series="m", string shape="n");
pen NewCenturySchoolBook(string series="m", string shape="n");
pen Palatino(string series="m", string shape="n");
pen TimesRoman(string series="m", string shape="n");
pen ZapfChancery(string series="m", string shape="n");
pen Symbol(string series="m", string shape="n");
pen ZapfDingbats(string series="m", string shape="n");
@end verbatim
@anchor{transparency}
@cindex transparency
@cindex @code{opacity}
@item The transparency of a pen can be changed with the command:
@verbatim
pen opacity(real opacity=1, string blend="Compatible");
@end verbatim
The opacity can be varied from @code{0} (fully transparent) to the default
value of @code{1} (opaque), and @code{blend} specifies one of the
following foreground--background blending operations:
@verbatim
"Compatible","Normal","Multiply","Screen","Overlay","SoftLight",
"HardLight","ColorDodge","ColorBurn","Darken","Lighten","Difference",
"Exclusion","Hue","Saturation","Color","Luminosity",
@end verbatim
as described in
@url{http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf}.
Since @code{PostScript} does not support transparency, this feature is
only effective with the @code{-f pdf} output format option; other
formats can be produced from the resulting @acronym{PDF} file with the
@code{ImageMagick} @code{convert} program.
Labels are always drawn with an @code{opacity} of 1.
A simple example of transparent filling is provided in the example file
@code{transparency.asy}.
@cindex patterns
@cindex tilings
@item @code{PostScript} commands within a @code{picture} may be used
to create a tiling pattern, identified by the string @code{name}, for
@code{fill} and @code{draw} operations by adding it to the
global @code{PostScript} frame @code{currentpatterns},
with optional left-bottom margin @code{lb} and right-top margin @code{rt}.
@verbatim
import patterns;
void add(string name, picture pic, pair lb=0, pair rt=0);
@end verbatim
To @code{fill} or @code{draw} using pattern @code{name}, use
the pen @code{pattern("name")}. For example, rectangular tilings
can be constructed using the routines
@code{picture tile(real Hx=5mm, real Hy=0, pen p=currentpen,
filltype filltype=NoFill)},
@code{picture checker(real Hx=5mm, real Hy=0, pen p=currentpen)}, and
@code{picture brick(real Hx=5mm, real Hy=0, pen p=currentpen)} defined in
@code{patterns.asy}:
@cindex grid
@cindex tile
@cindex checker
@cindex brick
@verbatiminclude tile.asy
@sp 1
@center @image{tile}
@cindex hatch
@cindex crosshatch
Hatch patterns can be generated with the routines
@code{picture hatch(real H=5mm, pair dir=NE, pen p=currentpen)},
@code{picture crosshatch(real H=5mm, pen p=currentpen)}:
@verbatiminclude hatch.asy
@sp 1
@center @image{hatch}
You may need to turn off aliasing in your @code{PostScript} viewer for
patterns to appear correctly. Custom patterns can easily be constructed,
following the examples in @code{patterns.asy}. The tiled pattern can
even incorporate shading (@pxref{gradient shading}), as illustrated
in this example (not included in the manual because not all printers support
@code{PostScript} 3):
@verbatiminclude shadedtiling.asy
@anchor{makepen}
@cindex @code{makepen}
@item One can specify a custom pen nib as an arbitrary polygonal path
with @code{pen makepen(path)}; this path represents the mark to be
drawn for paths containing a single point. This pen nib path can be
recovered from a pen with @code{path nib(pen)}. Unlike in
@code{MetaPost}, the path need not be convex:
@verbatiminclude makepen.asy
@sp 1
@center @image{makepen}
The value @code{nullpath} represents a circular pen nib (the default);
an elliptical pen can be achieved simply by multiplying the pen by a
transform: @code{yscale(2)*currentpen}.
@anchor{overwrite}
@cindex @code{overwrite}
@item One can prevent labels from overwriting one another by using
the pen attribute @code{overwrite}, which takes a single argument:
@table @code
@cindex @code{Allow}
@cindex @code{defaultpen}
@item Allow
Allow labels to overwrite one another. This is the default behaviour (unless
overridden with @code{defaultpen(pen)}.
@cindex @code{Suppress}
@item Suppress
Suppress, with a warning, each label that would overwrite another label.
@cindex @code{SuppressQuiet}
@item SuppressQuiet
Suppress, without warning, each label that would overwrite another label.
@cindex @code{Move}
@item Move
Move a label that would overwrite another out of the way and issue a warning.
As this adjustment is during the final output phase (in @code{PostScript}
coordinates) it could result in a larger figure than requested.
@cindex @code{MoveQuiet}
@item MoveQuiet
Move a label that would overwrite another out of the way, without warning.
As this adjustment is during the final output phase (in @code{PostScript}
coordinates) it could result in a larger figure than requested.
@end table
@end itemize
@cindex @code{defaultpen}
@cindex @code{resetdefaultpen}
The routine @code{defaultpen()} returns the current default pen attributes.
Calling the routine @code{resetdefaultpen()} resets all pen default
attributes to their initial values.
@node Transforms
@section Transforms
@cindex @code{transform}
@code{Asymptote} makes extensive use of affine transforms. A pair
@code{(x,y)} is transformed by the transform
@code{t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy)} to @code{(x',y')}, where
@verbatim
x' = t.x + t.xx * x + t.xy * y
y' = t.y + t.yx * x + t.yy * y
@end verbatim
@noindent
This is equivalent to the @code{PostScript} transformation
@code{[t.xx t.yx t.xy t.yy t.x t.y]}.
Transforms can be applied to pairs, guides, paths, pens, strings,
transforms, frames, and pictures by multiplication (via the binary operator
@code{*}) on the left (@pxref{circle} for an example).
@cindex @code{inverse}
Transforms can be composed with one another and inverted with the
function @code{transform inverse(transform t)}; they can also be raised to any
integer power with the @code{^} operator.
The built-in transforms are:
@table @code
@item transform identity();
@cindex @code{identity}
the identity transform;
@item transform shift(pair z);
@cindex @code{shift}
translates by the pair @code{z};
@item transform shift(real x, real y);
@cindex @code{shift}
translates by the pair @code{(x,y)};
@item transform xscale(real x);
@cindex @code{xscale}
scales by @code{x} in the @math{x} direction;
@item transform yscale(real y);
@cindex @code{yscale}
scales by @code{y} in the @math{y} direction;
@item transform scale(real s);
@cindex @code{scale}
scale by @code{s} in both @math{x} and @math{y} directions;
@item transform scale(real x, real y);
@cindex @code{scale}
scale by @code{x} in the @math{x} direction and by @code{y} in the
@math{y} direction;
@item transform slant(real s);
@cindex @code{slant}
maps @code{(x,y)} --> @code{(x+s*y,y)};
@item transform rotate(real angle, pair z=(0,0));
rotates by @code{angle} in degrees about @code{z};
@item transform reflect(pair a, pair b);
@cindex @code{reflect}
reflects about the line @code{a--b}.
@end table
@cindex @code{shift}
@cindex @code{shiftless}
The implicit initializer for transforms is @code{identity()}.
The routines @code{shift(transform t)} and @code{shiftless(transform t)}
return the transforms @code{(t.x,t.y,0,0,0,0)} and
@code{(0,0,t.xx,t.xy,t.yx,t.yy)} respectively.
@node Frames and pictures
@section Frames and pictures
@table @code
@item frame
@cindex @code{frame}
@cindex @code{newframe}
@cindex @code{empty}
@cindex @code{erase}
@cindex @code{min}
@cindex @code{max}
Frames are canvases for drawing in @code{PostScript} coordinates. While working
with frames directly is occasionally necessary for constructing deferred
drawing routines, pictures are usually more convenient to work with.
The implicit initializer for frames is @code{newframe}. The function
@code{bool empty(frame f)} returns @code{true} only if the frame @code{f}
is empty. A frame may be erased with the @code{erase(frame)} routine.
The functions @code{pair min(frame)} and @code{pair max(frame)}
return the (left,bottom) and (right,top) coordinates of the frame
bounding box, respectively. The contents of frame @code{src} may be
appended to frame @code{dest} with the command
@verbatim
void add(frame dest, frame src);
@end verbatim
or prepended with
@verbatim
void prepend(frame dest, frame src);
@end verbatim
A frame obtained by aligning frame @code{f} in the direction
@code{align}, in a manner analogous to the @code{align} argument of
@code{label} (@pxref{label}), is returned by
@verbatim
frame align(frame f, pair align);
@end verbatim
@cindex @code{box}
@cindex @code{ellipse}
@anchor{envelope}
@cindex @code{envelope}
To draw or fill a box or ellipse around a label or frame and return the
boundary as a path, use one of the predefined @code{envelope} routines
@verbatim
path box(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
path roundbox(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
path ellipse(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
@end verbatim
@item picture
@cindex @code{picture}
Pictures are high-level structures (@pxref{Structures}) defined in
the module @code{plain} that provide canvases for drawing in user coordinates.
The default picture is called @code{currentpicture}. A new picture
can be created like this:
@verbatim
picture pic;
@end verbatim
@noindent
Anonymous pictures can be made by the expression @code{new picture}.
The @code{size} routine specifies the dimensions of the desired picture:
@anchor{size}
@cindex @code{size}
@verbatim
void size(picture pic=currentpicture, real x, real y=x,
bool keepAspect=Aspect);
@end verbatim
If the @code{x} and @code{y} sizes are both 0, user coordinates will be
interpreted as @code{PostScript} coordinates. In this case, the transform
mapping @code{pic} to the final output frame is @code{identity()}.
If exactly one of @code{x} or @code{y} is 0, no size restriction
is imposed in that direction; it will be scaled the same as the other
direction.
@cindex @code{keepAspect}
@cindex @code{Aspect}
If @code{keepAspect} is set to @code{Aspect} or @code{true},
the picture will be scaled with its aspect ratio preserved such that
the final width is no more than @code{x} and the final height is
no more than @code{y}.
@cindex @code{keepAspect}
@cindex @code{IgnoreAspect}
If @code{keepAspect} is set to @code{IgnoreAspect} or @code{false},
the picture will be scaled in both directions so that the final width
is @code{x} and the height is @code{y}.
To make the user coordinates of picture @code{pic}
represent multiples of @code{x} units in the @math{x} direction and
@code{y} units in the @math{y} direction, use
@anchor{unitsize}
@cindex @code{unitsize}
@verbatim
void unitsize(picture pic=currentpicture, real x, real y=x);
@end verbatim
When nonzero, these @code{x} and @code{y} values override the
corresponding size parameters of picture @code{pic}.
The routine
@cindex @code{size}
@verbatim
void size(picture pic=currentpicture, real xsize, real ysize,
pair min, pair max);
@end verbatim
forces the final picture scaling to map the user coordinates
@code{box(min,max)} to a region of width @code{xsize} and height @code{ysize}
(when these parameters are nonzero).
Alternatively, calling the routine
@cindex @code{fixedscaling}
@verbatim
transform fixedscaling(picture pic=currentpicture, pair min,
pair max, pen p=nullpen, bool warn=false);
@end verbatim
will cause picture @code{pic} to use a fixed scaling to map user
coordinates in @code{box(min,max)} to the (already specified) picture size,
taking account of the width of pen @code{p}. A warning will be issued if
the final picture exceeds the specified size.
A picture @code{pic} can be fit to a frame and output to a file
@code{prefix}.@code{format} using image format @code{format}
by calling the @code{shipout} function:
@anchor{shipout}
@cindex @code{shipout}
@cindex @code{outprefix}
@verbatim
void shipout(string prefix=defaultfilename, picture pic=currentpicture,
orientation orientation=orientation,
string format="", bool wait=false, bool view=true,
string options="", string script="",
light light=currentlight, projection P=currentprojection)
@end verbatim
@noindent
The default output format, @code{PostScript}, may be changed
with the @code{-f} or @code{-tex} command-line options.
The @code{options}, @code{script}, and @code{projection} parameters
are only relevant for 3D pictures. If @code{defaultfilename} is an
empty string, the prefix @code{outprefix()} will be used.
A @code{shipout()} command is added implicitly at file exit if no
previous @code{shipout} commands have been executed.
@cindex @code{orientation}
@cindex @code{Portrait}
@cindex @code{Landscape}
@cindex @code{UpsideDown}
The default page orientation is @code{Portrait}; this may be modified
by changing the variable @code{orientation}. To output in landscape
mode, simply set the variable @code{orientation=Landscape} or issue
the command
@verbatim
shipout(Landscape);
@end verbatim
@cindex @code{Seascape}
To rotate the page by @math{-90} degrees, use the orientation @code{Seascape}.
@cindex @code{UpsideDown}
The orientation @code{UpsideDown} rotates the page by 180 degrees.
@cindex subpictures
@cindex @code{fit}
A picture @code{pic} can be explicitly fit to a frame by calling
@verbatim
frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,
bool keepAspect=pic.keepAspect);
@end verbatim
The default size and aspect ratio settings are those given to the
@code{size} command (which default to @code{0}, @code{0}, and
@code{true}, respectively).
@cindex @code{calculateTransform}
The transformation that would currently be used to fit a picture
@code{pic} to a frame is returned by the member function
@code{pic.calculateTransform()}.
In certain cases (e.g.@ 2D graphs) where only an approximate size
estimate for @code{pic} is available, the picture fitting routine
@verbatim
frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,
bool keepAspect=this.keepAspect);
@end verbatim
(which scales the resulting frame, including labels and fixed-size
objects) will enforce perfect compliance with the requested size
specification, but should not normally be required.
@cindex @code{box}
To draw a bounding box with margins around a picture, fit the
picture to a frame using the function
@verbatim
frame bbox(picture pic=currentpicture, real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill);
@end verbatim
@anchor{filltype}
Here @code{filltype} specifies one of the following fill types:
@table @code
@cindex @code{FillDraw}
@item FillDraw
Fill the interior and draw the boundary.
@item FillDraw(real xmargin=0, real ymargin=xmargin, pen fillpen=nullpen,
@code{pen drawpen=nullpen)}
@cindex @code{nullpen}
If @code{fillpen} is @code{nullpen}, fill with the drawing pen;
otherwise fill with pen @code{fillpen}.
If @code{drawpen} is @code{nullpen}, draw the boundary with @code{fillpen};
otherwise with @code{drawpen}. An optional margin of
@code{xmargin} and @code{ymargin} can be specified.
@cindex @code{Fill}
@item Fill
Fill the interior.
@cindex @code{nullpen}
@item Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If @code{p} is @code{nullpen}, fill with the drawing pen;
otherwise fill with pen @code{p}. An optional margin of
@code{xmargin} and @code{ymargin} can be specified.
@cindex @code{NoFill}
@item NoFill
Do not fill.
@item Draw
Draw only the boundary.
@cindex @code{Draw}
@item Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If @code{p} is @code{nullpen}, draw the boundary with the drawing pen;
otherwise draw with pen @code{p}. An optional margin of
@code{xmargin} and @code{ymargin} can be specified.
@cindex @code{UnFill}
@item UnFill
Clip the region.
@cindex @code{UnFill}
@item UnFill(real xmargin=0, real ymargin=xmargin)
Clip the region and surrounding margins @code{xmargin} and @code{ymargin}.
@cindex @code{RadialShade}
@item RadialShade(pen penc, pen penr)
Fill varying radially from @code{penc} at the center of the bounding
box to @code{penr} at the edge.
@cindex @code{RadialShadeDraw}
@item RadialShadeDraw(real xmargin=0, real ymargin=xmargin, pen penc,
@code{pen penr, pen drawpen=nullpen)}
Fill with RadialShade and draw the boundary.
@end table
@cindex bounding box
@cindex background color
For example, to draw a bounding box around a picture with a 0.25 cm
margin and output the resulting frame, use the command:
@verbatim
shipout(bbox(0.25cm));
@end verbatim
A @code{picture} may be fit to a frame with the background color
pen @code{p}, using the function @code{bbox(p,Fill)}.
The functions
@verbatim
pair min(picture pic, user=false);
pair max(picture pic, user=false);
pair size(picture pic, user=false);
@end verbatim
calculate the bounds that picture @code{pic} would
have if it were currently fit to a frame using its default size specification.
If @code{user} is @code{false} the returned value is in
@code{PostScript} coordinates, otherwise it is in user coordinates.
The function
@verbatim
pair point(picture pic=currentpicture, pair dir, bool user=true);
@end verbatim
is a convenient way of determining the point on the bounding box of
@code{pic} in the direction @code{dir} relative to its center, ignoring
the contributions from fixed-size objects (such as labels and arrowheads).
If @code{user} is @code{true} the returned value is in user coordinates,
otherwise it is in @code{PostScript} coordinates.
The function
@verbatim
pair truepoint(picture pic=currentpicture, pair dir, bool user=true);
@end verbatim
is identical to @code{point}, except that it also accounts for
fixed-size objects, using the scaling transform that picture @code{pic}
would have if currently fit to a frame using its default size
specification. If @code{user} is @code{true} the returned value is in
user coordinates, otherwise it is in @code{PostScript} coordinates.
@anchor{add}
Sometimes it is useful to draw objects on separate pictures and add one
picture to another using the @code{add} function:
@cindex @code{add}
@verbatim
void add(picture src, bool group=true,
filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, bool group=true,
filltype filltype=NoFill, bool above=true);
@end verbatim
@noindent
The first example adds @code{src} to @code{currentpicture}; the second
one adds @code{src} to @code{dest}.
The @code{group} option specifies whether or not the graphical user
interface @code{xasy} should treat all of the elements of @code{src}
as a single entity (@pxref{GUI}), @code{filltype} requests optional
background filling or clipping, and @code{above} specifies
whether to add @code{src} above or below existing objects.
There are also routines to add a picture or frame @code{src} specified
in postscript coordinates to another picture @code{dest} (or
@code{currentpicture}) about the user coordinate
@code{position}:
@anchor{add about}
@cindex @code{add}
@cindex picture alignment
@verbatim
void add(picture src, pair position, bool group=true,
filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, pair position,
bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position=0,
bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position,
pair align, bool group=true, filltype filltype=NoFill,
bool above=true);
@end verbatim
The optional @code{align} argument in the last form specifies a
direction to use for aligning the frame, in a manner analogous to the
@code{align} argument of @code{label} (@pxref{label}). However, one key
difference is that when @code{align} is not specified, labels are
centered, whereas frames and pictures are aligned so that their origin is
at @code{position}. Illustrations of frame alignment can be found in
the examples @ref{errorbars} and @ref{image}. If you want to align three
or more subpictures, group them two at a time:
@verbatiminclude subpictures.asy
@sp 1
@center @image{subpictures}
Alternatively, one can use @code{attach} to automatically increase the
size of picture @code{dest} to accommodate adding a frame @code{src}
about the user coordinate @code{position}:
@verbatim
void attach(picture dest=currentpicture, frame src,
pair position=0, bool group=true,
filltype filltype=NoFill, bool above=true);
void attach(picture dest=currentpicture, frame src,
pair position, pair align, bool group=true,
filltype filltype=NoFill, bool above=true);
@end verbatim
@cindex @code{erase}
To erase the contents of a picture (but not the size specification), use
the function
@verbatim
void erase(picture pic=currentpicture);
@end verbatim
@cindex @code{save}
To save a snapshot of @code{currentpicture}, @code{currentpen}, and
@code{currentprojection}, use the function @code{save()}.
@cindex @code{restore}
To restore a snapshot of @code{currentpicture}, @code{currentpen}, and
@code{currentprojection}, use the function @code{restore()}.
Many further examples of picture and frame operations are provided in
the base module @code{plain}.
@cindex verbatim
@cindex @code{postscript}
It is possible to insert verbatim @code{PostScript} commands in a picture with
one of the routines
@verbatim
void postscript(picture pic=currentpicture, string s);
void postscript(picture pic=currentpicture, string s, pair min,
pair max)
@end verbatim
Here @code{min} and @code{max} can be used to specify explicit bounds
associated with the resulting @code{PostScript} code.
@anchor{tex}
@cindex @code{tex}
Verbatim @TeX{} commands can be inserted in the intermediate
@code{LaTeX} output file with one of the functions
@verbatim
void tex(picture pic=currentpicture, string s);
void tex(picture pic=currentpicture, string s, pair min, pair max)
@end verbatim
Here @code{min} and @code{max} can be used to specify explicit bounds
associated with the resulting @TeX{} code.
To issue a global @TeX{} command (such as a @TeX{} macro definition) in the
@TeX{} preamble (valid for the remainder of the top-level module) use:
@cindex @code{texpreamble}
@verbatim
void texpreamble(string s);
@end verbatim
The @TeX{} environment can be reset to its initial state, clearing all
macro definitions, with the function
@cindex @code{texreset}
@verbatim
void texreset();
@end verbatim
@cindex @code{usepackage}
The routine
@verbatim
void usepackage(string s, string options="");
@end verbatim
provides a convenient abbreviation for
@verbatim
texpreamble("\usepackage["+options+"]{"+s+"}");
@end verbatim
@noindent
that can be used for importing @code{LaTeX} packages.
@end table
@node Files
@section Files
@cindex @code{file}
@code{Asymptote} can read and write text files (including comma-separated
value) files and portable @acronym{XDR} (External Data Representation)
binary files.
An input file must first be opened with
@code{input(string name, bool check=true, string comment="#")};
reading is then done by assignment:
@cindex open
@cindex @code{input}
@cindex reading
@verbatim
file fin=input("test.txt");
real a=fin;
@end verbatim
@cindex comment character
@cindex @code{error}
If the optional boolean argument @code{check} is @code{false}, no check will
be made that the file exists. If the file does not exist or is not
readable, the function @code{bool error(file)} will return @code{true}.
The first character of the string @code{comment} specifies a
comment character. If this character is encountered in a data file,
the remainder of the line is ignored. When reading strings, a comment
character followed immediately by another comment character is treated
as a single literal comment character.
@anchor{cd}
@cindex @code{cd}
@cindex directory
One can change the current working directory for read operations to
the contents of the string @code{s} with the function @code{string
cd(string s)}, which returns the new working directory. If
@code{string s} is empty, the path is reset to the value it had at
program startup.
@cindex @code{getc}
When reading pairs, the enclosing parenthesis are optional.
Strings are also read by assignment, by reading characters up to but not
including a newline. In addition, @code{Asymptote} provides the function
@code{string getc(file)} to read the next character (treating the
comment character as an ordinary character) and return it as a string.
@cindex @code{output}
@cindex @code{update}
@cindex append
A file named @code{name} can be open for output with
@verbatim
file output(string name, bool update=false);
@end verbatim
@noindent
If @code{update=false}, any existing data in the file will be erased
and only write operations can be used on the file.
If @code{update=true}, any existing data will be preserved, the position
will be set to the end-of-file, and both reading and writing operations
will be enabled. For security reasons, writing to files in directories
other than the current directory is allowed only if the @code{-globalwrite}
(or @code{-nosafe}) command-line option is specified.
@cindex @code{mktemp}
The function @code{string mktemp(string s)} may be used to create and
return the name of a unique temporary file in the current directory
based on the string @code{s}.
@cindex @code{stdin}
@cindex @code{stdout}
There are two special files: @code{stdin}, which reads from the keyboard,
and @code{stdout}, which writes to the terminal. The implicit
initializer for files is @code{null}.
Data of a built-in type @code{T} can be written to an output file by
calling one of the functions
@cindex @code{write}
@verbatim
write(string s="", T x, suffix suffix=endl ... T[]);
write(file file, string s="", T x, suffix suffix=none ... T[]);
write(file file=stdout, string s="", explicit T[] x ... T[][]);
write(file file=stdout, T[][]);
write(file file=stdout, T[][][]);
write(suffix suffix=endl);
write(file file, suffix suffix=none);
@end verbatim
@cindex @code{none}
@cindex @code{flush}
@cindex @code{endl}
@cindex @code{newl}
@cindex @code{DOSendl}
@cindex @code{DOSnewl}
@cindex @code{tab}
@cindex @code{comma}
If @code{file} is not specified, @code{stdout} is used and
terminated by default with a newline. If specified, the optional
identifying string @code{s} is written before the data @code{x}.
An arbitrary number of data values may be listed when writing scalars
or one-dimensional arrays. The @code{suffix} may be one of the following:
@code{none} (do nothing), @code{flush} (output buffered data),
@code{endl} (terminate with a newline and flush),
@code{newl} (terminate with a newline),
@code{DOSendl} (terminate with a DOS newline and flush),
@code{DOSnewl} (terminate with a DOS newline),
@code{tab} (terminate with a tab), or @code{comma} (terminate with a
comma). Here are some simple examples of data output:
@verbatim
file fout=output("test.txt");
write(fout,1); // Writes "1"
write(fout); // Writes a new line
write(fout,"List: ",1,2,3); // Writes "List: 1 2 3"
@end verbatim
@noindent
@cindex binary format
@cindex @code{xinput}
@cindex @code{xoutput}
@cindex @code{binput}
@cindex @code{boutput}
@cindex single precision
@cindex double precision
@cindex @code{singlereal}
@cindex @code{singleint}
@cindex @code{signedint}
A file may also be opened with @code{xinput} or @code{xoutput}, instead of
@code{input} or @code{output}, to read or write
double precision (64-bit) reals and single precision (32-bit)
integers in Sun Microsystem's @acronym{XDR} (External
Data Representation) portable binary format (available on all
@code{UNIX} platforms).
Alternatively, a file may also be opened with @code{binput} or
@code{boutput} to read or write double precision reals and single
precision integers in the native (nonportable) machine binary format.
The virtual member functions
@code{file singlereal(bool b=true)} and @code{file singleint(bool b=true)}
be used to change the precision of real and integer I/O
operations, respectively, for an @acronym{XDR} or binary file @code{f}.
Similarly, the function @code{file signedint(bool b=true)}
can be used to modify the signedness of integer reads and writes for
an @acronym{XDR} or binary file @code{f}.
@cindex @code{name}
@cindex @code{mode}
@cindex @code{singlereal}
@cindex @code{singleint}
@cindex @code{signedint}
The virtual members @code{name}, @code{mode}, @code{singlereal},
@code{singleint}, and @code{signedint} may be used to query the
respective parameters for a given file.
@cindex @code{eof}
@cindex @code{eol}
@cindex @code{error}
@cindex @code{flush}
@cindex @code{clear}
@cindex @code{precision}
@cindex @code{seek}
@cindex @code{tell}
@cindex rewind
@cindex @code{seekeof}
One can test a file for end-of-file with the boolean function @code{eof(file)},
end-of-line with @code{eol(file)}, and for I/O errors with @code{error(file)}.
One can flush the output buffers with @code{flush(file)}, clear a
previous I/O error with @code{clear(file)}, and close the file with
@code{close(file)}. The function
@code{int precision(file file=stdout, int digits=0)}
sets the number of digits of output precision for @code{file} to @code{digits},
provided @code{digits} is nonzero, and returns the previous
precision setting. The function @code{int tell(file)} returns
the current position in a file relative to the beginning.
The routine @code{seek(file file, int pos)} can be used to
change this position, where a negative value for the position @code{pos}
is interpreted as relative to the end-of-file. For example, one can
rewind a file @code{file} with the command @code{seek(file,0)}
and position to the final character in the file with @code{seek(file,-1)}.
The command @code{seekeof(file)} sets the position to the end of the file.
@cindex @code{scroll}
@anchor{scroll}
Assigning @code{settings.scroll=n} for a positive integer @code{n}
requests a pause after every @code{n} output lines to @code{stdout}.
One may then press @code{Enter} to continue to the next @code{n} output lines,
@code{s} followed by @code{Enter} to scroll without further interruption,
or @code{q} followed by @code{Enter} to quit the current output
operation. If @code{n} is negative, the output scrolls a page at a time
(i.e. by one less than the current number of display lines). The default
value, @code{settings.scroll=0}, specifies continuous scrolling.
The routines
@cindex @code{getstring}
@cindex @code{getreal}
@cindex @code{getpair}
@cindex @code{gettriple}
@verbatim
string getstring(string name="", string default="", string prompt="",
bool store=true);
int getint(string name="", int default=0, string prompt="",
bool store=true);
real getreal(string name="", real default=0, string prompt="",
bool store=true);
pair getpair(string name="", pair default=0, string prompt="",
bool store=true);
triple gettriple(string name="", triple default=(0,0,0), string prompt="",
bool store=true);
@end verbatim
@noindent
defined in the module @code{plain} may be used to prompt for a value from
@code{stdin} using the @acronym{GNU} @code{readline} library.
If @code{store=true}, the history of values for @code{name} is
stored in the file @code{".asy_history_"+name} (@pxref{history}). The most
recent value in the history will be used to provide a default value
for subsequent runs. The default value (initially @code{default}) is
displayed after @code{prompt}. These functions are based on the internal
routines
@cindex @code{readline}
@cindex @code{saveline}
@verbatim
string readline(string prompt="", string name="", bool tabcompletion=false);
void saveline(string name, string value, bool store=true);
@end verbatim
Here, @code{readline} prompts the user with the default value
formatted according to @code{prompt}, while @code{saveline}
is used to save the string @code{value} in a local history named
@code{name}, optionally storing the local history in a file
@code{".asy_history_"+name}.
@cindex @code{history}
The routine @code{history(string name, int n=1)} can be used to look up
the @code{n} most recent values (or all values up to @code{historylines}
if @code{n=0}) entered for string @code{name}.
The routine @code{history(int n=0)} returns the interactive history.
For example,
@verbatim
write(output("transcript.asy"),history());
@end verbatim
@noindent
outputs the interactive history to the file @code{transcript.asy}.
@cindex @code{delete}
The function @code{int delete(string s)} deletes the file named by the
string @code{s}. Unless the @code{-globalwrite} (or @code{-nosafe})
option is enabled, the file must reside in the current directory.
@cindex @code{rename}
The function @code{int rename(string from, string to)} may be used to
rename file @code{from} to file @code{to}.
Unless the @code{-globalwrite} (or @code{-nosafe}) option is enabled,
this operation is restricted to the current directory.
@cindex @code{convert}
@cindex @code{animate}
The functions
@verbatim
int convert(string args="", string file="", string format="");
int animate(string args="", string file="", string format="");
@end verbatim
@noindent
call the @code{ImageMagick} commands @code{convert} and @code{animate},
respectively, with the arguments @code{args} and the file name constructed
from the strings @code{file} and @code{format}.
@cindex @code{system}
If the setting @code{safe} is false, then the functions
@code{int system(string s)} and @code{int system(string[] s)} can be
used to call the arbitrary system command @code{s}.
@node Variable initializers
@section Variable initializers
@cindex variable initializers
@cindex @code{operator init}
@cindex initializers
A variable can be assigned a value when it is declared, as in
@code{int x=3;} where the variable @code{x} is assigned the value @code{3}.
As well as literal constants such as @code{3}, arbitary expressions can be used
as initializers, as in @code{real x=2*sin(pi/2);}.
A variable is not added to the namespace until after the initializer is
evaluated, so for example, in
@verbatim
int x=2;
int x=5*x;
@end verbatim
@noindent
the @code{x} in the initializer on the second line refers to the variable
@code{x} declared on the first line. The second line, then, declares a variable
@code{x} shadowing the original @code{x} and initializes it to the value
@code{10}.
Variables of most types can be declared without an explicit initializer and they
will be initialized by the default initializer of that type:
@itemize
@item Variables of the numeric types @code{int}, @code{real}, and @code{pair}
are all initialized to zero; variables of type @code{triple} are
initialized to @code{O=(0,0,0)}.
@item @code{boolean} variables are initialized to @code{false}.
@item @code{string} variables are initialized to the empty string.
@item @code{transform} variables are initialized to the identity transformation.
@item @code{path} and @code{guide} variables are initialized to
@code{nullpath}.
@item @code{pen} variables are initialized to the default pen.
@item @code{frame} and @code{picture} variables are initialized to empty
frames and pictures, respectively.
@item @code{file} variables are initialized to @code{null}.
@end itemize
The default initializers for user-defined array, structure, and function types
are explained in their respective sections. Some types, such as
@code{code}, do not have default initializers. When a variable of such
a type is introduced, the user must initialize it by explicitly giving
it a value.
The default initializer for any type @code{T} can be redeclared by defining the
function @code{T operator init()}. For instance, @code{int} variables are
usually initialized to zero, but in
@verbatim
int operator init() {
return 3;
}
int y;
@end verbatim
@noindent
the variable @code{y} is initialized to @code{3}. This example was given for
illustrative purposes; redeclaring the initializers of built-in types is not
recommended. Typically, @code{operator init} is used to define sensible
defaults for user-defined types.
@cindex @code{var}
The special type @code{var} may be used to infer the type of a variable from
its initializer. If the initializer is an expression of a unique type, then
the variable will be defined with that type. For instance,
@verbatim
var x=5;
var y=4.3;
var reddash=red+dashed;
@end verbatim
@noindent
is equivalent to
@verbatim
int x=5;
real y=4.3;
pen reddash=red+dashed;
@end verbatim
@code{var} may also be used with the extended @code{for} loop syntax.
@verbatim
int[] a = {1,2,3};
for (var x : a)
write(x);
@end verbatim
@node Structures
@section Structures
@cindex @code{struct}
@cindex structures
@cindex @code{public}
@cindex @code{restricted}
@cindex @code{private}
@cindex @code{this}
@cindex @code{new}
@cindex @code{null}
Users may also define their own data types as structures, along with
user-defined operators, much as in C++. By default, structure members
are @code{public} (may be read and modified anywhere in the code), but may be
optionally declared @code{restricted} (readable anywhere but writeable
only inside the structure where they are defined) or @code{private}
(readable and writable only inside the structure). In a structure definition,
the keyword @code{this} can be used as an expression to refer to the enclosing
structure. Any code at the
top-level scope within the structure is executed on initialization.
Variables hold references to structures. That is, in the example:
@verbatim
struct T {
int x;
}
T foo=new T;
T bar=foo;
bar.x=5;
@end verbatim
The variable @code{foo} holds a reference to an instance of the structure
@code{T}. When @code{bar} is assigned the value of @code{foo}, it too
now holds a reference to the same instance as @code{foo} does. The assignment
@code{bar.x=5} changes the value of the field @code{x} in that instance, so
that @code{foo.x} will also be equal to @code{5}.
The expression @code{new T} creates a new instance of the structure @code{T} and
returns a reference to that instance. In creating the new instance, any code in
the body of the record definition is executed. For example:
@verbatim
int Tcount=0;
struct T {
int x;
++Tcount;
}
T foo=new T;
@end verbatim
Here, the expression @code{new T} will produce a new instance of the class, but
will also cause @code{Tcount} to be incremented, so that it keeps track of the
number of instances produced.
The expression @code{null} can be cast to any structure type to yield a null
reference, a reference that does not actually refer to any instance of the
structure. Trying to use a field of a null reference will cause an error.
@cindex alias
@cindex @code{==}
@cindex @code{!=}
The function @code{bool alias(T,T)} checks to see if two structure references
refer to the same instance of the structure (or both to @code{null}). For
example, in the example code at the start of the section, @code{alias(foo,bar)}
would return true, but @code{alias(foo,new T)} would return false, as @code{new
T} creates a new instance of the structure @code{T}. The boolean operators
@code{==} and @code{!=} are by default equivalent to @code{alias} and
@code{!alias} respectively, but may be overwritten for a particular type
(for example, to do a deep comparison).
After the definition of a structure @code{T}, a variable of type @code{T} is
initialized to a new instance (@code{new T}) by default. During the definition
of the structure, however, variables of type @code{T} are initialized to
@code{null} by default. This special behaviour is to avoid infinite
recursion of creating new instances in code such as
@verbatim
struct tree {
int value;
tree left;
tree right;
}
@end verbatim
Here is a simple example that illustrates the use of structures:
@verbatim
struct S {
real a=1;
real f(real a) {return a+this.a;}
}
S s; // Initializes s with new S;
write(s.f(2)); // Outputs 3
S operator + (S s1, S s2)
{
S result;
result.a=s1.a+s2.a;
return result;
}
write((s+s).f(0)); // Outputs 2
@end verbatim
@cindex constructors
It is often convenient to have functions that construct new instances of a
structure. Say we have a @code{Person} structure:
@verbatim
struct Person {
string firstname;
string lastname;
}
Person joe=new Person;
joe.firstname="Joe";
joe.lastname="Jones";
@end verbatim
@noindent
Creating a new Person is a chore; it takes three lines to create a new instance
and to initialize its fields (that's still considerably less effort than
creating a new person in real life, though).
We can reduce the work by defining a constructor function
@code{Person(string,string)}:
@verbatim
struct Person {
string firstname;
string lastname;
static Person Person(string firstname, string lastname) {
Person p=new Person;
p.firstname=firstname;
p.lastname=lastname;
return p;
}
}
Person joe=Person.Person("Joe", "Jones");
@end verbatim
While it is now easier than before to create a new instance, we still
have to refer to the constructor by the qualified name
@code{Person.Person}. If we add the line
@verbatim
from Person unravel Person;
@end verbatim
@noindent
immediately after the structure definition, then the constructor can be used
without qualification: @code{Person joe=Person("Joe", "Jones");}.
The constructor is now easy to use, but it is quite a hassle to define. If you
write a lot of constructors, you will find that you are repeating a lot of code
in each of them. Fortunately, your friendly neighbourhood Asymptote
developers have devised a way to automate much of the process.
@cindex @code{operator init}
If, in the body of a structure, Asymptote encounters the definition of
a function of the form @code{void operator init(@var{args})}, it implicitly
defines a constructor function of the arguments @code{@var{args}} that
uses the @code{void operator init} function to initialize a
new instance of the structure.
That is, it essentially defines the following constructor (assuming the
structure is called @code{Foo}):
@example
static Foo Foo(@var{args}) @{
Foo instance=new Foo;
instance.operator init(@var{args});
return instance;
@}
@end example
This constructor is also implicitly copied to the enclosing scope after the end
of the structure definition, so that it can used subsequently without qualifying
it by the structure name. Our @code{Person} example can thus be implemented as:
@verbatim
struct Person {
string firstname;
string lastname;
void operator init(string firstname, string lastname) {
this.firstname=firstname;
this.lastname=lastname;
}
}
Person joe=Person("Joe", "Jones");
@end verbatim
The use of @code{operator init} to implicitly define constructors should not be
confused with its use to define default values for variables
(@pxref{Variable initializers}). Indeed, in the
first case, the return type of the @code{operator init} must be @code{void}
while in the second, it must be the (non-@code{void}) type of the variable.
@cindex @code{cputime}
The function @code{cputime()}
returns a structure @code{cputime} with cumulative @acronym{CPU} times
broken down into the fields @code{parent.user}, @code{parent.system},
@code{child.user}, and @code{child.system}. For convenience, the
incremental fields @code{change.user} and @code{change.system} indicate
the change in the corresponding total parent and child @acronym{CPU}
times since the last call to @code{cputime()}. The function
@verbatim
void write(file file=stdout, string s="", cputime c,
string format=cputimeformat, suffix suffix=none);
@end verbatim
@noindent
displays the incremental user cputime followed by ``u'',
the incremental system cputime followed by ``s'',
the total user cputime followed by ``U'', and
the total system cputime followed by ``S''.
@cindex inheritance
@cindex virtual functions
Much like in C++, casting (@pxref{Casts}) provides for an elegant
implementation of structure inheritance, including virtual functions:
@verbatim
struct parent {
real x;
void operator init(int x) {this.x=x;}
void virtual(int) {write(0);}
void f() {virtual(1);}
}
void write(parent p) {write(p.x);}
struct child {
parent parent;
real y=3;
void operator init(int x) {parent.operator init(x);}
void virtual(int x) {write(x);}
parent.virtual=virtual;
void f()=parent.f;
}
parent operator cast(child child) {return child.parent;}
parent p=parent(1);
child c=child(2);
write(c); // Outputs 2;
p.f(); // Outputs 0;
c.f(); // Outputs 1;
write(c.parent.x); // Outputs 2;
write(c.y); // Outputs 3;
@end verbatim
For further examples of structures, see @code{Legend} and @code{picture} in
the @code{Asymptote} base module @code{plain}.
@node Operators
@section Operators
@cindex operators
@menu
* Arithmetic & logical:: Basic mathematical operators
* Self & prefix operators:: Increment and decrement
* User-defined operators:: Overloading operators
@end menu
@node Arithmetic & logical
@subsection Arithmetic & logical operators
@cindex arithmetic operators
@cindex binary operators
@cindex boolean operators
@cindex logical operators
@cindex integer division
@cindex @code{quotient}
@code{Asymptote} uses the standard binary arithmetic operators.
However, when one integer is divided by another, both arguments are
converted to real values before dividing and a real quotient is
returned (since this is usually what is intended). The function
@code{int quotient(int x, int y)} returns the greatest integer less
than or equal to @code{x/y}. In all other cases both operands are
promoted to the same type, which will also be the type of the result:
@table @code
@cindex @code{+}
@item +
addition
@cindex @code{-}
@item -
subtraction
@cindex @code{*}
@item *
multiplication
@cindex @code{/}
@item /
division
@cindex @code{%}
@item %
modulo; the result always has the same sign as the divisor.
In particular, this makes @code{q*quotient(p,q)+p%q == p} for all
integers @code{p} and nonzero integers @code{q}.
@cindex @code{^}
@item ^
@cindex @code{**}
power; if the exponent (second argument) is an int, recursive
multiplication is used; otherwise, logarithms and exponentials are used
(@code{**} is a synonym for @code{^}).
@end table
The usual boolean operators are also defined:
@table @code
@cindex @code{==}
@item ==
equals
@cindex @code{!=}
@item !=
not equals
@cindex @code{<}
@item <
less than
@cindex @code{<=}
@item <=
less than or equals
@cindex @code{>=}
@item >=
greater than or equals
@cindex @code{>}
@item >
greater than
@cindex @code{&&}
@item &&
and (with conditional evaluation of right-hand argument)
@cindex @code{&}
@item &
and
@cindex @code{||}
@item ||
or (with conditional evaluation of right-hand argument)
@cindex @code{|}
@item |
or
@cindex @code{^}
@item ^
xor
@cindex @code{!}
@item !
not
@end table
@code{Asymptote} also supports the C-like conditional syntax:
@cindex @code{:}
@cindex @code{?}
@cindex conditional
@verbatim
bool positive=(pi >= 0) ? true : false;
@end verbatim
@cindex @code{interp}
The function @code{T interp(T a, T b, real t)} returns @code{(1-t)*a+t*b}
for nonintegral built-in arithmetic types @code{T}. If @code{a} and
@code{b} are pens, they are first promoted to the same color space.
@cindex @code{AND}
@cindex @code{OR}
@cindex @code{XOR}
@cindex @code{NOT}
@cindex @code{CLZ}
@cindex @code{CTZ}
@code{Asymptote} also defines bitwise functions @code{int AND(int,int)},
@code{int OR(int,int)}, @code{int XOR(int,int)}, @code{int NOT(int)},
@code{int CLZ(int)} (count leading zeros), and @code{int CTZ(int)}
(count trailing zeros).
@node Self & prefix operators
@subsection Self & prefix operators
@cindex self operators
@cindex prefix operators
@cindex @code{+=}
@cindex @code{-=}
@cindex @code{*=}
@cindex @code{/=}
@cindex @code{%=}
@cindex @code{^=}
@cindex @code{++}
@cindex @code{--}
As in C, each of the arithmetic operators @code{+}, @code{-}, @code{*},
@code{/}, @code{%}, and @code{^} can be used as a self operator.
The prefix operators @code{++} (increment by one) and @code{--} (decrement
by one) are also defined.
For example,
@verbatim
int i=1;
i += 2;
int j=++i;
@end verbatim
@noindent
is equivalent to the code
@verbatim
int i=1;
i=i+2;
int j=i=i+1;
@end verbatim
@cindex postfix operators
However, postfix operators like @code{i++} and @code{i--} are not defined
(because of the inherent ambiguities that would arise with the @code{--}
path-joining operator). In the rare instances where @code{i++}
and @code{i--} are really needed, one can substitute the expressions
@code{(++i-1)} and @code{(--i+1)}, respectively.
@node User-defined operators
@subsection User-defined operators
@cindex user-defined operators
@cindex @code{operator}
The following symbols may be used with @code{operator} to define or redefine
operators on structures and built-in types:
@verbatim
- + * / % ^ ! < > == != <= >= & | ^^ .. :: -- --- ++
<< >> $ $$ @ @@
@end verbatim
@noindent
The operators on the second line have precedence one higher than the
boolean operators @code{<}, @code{>}, @code{<=}, and @code{>=}.
Guide operators like @code{..} may be overloaded, say, to write
a user function that produces a new guide from a given guide:
@verbatim
guide dots(... guide[] g)=operator ..;
guide operator ..(... guide[] g) {
guide G;
if(g.length > 0) {
write(g[0]);
G=g[0];
}
for(int i=1; i < g.length; ++i) {
write(g[i]);
write();
G=dots(G,g[i]);
}
return G;
}
guide g=(0,0){up}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);
write("g=",g);
@end verbatim
@node Implicit scaling
@section Implicit scaling
@cindex implicit scaling
If a numeric literal is in front of certain types of expressions, then the two
are multiplied:
@verbatim
int x=2;
real y=2.0;
real cm=72/2.540005;
write(3x);
write(2.5x);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x^2);
write(3x+2y);
write(3(x+2y));
write(3sin(x));
write(3(sin(x))^2);
write(10cm);
@end verbatim
This produces the output
@verbatim
6
5
6
-3.204e-19
(1,1)
8
10
18
2.72789228047704
2.48046543129542
283.464008929116
@end verbatim
@node Functions
@section Functions
@cindex functions
@code{Asymptote} functions are treated as variables with a signature
(non-function variables have null signatures). Variables with the
same name are allowed, so long as they have distinct signatures.
Functions arguments are passed by value. To pass an argument by
reference, simply enclose it in a structure (@pxref{Structures}).
Here are some significant features of @code{Asymptote} functions:
@enumerate
@item Variables with signatures (functions) and without signatures
(nonfunction variables) are distinct:
@verbatim
int x, x();
x=5;
x=new int() {return 17;};
x=x(); // calls x() and puts the result, 17, in the scalar x
@end verbatim
@item Traditional function definitions are allowed:
@verbatim
int sqr(int x)
{
return x*x;
}
sqr=null; // but the function is still just a variable.
@end verbatim
@item Casting can be used to resolve ambiguities:
@verbatim
int a, a(), b, b(); // Valid: creates four variables.
a=b; // Invalid: assignment is ambiguous.
a=(int) b; // Valid: resolves ambiguity.
(int) (a=b); // Valid: resolves ambiguity.
(int) a=b; // Invalid: cast expressions cannot be L-values.
int c();
c=a; // Valid: only one possible assignment.
@end verbatim
@item Anonymous (so-called "high-order") functions are also allowed:
@cindex @code{typedef}
@verbatim
typedef int intop(int);
intop adder(int m)
{
return new int(int n) {return m+n;};
}
intop addby7=adder(7);
write(addby7(1)); // Writes 8.
@end verbatim
@item
@cindex overloading functions
One may redefine a function @code{f}, even for calls to @code{f} in previously
declared functions, by assigning another (anonymous or named)
function to it. However, if @code{f} is overloaded by a
new function definition, previous calls will still access the original
version of @code{f}, as illustrated in this example:
@verbatim
void f() {
write("hi");
}
void g() {
f();
}
g(); // writes "hi"
f=new void() {write("bye");};
g(); // writes "bye"
void f() {write("overloaded");};
f(); // writes "overloaded"
g(); // writes "bye"
@end verbatim
@cindex function declarations
@item Anonymous functions can be used to redefine a function variable
that has been declared (and implicitly initialized to the null function)
but not yet explicitly defined:
@verbatim
void f(bool b);
void g(bool b) {
if(b) f(b);
else write(b);
}
f=new void(bool b) {
write(b);
g(false);
};
g(true); // Writes true, then writes false.
@end verbatim
@end enumerate
@code{Asymptote} is the only language we know of that treats functions
as variables, but allows overloading by distinguishing variables
based on their signatures.
@cindex @code{libsigsegv}
@cindex stack overflow
@anchor{stack overflow}
@cindex recursion
@cindex stack overflow
Functions are allowed to call themselves recursively. As in C++, infinite
nested recursion will generate a stack overflow (reported as a
segmentation fault, unless a fully working version of the @acronym{GNU}
library @code{libsigsegv} (e.g.@ 2.4 or later) is installed at
configuration time).
@menu
* Default arguments:: Default values can appear anywhere
* Named arguments:: Assigning function arguments by keyword
* Rest arguments:: Functions with a variable number of arguments
* Mathematical functions:: Standard libm functions
@end menu
@node Default arguments
@subsection Default arguments
@cindex default arguments
@cindex arguments
@code{Asymptote} supports a more flexible mechanism for default function
arguments than C++: they may appear anywhere in the function prototype.
Because certain data types are implicitly cast to more sophisticated
types (@pxref{Casts}) one can often avoid ambiguities by ordering
function arguments from the simplest to the most complicated.
For example, given
@verbatim
real f(int a=1, real b=0) {return a+b;}
@end verbatim
@noindent
then @code{f(1)} returns 1.0, but @code{f(1.0)} returns 2.0.
The value of a default argument is determined by evaluating the
given @code{Asymptote} expression in the scope where the called
function is defined.
@node Named arguments
@subsection Named arguments
@cindex keywords
@cindex named arguments
It is sometimes difficult to remember the order in which arguments
appear in a function declaration. Named (keyword) arguments make calling
functions with multiple arguments easier. Unlike in the C and C++
languages, an assignment in a function argument is interpreted as an
assignment to a parameter of the same name in the function signature,
@emph{not within the local scope}. The command-line option @code{-d}
may be used to check @code{Asymptote} code for cases where a
named argument may be mistaken for a local assignment.
When matching arguments to signatures, first all of the keywords are
matched, then the arguments without names are matched against the
unmatched formals as usual. For example,
@verbatim
int f(int x, int y) {
return 10x+y;
}
write(f(4,x=3));
@end verbatim
@noindent
outputs 34, as @code{x} is already matched when we try to match the
unnamed argument @code{4}, so it gets matched to the next item, @code{y}.
For the rare occasions where it is desirable to assign a value to
local variable within a function argument (generally @emph{not} a good
programming practice), simply enclose the assignment in
parentheses. For example, given the definition of @code{f} in the
previous example,
@verbatim
int x;
write(f(4,(x=3)));
@end verbatim
@noindent
is equivalent to the statements
@verbatim
int x;
x=3;
write(f(4,3));
@end verbatim
@noindent
and outputs 43.
@cindex @code{keyword}
@cindex keyword-only
Parameters can be specified as ``keyword-only'' by putting @code{keyword}
immediately before the parameter name, as in @code{int f(int keyword x)} or
@code{int f(int keyword x=77)}. This forces the caller of the function to use
a named argument to give a value for this parameter. That is, @code{f(x=42)}
is legal, but @code{f(25)} is not. Keyword-only parameters must be listed
after normal parameters in a function definition.
As a technical detail, we point out that, since variables of the same
name but different signatures are allowed in the same scope, the code
@verbatim
int f(int x, int x()) {
return x+x();
}
int seven() {return 7;}
@end verbatim
@noindent
is legal in @code{Asymptote}, with @code{f(2,seven)} returning 9.
A named argument matches the first unmatched formal of the same name, so
@code{f(x=2,x=seven)} is an equivalent call, but @code{f(x=seven,2)}
is not, as the first argument is matched to the first formal, and
@code{int ()} cannot be implicitly cast to @code{int}. Default
arguments do not affect which formal a named argument is matched to,
so if @code{f} were defined as
@verbatim
int f(int x=3, int x()) {
return x+x();
}
@end verbatim
@noindent
then @code{f(x=seven)} would be illegal, even though @code{f(seven)}
obviously would be allowed.
@node Rest arguments
@subsection Rest arguments
@cindex rest arguments
Rest arguments allow one to write functions that take a variable
number of arguments:
@verbatim
// This function sums its arguments.
int sum(... int[] nums) {
int total=0;
for(int i=0; i < nums.length; ++i)
total += nums[i];
return total;
}
sum(1,2,3,4); // returns 10
sum(); // returns 0
// This function subtracts subsequent arguments from the first.
int subtract(int start ... int[] subs) {
for(int i=0; i < subs.length; ++i)
start -= subs[i];
return start;
}
subtract(10,1,2); // returns 7
subtract(10); // returns 10
subtract(); // illegal
@end verbatim
@cindex packing
Putting an argument into a rest array is called @emph{packing}.
One can give an explicit list of arguments for the rest
argument, so @code{subtract} could alternatively be implemented as
@verbatim
int subtract(int start ... int[] subs) {
return start - sum(... subs);
}
@end verbatim
One can even combine normal arguments with rest arguments:
@verbatim
sum(1,2,3 ... new int[] {4,5,6}); // returns 21
@end verbatim
@noindent
@cindex unpacking
This builds a new six-element array that is passed to @code{sum} as
@code{nums}. The opposite operation, @emph{unpacking}, is not allowed:
@verbatim
subtract(... new int[] {10, 1, 2});
@end verbatim
@noindent
is illegal, as the start formal is not matched.
If no arguments are packed, then a zero-length array (as opposed to
@code{null}) is bound to the rest parameter. Note that default
arguments are ignored for rest formals and the rest argument is not
bound to a keyword.
In some cases, keyword-only parameters are helpful to avoid arguments intended
for the rest parameter to be assigned to other parameters. For example, here
the use of @code{keyword} is to avoid @code{pnorm(1.0,2.0,0.3)} matching
@code{1.0} to @code{p}.
@verbatim
real pnorm(real keyword p=2.0 ... real[] v)
{
return sum(v^p)^(1/p);
}
@end verbatim
The overloading resolution in @code{Asymptote} is similar to the
function matching rules used in C++. Every argument match is given a
score. Exact matches score better than matches with casting, and
matches with formals (regardless of casting) score better than packing
an argument into the rest array. A candidate is maximal if all of the
arguments score as well in it as with any other candidate. If there
is one unique maximal candidate, it is chosen; otherwise, there is an
ambiguity error.
@verbatim
int f(path g);
int f(guide g);
f((0,0)--(100,100)); // matches the second; the argument is a guide
int g(int x, real y);
int g(real x, int x);
g(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second argument
int h(... int[] rest);
int h(real x ... int[] rest);
h(1,2); // the second definition matches, even though there is a cast,
// because casting is preferred over packing
int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);
i(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second one
@end verbatim
@node Mathematical functions
@subsection Mathematical functions
@cindex mathematical functions
@cindex functions
@cindex @code{libm} routines
@cindex @code{sin}
@cindex @code{cos}
@cindex @code{tan}
@cindex @code{asin}
@cindex @code{acos}
@cindex @code{atan}
@cindex @code{exp}
@cindex @code{log}
@cindex @code{pow10}
@cindex @code{log10}
@cindex @code{sinh}
@cindex @code{cosh}
@cindex @code{tanh}
@cindex @code{asinh}
@cindex @code{acosh}
@cindex @code{atanh}
@cindex @code{sqrt}
@cindex @code{cbrt}
@cindex @code{fabs}
@cindex @code{expm1}
@cindex @code{log1p}
@cindex @code{identity}
@cindex @code{J}
@cindex @code{Y}
@cindex @code{gamma}
@cindex @code{erf}
@cindex @code{erfc}
@cindex @code{atan2}
@cindex @code{hypot}
@cindex @code{fmod}
@cindex @code{remainder}
@code{Asymptote} has built-in versions of the standard @code{libm} mathematical
real(real) functions @code{sin}, @code{cos}, @code{tan}, @code{asin},
@code{acos}, @code{atan}, @code{exp}, @code{log}, @code{pow10},
@code{log10}, @code{sinh}, @code{cosh}, @code{tanh}, @code{asinh},
@code{acosh}, @code{atanh}, @code{sqrt}, @code{cbrt}, @code{fabs}, @code{expm1},
@code{log1p}, as well as the identity function @code{identity}.
@code{Asymptote} also defines the order @code{n} Bessel functions of
the first kind @code{Jn(int n, real)} and second kind
@code{Yn(int n, real)}, as well as the gamma function @code{gamma},
the error function @code{erf}, and the complementary error function
@code{erfc}. The standard real(real, real) functions @code{atan2},
@code{hypot}, @code{fmod}, @code{remainder} are also included.
@cindex @code{degrees}
@cindex @code{radians}
@cindex @code{Degrees}
The functions @code{degrees(real radians)} and @code{radians(real degrees)}
can be used to convert between radians and degrees. The function
@code{Degrees(real radians)} returns the angle in degrees in the
interval [0,360).
@cindex @code{Sin}
@cindex @code{Cos}
@cindex @code{Tan}
@cindex @code{aSin}
@cindex @code{aCos}
@cindex @code{aTan}
For convenience, @code{Asymptote} defines variants @code{Sin},
@code{Cos}, @code{Tan}, @code{aSin}, @code{aCos}, and @code{aTan} of
the standard trigonometric functions that use degrees rather than radians.
We also define complex versions of the @code{sqrt}, @code{sin}, @code{cos},
@code{exp}, @code{log}, and @code{gamma} functions.
@cindex @code{floor}
@cindex @code{ceil}
@cindex @code{round}
@cindex @code{sgn}
The functions @code{floor}, @code{ceil}, and @code{round} differ from
their usual definitions in that they all return an int value rather than
a real (since that is normally what one wants).
The functions @code{Floor}, @code{Ceil}, and @code{Round} are
respectively similar, except that if the result cannot be converted
to a valid int, they return @code{intMax}
for positive arguments and @code{intMin} for negative arguments,
rather than generating an integer overflow.
We also define a function @code{sgn}, which returns the sign of its
real argument as an integer (-1, 0, or 1).
@cindex @code{abs}
There is an @code{abs(int)} function, as well as an @code{abs(real)}
function (equivalent to @code{fabs(real)}), an @code{abs(pair)} function
(equivalent to @code{length(pair)}).
@cindex @code{srand}
@cindex @code{rand}
@cindex @code{randMax}
@cindex @code{unitrand}
@cindex @code{Gaussrand}
@cindex @code{histogram}
@cindex @code{factorial}
@cindex @code{choose}
Random numbers can be seeded with @code{srand(int)} and generated with
the @code{int rand()} function, which returns a random integer between 0
and the integer @code{randMax}. The @code{unitrand()} function returns
a random number uniformly distributed in the interval [0,1].
A Gaussian random number generator
@code{Gaussrand} and a collection of statistics routines, including
@code{histogram}, are provided in the base file @code{stats.asy}.
The functions @code{factorial(int n)}, which returns @math{n!}, and
@code{choose(int n, int k)}, which returns @math{n!/(k!(n-k)!)}, are
also defined.
@cindex @acronym{GNU} Scientific Library
@cindex @code{gsl}
@cindex Airy
@cindex Bessel
@cindex Legendre
@cindex elliptic functions
@cindex exponential integral
@cindex trigonometric integrals
@cindex Riemann zeta function
@cindex @code{Ai}
@cindex @code{Bi}
@cindex @code{Ai_deriv}
@cindex @code{Bi_deriv}
@cindex @code{zero_Ai}
@cindex @code{zero_Bi}
@cindex @code{zero_Ai_deriv}
@cindex @code{zero_Bi_deriv}
@cindex @code{J}
@cindex @code{Y}
@cindex @code{I}
@cindex @code{K}
@cindex @code{i_scaled}
@cindex @code{k_scaled}
@cindex @code{zero_J}
@cindex @code{F}
@cindex @code{E}
@cindex @code{P}
@cindex @code{sndncn}
@cindex @code{Ei}
@cindex @code{Si}
@cindex @code{Ci}
@cindex @code{Pl}
@cindex @code{zeta}
When configured with the @acronym{GNU} Scientific Library (GSL), available from
@url{http://www.gnu.org/software/gsl/},
@code{Asymptote} contains an internal module @code{gsl} that
defines the airy functions @code{Ai(real)},
@code{Bi(real)}, @code{Ai_deriv(real)}, @code{Bi_deriv(real)},
@code{zero_Ai(int)}, @code{zero_Bi(int)},
@code{zero_Ai_deriv(int)}, @code{zero_Bi_deriv(int)}, the Bessel functions
@code{I(int, real)}, @code{K(int, real)}, @code{j(int, real)},
@code{y(int, real)}, @code{i_scaled(int, real)}, @code{k_scaled(int, real)},
@code{J(real, real)}, @code{Y(real, real)}, @code{I(real, real)},
@code{K(real, real)}, @code{zero_J(real, int)}, the elliptic functions
@code{F(real, real)}, @code{E(real, real)}, and @code{P(real, real)},
the Jacobi elliptic functions @code{real[] sndncn(real,real)},
the exponential/trigonometric integrals @code{Ei}, @code{Si}, and @code{Ci},
the Legendre polynomials @code{Pl(int, real)}, and the Riemann zeta
function @code{zeta(real)}. For example, to compute the sine integral
@code{Si} of 1.0:
@verbatim
import gsl;
write(Si(1.0));
@end verbatim
@code{Asymptote} also provides a few general purpose numerical routines:
@table @code
@cindex @code{newton}
@item @code{real newton(int iterations=100, real f(real), real fprime(real), real x, bool verbose=false);}
Use Newton-Raphson iteration to solve for a root of a real-valued
differentiable function @code{f}, given its derivative @code{fprime} and
an initial guess @code{x}. Diagnostics for
each iteration are printed if @code{verbose=true}.
If the iteration fails after the maximum allowed number of loops
(@code{iterations}), @code{realMax} is returned.
@cindex @code{newton}
@item @code{real newton(int iterations=100, real f(real), real fprime(real), real x1, real x2, bool verbose=false);}
Use bracketed Newton-Raphson bisection to solve for a root of a real-valued
differentiable function @code{f} within an interval
[@code{x1},@code{x2}] (on which the endpoint values of @code{f} have
opposite signs), given its derivative @code{fprime}. Diagnostics for
each iteration are printed if @code{verbose=true}.
If the iteration fails after the maximum allowed number of loops
(@code{iterations}), @code{realMax} is returned.
@cindex @code{simpson}
@item @code{real simpson(real f(real), real a, real b, real acc=realEpsilon, real dxmax=b-a)}
returns the integral of @code{f} from @code{a} to @code{b} using adaptive Simpson integration.
@end table
@node Arrays
@section Arrays
@cindex arrays
@menu
* Slices:: Python-style array slices
@end menu
Appending @code{[]} to a built-in or user-defined type yields an array.
The array element @code{i} of an array @code{A} can be accessed as @code{A[i]}.
By default, attempts to access or assign to an array element using a negative
index generates an error. Reading an array element with an index
beyond the length of the array also generates an error; however,
assignment to an element beyond the length of the array causes the
array to be resized to accommodate the new element.
One can also index an array @code{A} with an integer array @code{B}:
the array @code{A[B]} is formed by indexing array @code{A} with
successive elements of array @code{B}.
A convenient Java-style shorthand exists for iterating over all elements of an
array; see @ref{array iteration}.
The declaration
@verbatim
real[] A;
@end verbatim
@noindent
initializes @code{A} to be an empty (zero-length) array. Empty arrays should be
distinguished from null arrays. If we say
@verbatim
real[] A=null;
@end verbatim
@noindent
then @code{A} cannot be dereferenced at all (null arrays have no length
and cannot be read from or assigned to).
Arrays can be explicitly initialized like this:
@verbatim
real[] A={0,1,2};
@end verbatim
Array assignment in @code{Asymptote} does a shallow copy: only
the pointer is copied (if one copy if modified, the other will be too).
The @code{copy} function listed below provides a deep copy of an array.
@cindex @code{length}
@cindex @code{cyclic}
@cindex @code{keys}
@cindex @code{push}
@cindex @code{append}
@cindex @code{pop}
@cindex @code{insert}
@cindex @code{delete}
@cindex @code{initialized}
Every array @code{A} of type @code{T[]} has the virtual members
@itemize
@item @code{int length},
@item @code{int cyclic},
@item @code{int[] keys},
@item @code{T push(T x)},
@item @code{void append(T[] a)},
@item @code{T pop()},
@item @code{void insert(int i ... T[] x)},
@item @code{void delete(int i, int j=i)},
@item @code{void delete()}, and
@item @code{bool initialized(int n)}.
@end itemize
The member @code{A.length} evaluates to the length of the array.
Setting @code{A.cyclic=true} signifies that array indices should be reduced
modulo the current array length. Reading from or writing to a nonempty
cyclic array never leads to out-of-bounds errors or array resizing.
The member @code{A.keys} evaluates to an array of integers containing the
indices of initialized entries in the array in ascending order. Hence, for an
array of length @code{n} with all entries initialized, @code{A.keys} evaluates
to @code{@{0,1,...,n-1@}}. A new keys array is produced each time
@code{A.keys} is evaluated.
The functions @code{A.push} and @code{A.append} append their
arguments onto the end of the array, while @code{A.insert(int i ... T[] x)}
inserts @code{x} into the array at index @code{i}.
For convenience @code{A.push} returns the pushed item.
The function @code{A.pop()} pops and returns the last element,
while @code{A.delete(int i, int j=i)} deletes elements with indices in
the range [@code{i},@code{j}], shifting the position of all higher-indexed
elements down. If no arguments are given, @code{A.delete()} provides a
convenient way of deleting all elements of @code{A}. The routine
@code{A.initialized(int n)} can be used to examine whether the element
at index @code{n} is initialized. Like all @code{Asymptote} functions,
@code{push}, @code{append}, @code{pop}, @code{insert},
@code{delete}, and @code{initialized} can be "pulled off" of the array
and used on their own. For example,
@verbatim
int[] A={1};
A.push(2); // A now contains {1,2}.
A.append(A); // A now contains {1,2,1,2}.
int f(int)=A.push;
f(3); // A now contains {1,2,1,2,3}.
int g()=A.pop;
write(g()); // Outputs 3.
A.delete(0); // A now contains {2,1,2}.
A.delete(0,1); // A now contains {2}.
A.insert(1,3); // A now contains {2,3}.
A.insert(1 ... A); // A now contains {2,2,3,3}
A.insert(2,4,5); // A now contains {2,2,4,5,3,3}.
@end verbatim
The @code{[]} suffix can also appear after the variable name; this
is sometimes convenient for declaring a list of variables and arrays
of the same type:
@verbatim
real a,A[];
@end verbatim
@noindent
This declares @code{a} to be @code{real} and implicitly declares @code{A} to
be of type @code{real[]}.
In the following list of built-in array functions, @code{T} represents a
generic type. Note that the internal functions @code{alias}, @code{array},
@code{copy}, @code{concat}, @code{sequence}, @code{map}, and
@code{transpose}, which depend on type @code{T[]}, are defined only after the
first declaration of a variable of type @code{T[]}.
@table @code
@cindex @code{new}
@item new T[]
returns a new empty array of type @code{T[]};
@cindex @code{new}
@item new T[] @{list@}
returns a new array of type @code{T[]} initialized with @code{list} (a comma
delimited list of elements).
@item new T[n]
returns a new array of @code{n} elements of type @code{T[]}.
These @code{n} array elements are not initialized unless they are arrays
themselves (in which case they are each initialized to empty arrays).
@cindex @code{array}
@item T[] array(int n, T value, int depth=intMax)
returns an array consisting of @code{n} copies of @code{value}.
If @code{value} is itself an array, a deep copy of @code{value} is made
for each entry. If @code{depth} is specified, this deep copying only
recurses to the specified number of levels.
@cindex @code{sequence}
@item int[] sequence(int n)
if @code{n >= 1} returns the array @code{@{0,1,...,n-1@}} (otherwise returns
a null array);
@item int[] sequence(int n, int m)
if @code{m >= n} returns an array @code{@{n,n+1,...,m@}} (otherwise
returns a null array);
@item T[] sequence(T f(int), int n)
if @code{n >= 1} returns the sequence @code{@{f_i :i=0,1,...n-1@}} given a
function @code{T f(int)} and integer @code{int n} (otherwise returns a
null array);
@cindex @code{map}
@item T[] map(T f(T), T[] a)
returns the array obtained by applying the function @code{f} to each
element of the array @code{a}. This is equivalent to
@code{sequence(new T(int i) @{return f(a[i]);@},a.length)}.
@cindex @code{reverse}
@item int[] reverse(int n)
if @code{n >= 1} returns the array @code{@{n-1,n-2,...,0@}} (otherwise
returns a null array);
@cindex @code{complement}
@item int[] complement(int[] a, int n)
returns the complement of the integer array @code{a} in
@code{@{0,1,2,...,n-1@}}, so that @code{b[complement(a,b.length)]} yields the
complement of @code{b[a]}.
@cindex @code{uniform}
@item real[] uniform(real a, real b, int n)
if @code{n >= 1} returns a uniform partition of @code{[a,b]} into
@code{n} subintervals (otherwise returns a null array);
@cindex @code{find}
@item int find(bool[], int n=1)
returns the index of the @code{n}th @code{true} value or -1 if not found.
If @code{n} is negative, search backwards from the end of the array for the
@code{-n}th value;
@cindex @code{search}
@item int search(T[] a, T key)
For built-in ordered types @code{T}, searches a sorted array
@code{a} of @code{n} elements for k, returning the index @code{i}
if @code{a[i] <= key < a[i+1]}, @code{-1} if @code{key} is
less than all elements of @code{a}, or @code{n-1} if @code{key} is
greater than or equal to the last element of @code{a}.
@cindex @code{search}
@item int search(T[] a, T key, bool less(T i, T j))
searches an array @code{a} sorted in ascending order such that element
@code{i} precedes element @code{j} if @code{less(i,j)} is true;
@cindex @code{copy}
@item T[] copy(T[] a)
returns a deep copy of the array @code{a};
@cindex @code{concat}
@item T[] concat(... T[][] a)
returns a new array formed by concatenating the given one-dimensional arrays given as arguments;
@cindex @code{alias}
@item bool alias(T[] a, T[] b)
returns @code{true} if the arrays @code{a} and @code{b} are identical;
@cindex @code{sort}
@item T[] sort(T[] a)
For built-in ordered types @code{T}, returns a copy of @code{a} sorted in
ascending order;
@cindex @code{sort}
@anchor{sort}
@item T[][] sort(T[][] a)
For built-in ordered types @code{T}, returns a copy of @code{a} with the rows
sorted by the first column, breaking ties with successively higher
columns. For example:
@verbatim
string[][] a={{"bob","9"},{"alice","5"},{"pete","7"},
{"alice","4"}};
// Row sort (by column 0, using column 1 to break ties):
write(sort(a));
@end verbatim
produces
@verbatim
alice 4
alice 5
bob 9
pete 7
@end verbatim
@cindex @code{sort}
@item T[] sort(T[] a, bool less(T i, T j))
returns a copy of @code{a} stably sorted in ascending order such that
element @code{i} precedes element @code{j} if @code{less(i,j)} is true.
@cindex @code{transpose}
@item T[][] transpose(T[][] a)
returns the transpose of @code{a}.
@cindex @code{transpose}
@item T[][][] transpose(T[][][] a, int[] perm)
returns the 3D transpose of @code{a} obtained by applying the permutation
@code{perm} of @code{new int[]@{0,1,2@}} to the indices of each entry.
@cindex @code{sum}
@item T sum(T[] a)
For arithmetic types @code{T}, returns the sum of @code{a}.
In the case where @code{T} is @code{bool}, the number of true elements in
@code{a} is returned.
@cindex @code{min}
@item T min(T[] a)
@item T min(T[][] a)
@item T min(T[][][] a)
For built-in ordered types @code{T}, returns the minimum element of @code{a}.
@cindex @code{max}
@item T max(T[] a)
@item T max(T[][] a)
@item T max(T[][][] a)
For built-in ordered types @code{T}, returns the maximum element of @code{a}.
@cindex @code{min}
@item T[] min(T[] a, T[] b)
For built-in ordered types @code{T}, and arrays @code{a} and @code{b}
of the same length, returns an array composed of the minimum of the
corresponding elements of @code{a} and @code{b}.
@cindex @code{max}
@item T[] max(T[] a, T[] b)
For built-in ordered types @code{T}, and arrays @code{a} and @code{b}
of the same length, returns an array composed of the maximum of the
corresponding elements of @code{a} and @code{b}.
@cindex @code{pairs}
@item pair[] pairs(real[] x, real[] y);
For arrays @code{x} and @code{y} of the same length, returns the pair array
@code{sequence(new pair(int i) @{return (x[i],y[i]);@},x.length)}.
@cindex @code{fft}
@item pair[] fft(pair[] a, int sign=1)
returns the Fast Fourier Transform of @code{a} (if the optional
@code{FFTW} package is installed), using the given @code{sign}. Here
is a simple example:
@verbatim
int n=4;
pair[] f=sequence(n);
write(f);
pair[] g=fft(f,-1);
write();
write(g);
f=fft(g,1);
write();
write(f/n);
@end verbatim
@cindex @code{dot}
@item real dot(real[] a, real[] b)
returns the dot product of the vectors @code{a} and @code{b}.
@cindex @code{dot}
@item pair dot(pair[] a, pair[] b)
returns the complex dot product @code{sum(a*conj(b))} of the vectors
@code{a} and @code{b}.
@anchor{tridiagonal}
@cindex @code{tridiagonal}
@item real[] tridiagonal(real[] a, real[] b, real[] c, real[] f);
Solve the periodic tridiagonal problem @math{L@code{x}=@code{f}} and return the
solution @code{x}, where @code{f}
is an @math{n} vector and @math{L} is the @math{n \times n} matrix
@verbatim
[ b[0] c[0] a[0] ]
[ a[1] b[1] c[1] ]
[ a[2] b[2] c[2] ]
[ ... ]
[ c[n-1] a[n-1] b[n-1] ]
@end verbatim
For Dirichlet boundary conditions (denoted here by @code{u[-1]} and
@code{u[n]}), replace @code{f[0]} by @code{f[0]-a[0]u[-1]} and
@code{f[n-1]-c[n-1]u[n]}; then set @code{a[0]=c[n-1]=0}.
@cindex @code{solve}
@item real[] solve(real[][] a, real[] b, bool warn=true)
Solve the linear equation @math{@code{a}x=@code{b}} by LU decomposition
and return the solution @math{x}, where @code{a} is an
@math{n \times n} matrix and @code{b} is an array of length @math{n}.
For example:
@verbatim
import math;
real[][] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
real[] b={7,19,33,3};
real[] x=solve(a,b);
write(a); write();
write(b); write();
write(x); write();
write(a*x);
@end verbatim
If @code{a} is a singular matrix and @code{warn} is @code{false}, return an
empty array.
If the matrix @code{a} is tridiagonal, the routine @code{tridiagonal} provides
a more efficient algorithm (@pxref{tridiagonal}).
@anchor{solve}
@cindex @code{solve}
@item real[][] solve(real[][] a, real[][] b, bool warn=true)
Solve the linear equation @math{@code{a}x=@code{b}} and return the
solution @math{x}, where @code{a} is an @math{n \times n} matrix and
@code{b} is an @math{n \times m} matrix. If @code{a} is a singular
matrix and @code{warn} is @code{false}, return an empty matrix.
@cindex @code{identity}
@item real[][] identity(int n);
returns the @math{n \times n} identity matrix.
@cindex @code{diagonal}
@item real[][] diagonal(... real[] a)
returns the diagonal matrix with diagonal entries given by a.
@cindex @code{inverse}
@item real[][] inverse(real[][] a)
returns the inverse of a square matrix @code{a}.
@cindex @code{quadraticroots}
@item @code{real[] quadraticroots(real a, real b, real c);}
This numerically robust solver returns the real roots of the
quadratic equation @math{ax^2+bx+c=0}, in ascending order. Multiple
roots are listed separately.
@cindex @code{quadraticroots}
@item @code{pair[] quadraticroots(explicit pair a, explicit pair b, explicit pair c);}
This numerically robust solver returns the complex roots of the
quadratic equation @math{ax^2+bx+c=0}.
@cindex @code{cubicroots}
@item @code{real[] cubicroots(real a, real b, real c, real d);}
This numerically robust solver returns the real roots of the
cubic equation @math{ax^3+bx^2+cx+d=0}. Multiple roots are listed separately.
@end table
@cindex vectorization
@code{Asymptote} includes a full set of vectorized array instructions for
arithmetic (including self) and logical operations. These
element-by-element instructions are implemented in C++ code for speed. Given
@verbatim
real[] a={1,2};
real[] b={3,2};
@end verbatim
@noindent
then @code{a == b} and @code{a >= 2} both evaluate to the vector
@code{@{false, true@}}.
@cindex @code{all}
To test whether all components of @code{a} and @code{b} agree,
use the boolean function @code{all(a == b)}. One can also use conditionals like
@code{(a >= 2) ? a : b}, which returns the array @code{@{3,2@}}, or
@code{write((a >= 2) ? a : null}, which returns the array @code{@{2@}}.
All of the standard built-in @code{libm} functions of signature
@code{real(real)} also take a real array as an argument, effectively like an
implicit call to @code{map}.
As with other built-in types, arrays of the basic data types can be read
in by assignment. In this example, the code
@verbatim
file fin=input("test.txt");
real[] A=fin;
@end verbatim
@cindex @code{eof}
@cindex @code{eol}
@cindex @code{line}
@cindex line mode
@noindent
reads real values into @code{A} until the end-of-file is reached (or an
I/O error occurs).
The virtual members @code{dimension}, @code{line}, @code{csv},
@code{word}, and @code{read} of a file are useful for reading arrays.
@cindex @code{line}
For example, if line mode is set with @code{file line(bool b=true)}, then
reading will stop once the end of the line is reached instead
@verbatim
file fin=input("test.txt");
real[] A=fin.line();
@end verbatim
@cindex reading string arrays
@cindex @code{word}
@cindex white-space string delimiter mode
Since string reads by default read up to the end of line anyway, line mode
normally has no effect on string array reads.
However, there is a white-space delimiter mode for reading strings,
@code{file word(bool b=true)}, which causes string reads to respect
white-space delimiters, instead of the default end-of-line delimiter:
@verbatim
file fin=input("test.txt").line().word();
real[] A=fin;
@end verbatim
@cindex @code{csv}
@cindex comma-separated-value mode
Another useful mode is comma-separated-value mode,
@code{file csv(bool b=true)}, which causes reads to respect comma delimiters:
@verbatim
file fin=csv(input("test.txt"));
real[] A=fin;
@end verbatim
@cindex @code{dimension}
To restrict the number of values read, use the @code{file dimension(int)}
function:
@verbatim
file fin=input("test.txt");
real[] A=dimension(fin,10);
@end verbatim
This reads 10 values into A, unless end-of-file (or end-of-line in line mode)
occurs first. Attempting to read beyond the end of the file will produce a
runtime error message. Specifying a value of 0 for the integer limit is
equivalent to the previous example of reading until end-of-file (or
end-of-line in line mode) is encountered.
Two- and three-dimensional arrays of the basic data types can be read
in like this:
@verbatim
file fin=input("test.txt");
real[][] A=fin.dimension(2,3);
real[][][] B=fin.dimension(2,3,4);
@end verbatim
@noindent
Again, an integer limit of zero means no restriction.
@cindex @code{read}
Sometimes the array dimensions are stored with the data as integer
fields at the beginning of an array. Such 1, 2, or 3 dimensional
arrays can be read in with the virtual member functions
@code{read(1)}, @code{read(2)}, or @code{read(3)}, respectively:
@verbatim
file fin=input("test.txt");
real[] A=fin.read(1);
real[][] B=fin.read(2);
real[][][] C=fin.read(3);
@end verbatim
@cindex @code{write}
One, two, and three-dimensional arrays of the basic data types can be
output with the functions @code{write(file,T[])},
@code{write(file,T[][])}, @code{write(file,T[][][])}, respectively.
@node Slices
@subsection Slices
@cindex slices
Asymptote allows a section of an array to be addressed as a slice
using a Python-like syntax. If @code{A} is an array, the expression
@code{A[m:n]} returns a new array consisting of the elements of @code{A} with
indices from @code{m} up to but not including @code{n}. For example,
@verbatim
int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[2:6]; // y={2,3,4,5};
int[] z=x[5:10]; // z={5,6,7,8,9};
@end verbatim
If the left index is omitted, it is taken be @code{0}. If the right index is
omitted it is taken to be the length of the array. If both are omitted, the
slice then goes from the start of the array to the end, producing a non-cyclic
deep copy of the array. For example:
@verbatim
int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[:4]; // y={0,1,2,3}
int[] z=x[5:]; // z={5,6,7,8,9}
int[] w=x[:]; // w={0,1,2,3,4,5,6,7,8,9}, distinct from array x.
@end verbatim
If A is a non-cyclic array, it is illegal to use negative values for either of
the indices. If the indices exceed the length of the array, however, they are
politely truncated to that length.
For cyclic arrays, the slice @code{A[m:n]} still consists of the cells with
indices in the set [@code{m},@code{n}), but now negative
values and values beyond the length of the array are allowed. The indices
simply wrap around. For example:
@verbatim
int[] x={0,1,2,3,4,5,6,7,8,9};
x.cyclic=true;
int[] y=x[8:15]; // y={8,9,0,1,2,3,4}.
int[] z=x[-5:5]; // z={5,6,7,8,9,0,1,2,3,4}
int[] w=x[-3:17]; // w={7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6}
@end verbatim
Notice that with cyclic arrays, it is possible to include the same element of
the original array multiple times within a slice. Regardless of the original
array, arrays produced by slices are always non-cyclic.
If the left and right indices of a slice are the same, the result is an empty
array. If the array being sliced is empty, the result is an empty array. Any
slice with a left index greater than its right index will yield an error.
Slices can also be assigned to, changing the value of the original array. If
the array being assigned to the slice has a different length than the
slice itself, elements will be inserted or removed from the array to
accommodate it. For instance:
@verbatim
string[] toppings={"mayo", "salt", "ham", "lettuce"};
toppings[0:2]=new string[] {"mustard", "pepper"};
// Now toppings={"mustard", "pepper", "ham", "lettuce"}
toppings[2:3]=new string[] {"turkey", "bacon" };
// Now toppings={"mustard", "pepper", "turkey", "bacon", "lettuce"}
toppings[0:3]=new string[] {"tomato"};
// Now toppings={"tomato", "bacon", "lettuce"}
@end verbatim
If an array is assigned to a slice of itself, a copy of the original array
is assigned to the slice. That is, code such as @code{x[m:n]=x} is equivalent
to @code{x[m:n]=copy(x)}. One can use the shorthand @code{x[m:m]=y} to insert
the contents of the array @code{y} into the array @code{x} starting at the
location just before @code{x[m]}.
For a cyclic array, a slice is bridging if it addresses cells up to the end of
the array and then continues on to address cells at the start of the array.
For instance, if @code{A} is a cyclic array of length 10, @code{A[8:12]},
@code{A[-3:1]}, and @code{A[5:25]} are bridging slices whereas @code{A[3:7]},
@code{A[7:10]}, @code{A[-3:0]} and @code{A[103:107]} are not. Bridging slices
can only be assigned to if the number of elements in the slice is exactly equal
to the number of elements we are assigning to it. Otherwise, there is no clear
way to decide which of the new entries should be @code{A[0]} and an error is
reported. Non-bridging slices may be assigned an array of any length.
For a cyclic array @code{A} an expression of the form
@code{A[A.length:A.length]} is equivalent to the expression @code{A[0:0]} and
so assigning to this slice will insert values at the start of the array.
@code{A.append()} can be used to insert values at the end of the array.
It is illegal to assign to a slice of a cyclic array that repeats any of the
cells.
@node Casts
@section Casts
@cindex casts
@cindex implicit casts
@cindex @code{explicit}
@code{Asymptote} implicitly casts @code{int} to @code{real}, @code{int} to
@code{pair}, @code{real} to @code{pair}, @code{pair} to @code{path},
@code{pair} to @code{guide}, @code{path} to @code{guide}, @code{guide}
to @code{path}, @code{real} to @code{pen},
@code{pair[]} to @code{guide[]}, @code{pair[]} to @code{path[]},
@code{path} to @code{path[]}, and @code{guide} to @code{path[]},
along with various three-dimensional casts defined in @code{three.asy}.
Implicit casts are automatically attempted on assignment and when
trying to match function calls with possible function
signatures. Implicit casting can be inhibited by declaring individual
arguments @code{explicit} in the function signature, say to avoid an
ambiguous function call in the following example, which outputs 0:
@verbatim
int f(pair a) {return 0;}
int f(explicit real x) {return 1;}
write(f(0));
@end verbatim
@cindex explicit casts
Other conversions, say @code{real} to @code{int} or
@code{real} to @code{string}, require an explicit cast:
@verbatim
int i=(int) 2.5;
string s=(string) 2.5;
real[] a={2.5,-3.5};
int[] b=(int []) a;
write(stdout,b); // Outputs 2,-3
@end verbatim
@cindex @code{operator cast}
Casting to user-defined types is also possible using @code{operator cast}:
@verbatim
struct rpair {
real radius;
real angle;
}
pair operator cast(rpair x) {
return (x.radius*cos(x.angle),x.radius*sin(x.angle));
}
rpair x;
x.radius=1;
x.angle=pi/6;
write(x); // Outputs (0.866025403784439,0.5)
@end verbatim
One must use care when defining new cast operators. Suppose that in some
code one wants all integers to represent multiples of 100. To convert them
to reals, one would first want to multiply them by 100. However, the
straightforward implementation
@verbatim
real operator cast(int x) {return x*100;}
@end verbatim
is equivalent to an infinite recursion, since the result @code{x*100}
needs itself to be cast from an integer to a real. Instead, we want to
use the standard conversion of int to real:
@verbatim
real convert(int x) {return x*100;}
real operator cast(int x)=convert;
@end verbatim
@cindex @code{operator ecast}
Explicit casts are implemented similarly, with @code{operator ecast}.
@node Import
@section Import
@cindex @code{access}
While @code{Asymptote} provides many features by default,
some applications require specialized features contained in
external @code{Asymptote} modules. For instance, the lines
@verbatim
access graph;
graph.axes();
@end verbatim
@noindent
draw @math{x} and @math{y} axes on a two-dimensional graph. Here, the
command looks up the module under the name @code{graph} in a global dictionary
of modules and puts it in a new variable named @code{graph}.
The module is a structure, and we can refer to its fields as we usually
would with a structure.
@cindex @code{from}
Often, one wants to use module functions without having to specify
the module name. The code
@verbatim
from graph access axes;
@end verbatim
@noindent
adds the @code{axes} field of @code{graph} into the local name space,
so that subsequently, one can just write @code{axes()}. If the given name
is overloaded, all types and variables of that name are added. To add
more than one name, just use a comma-separated list:
@verbatim
from graph access axes, xaxis, yaxis;
@end verbatim
@noindent
Wild card notation can be used to add all non-private fields and types of a
module to the local name space:
@verbatim
from graph access *;
@end verbatim
@cindex @code{unravel}
Similarly, one can add the non-private fields and types of a structure
to the local environment with the @code{unravel} keyword:
@verbatim
struct matrix {
real a,b,c,d;
}
real det(matrix m) {
unravel m;
return a*d-b*c;
}
@end verbatim
Alternatively, one can unravel selective fields:
@verbatim
real det(matrix m) {
from m unravel a,b,c as C,d;
return a*d-b*C;
}
@end verbatim
@cindex @code{import}
The command
@verbatim
import graph;
@end verbatim
is a convenient abbreviation for the commands
@verbatim
access graph;
unravel graph;
@end verbatim
That is, @code{import graph} first loads a module into a structure called
@code{graph} and then adds its non-private fields and types to the
local environment. This way, if a member variable (or function) is
overwritten with a local variable (or function of the same signature),
the original one can still be accessed by qualifying it with the
module name.
Wild card importing will work fine in most cases, but one does not usually know
all of the internal types and variables of a module, which can also
change as the module writer adds or changes features of the module.
As such, it is prudent to add @code{import} commands at the start of an
@code{Asymptote} file, so that imported names won't shadow locally
defined functions. Still, imported names may shadow other imported
names, depending on the order in which they were imported, and
imported functions may cause overloading resolution problems if they
have the same name as local functions defined later.
@cindex @code{as}
To rename modules or fields when adding them to the local environment, use
@code{as}:
@verbatim
access graph as graph2d;
from graph access xaxis as xline, yaxis as yline;
@end verbatim
The command
@verbatim
import graph as graph2d;
@end verbatim
is a convenient abbreviation for the commands
@verbatim
access graph as graph2d;
unravel graph2d;
@end verbatim
Except for a few built-in modules, such as @code{settings}, all modules
are implemented as @code{Asymptote} files. When looking up a module
that has not yet been loaded, @code{Asymptote} searches the standard
search paths (@pxref{Search paths}) for the matching file. The file
corresponding to that name is read and the code within it is interpreted
as the body of a structure defining the module.
If the file name contains
nonalphanumeric characters, enclose it with quotation marks:
@noindent
@code{access "@value{Datadir}/asymptote/graph.asy" as graph;}
@noindent
@code{from "@value{Datadir}/asymptote/graph.asy" access axes;}
@noindent
@code{import "@value{Datadir}/asymptote/graph.asy" as graph;}
It is an error if modules import themselves (or each other in a cycle).
The module name to be imported must be known at compile time.
@cindex runtime imports
@cindex @code{eval}
However, you can import an @code{Asymptote} module determined by the
string @code{s} at runtime like this:
@verbatim
eval("import "+s,true);
@end verbatim
@cindex @code{asy}
To conditionally execute an array of asy files, use
@verbatim
void asy(string format, bool overwrite ... string[] s);
@end verbatim
The file will only be processed, using output format @code{format}, if
overwrite is @code{true} or the output file is missing.
One can evaluate an @code{Asymptote} expression (without any return
value, however) contained in the string @code{s} with:
@cindex @code{eval}
@verbatim
void eval(string s, bool embedded=false);
@end verbatim
It is not necessary to terminate the string @code{s} with a semicolon.
If @code{embedded} is @code{true}, the string will be evaluated
at the top level of the current environment.
If @code{embedded} is @code{false} (the default), the string
will be evaluated in an independent environment, sharing the same
@code{settings} module (@pxref{settings}).
@cindex @code{quote}
One can evaluate arbitrary @code{Asymptote} code (which may
contain unescaped quotation marks) with the command
@verbatim
void eval(code s, bool embedded=false);
@end verbatim
Here @code{code} is a special type used with @code{quote @{@}}
to enclose @code{Asymptote code} like this:
@verbatim
real a=1;
code s=quote {
write(a);
};
eval(s,true); // Outputs 1
@end verbatim
@cindex @code{include}
To include the contents of an existing file @code{graph} verbatim (as if the
contents of the file were inserted at that point), use one of the forms:
@verbatim
include graph;
@end verbatim
@noindent
@code{include "@value{Datadir}/asymptote/graph.asy";}
To list all global functions and variables defined in a module named
by the contents of the string @code{s}, use the function
@verbatim
void list(string s, bool imports=false);
@end verbatim
@noindent
Imported global functions and variables are also listed if
@code{imports} is @code{true}.
@node Static
@section Static
@cindex @code{static}
Static qualifiers allocate the memory address of a variable in a higher
enclosing level.
For a function body, the variable is allocated in the block where the
function is defined; so in the code
@verbatim
struct s {
int count() {
static int c=0;
++c;
return c;
}
}
@end verbatim
@noindent
there is one instance of the variable @code{c} for each
object @code{s} (as opposed to each call of @code{count}).
Similarly, in
@verbatim
int factorial(int n) {
int helper(int k) {
static int x=1;
x *= k;
return k == 1 ? x : helper(k-1);
}
return helper(n);
}
@end verbatim
@noindent
there is one instance of @code{x} for every call to
@code{factorial} (and not for every call to @code{helper}), so this is
a correct, but ugly, implementation of factorial.
Similarly, a static variable declared within a structure is allocated in
the block where the structure is defined. Thus,
@verbatim
struct A {
struct B {
static pair z;
}
}
@end verbatim
@noindent
creates one object @code{z} for each object of type @code{A} created.
In this example,
@verbatim
int pow(int n, int k) {
struct A {
static int x=1;
void helper() {
x *= n;
}
}
for(int i=0; i < k; ++i) {
A a;
a.helper();
}
return A.x;
}
@end verbatim
@noindent
there is one instance of @code{x} for each call to @code{pow}, so this
is an ugly implementation of exponentiation.
Loop constructs allocate a new frame in every iteration. This is so that
higher-order functions can refer to variables of a specific iteration of a
loop:
@verbatim
void f();
for(int i=0; i < 10; ++i) {
int x=i;
if(x==5) {
f=new void () { write(x); }
}
}
f();
@end verbatim
Here, every iteration of the loop has its own variable @code{x}, so @code{f()}
will write @code{5}. If a variable in a loop is declared static, it will be
allocated where the enclosing function or structure was defined (just as if it
were declared static outside of the loop). For instance, in:
@verbatim
void f() {
static int x;
for(int i=0; i < 10; ++i) {
static int y;
}
}
@end verbatim
@noindent
both @code{x} and @code{y} will be allocated in the same place, which is
also where @code{f} is also allocated.
Statements may also be declared static, in which case they are run at the place
where the enclosing function or structure is defined.
Declarations or statements not enclosed in a function or structure definition
are already at the top level, so static modifiers are meaningless. A warning is
given in such a case.
Since structures can have static fields, it is not always clear for a qualified
name whether the qualifier is a variable or a type. For instance, in:
@verbatim
struct A {
static int x;
}
pair A;
int y=A.x;
@end verbatim
@noindent
does the @code{A} in @code{A.x} refer to the structure or to the pair variable.
It is the convention in Asymptote that, if there is a non-function variable with
the same name as the qualifier, the qualifier refers to that variable, and not
to the type. This is regardless of what fields the variable actually possesses.
@node LaTeX usage
@chapter @code{LaTeX} usage
@cindex @code{LaTeX} usage
@cindex @code{asymptote.sty}
@code{Asymptote} comes with a convenient @code{LaTeX} style file
@code{asymptote.sty} that makes @code{LaTeX}
@code{Asymptote}-aware. Entering @code{Asymptote} code
directly into the @code{LaTeX} source file, at the point where it is
needed, keeps figures organized and avoids the need to invent new file
names for each figure. Simply add the line
@code{\usepackage@{asymptote@}} at the beginning of your file
and enclose your @code{Asymptote} code within a
@code{\begin@{asy@}...\end@{asy@}} environment. As with the
@code{LaTeX} @code{comment} environment, the @code{\end@{asy@}} command
must appear on a line by itself, with no trailing commands/comments.
A blank line is not allowed after @code{\begin@{asy@}}.
The sample @code{LaTeX} file below, named @code{latexusage.tex}, can
be run as follows:
@verbatim
latex latexusage
asy latexusage-*.asy
latex latexusage
@end verbatim
@noindent
or
@verbatim
pdflatex latexusage
asy latexusage-*.asy
pdflatex latexusage
@end verbatim
@noindent
To switch between using inline Asymptote code with @code{latex} and
@code{pdflatex} you may first need to remove the files @code{latexusage-*.tex}.
@cindex @code{latexmk}
@cindex @code{perl}
An even better method for processing a @code{LaTeX} file with embedded
@code{Asymptote} code is to use the @code{latexmk} utility from
@quotation
@url{http://www.ctan.org/tex-archive/support/latexmk/}
@end quotation
@noindent
after putting the rules
@verbatiminclude latexmkrc
@noindent
in a file @code{latexmkrc} in the same directory. The command
@verbatim
latexmk -pdf latexusage
@end verbatim
@noindent
will then call @code{Asymptote} automatically, recompiling only the figures
that have changed. Since each figure is compiled in a separate
system process, this method also tends to use less memory.
External @code{Asymptote} code in @code{filename.asy} should be included with
@cindex @code{asyinclude}
@verbatim
\asyinclude[<options>]{<filename.asy>}
@end verbatim
@noindent
so that @code{latexmk} will recognize when the code is changed. Note that
@code{latemk} requires @code{perl}, available from @url{http://www.perl.org/}.
@cindex @code{width}
@cindex @code{height}
@cindex @code{keepAspect}
@cindex @code{viewportwidth}
@cindex @code{viewportheight}
@cindex @code{attach}
@cindex @code{inline}
One can specify @code{width}, @code{height}, @code{keepAspect},
@code{viewportwidth}, @code{viewportheight}, @code{attach}, and @code{inline}.
@code{keyval}-style options to the @code{asy} and @code{asyinclude}
environments.
Three-dimensional @acronym{PRC} files may either be embedded within
the page (the default) or attached as annotated (but printable)
attachments, using the @code{attach} option and the @code{attachfile2}
(or older @code{attachfile}) @code{LaTeX} package. The default value
of @code{viewportwidth} is @code{\the\linewidth} for inline 3D figures
and @code{0} for attachments. The @code{inline} option generates
inline @code{LaTeX} code instead of @acronym{EPS} or @acronym{PDF}
files. This makes 2D LaTeX symbols visible to the
@code{\begin@{asy@}...\end@{asy@}} environment. In this mode,
Asymptote correctly aligns 2D LaTeX symbols defined outside of
@code{\begin@{asy@}...\end@{asy@}}, but treats their size as zero; an
optional second string can be given to @code{Label} to provide an
estimate of the unknown label size.
Note that if the @code{latex} @TeX{} engine is used with the
@code{inline} option, labels might not show up in @acronym{DVI}
viewers that cannot handle raw @code{PostScript} code. One can use
@code{dvips}/@code{dvipdf} to produce @code{PostScript}/@acronym{PDF}
output (we recommend using the modified version of @code{dvipdf} in
the @code{Asymptote} patches directory, which accepts the @code{dvips -z}
hyperdvi option).
Here now is @code{latexusage.tex}:
@verbatiminclude latexusage.tex
@page
@image{latexusage,,25cm}
@node Base modules
@chapter Base modules
@cindex base modules
@code{Asymptote} currently ships with the following base modules:
@menu
* plain:: Default @code{Asymptote} base file
* simplex:: Linear programming: simplex method
* math:: Extend @code{Asymptote}'s math capabilities
* interpolate:: Interpolation routines
* geometry:: Geometry routines
* trembling:: Wavy lines
* stats:: Statistics routines and histograms
* patterns:: Custom fill and draw patterns
* markers:: Custom path marker routines
* tree:: Dynamic binary search tree
* binarytree:: Binary tree drawing module
* drawtree:: Tree drawing module
* syzygy:: Syzygy and braid drawing module
* feynman:: Feynman diagrams
* roundedpath:: Round the sharp corners of paths
* animation:: Embedded @acronym{PDF} and @acronym{MPEG} movies
* embed:: Embedding movies, sounds, and 3D objects
* slide:: Making presentations with @code{Asymptote}
* MetaPost:: @code{MetaPost} compatibility routines
* unicode:: Accept @code{unicode} (UTF-8) characters
* latin1:: Accept @code{ISO 8859-1} characters
* babel:: Interface to @code{LaTeX} @code{babel} package
* labelpath:: Drawing curved labels
* labelpath3:: Drawing curved labels in 3D
* annotate:: Annotate your @acronym{PDF} files
* CAD:: 2D CAD pen and measurement functions (DIN 15)
* graph:: 2D linear & logarithmic graphs
* palette:: Color density images and palettes
* three:: 3D vector graphics
* obj:: 3D obj files
* graph3:: 3D linear & logarithmic graphs
* grid3:: 3D grids
* solids:: 3D solid geometry
* tube:: 3D rotation minimizing tubes
* flowchart:: Flowchart drawing routines
* contour:: Contour lines
* contour3:: Contour surfaces
* slopefield:: Slope fields
* ode:: Ordinary differential equations
@end menu
@node plain
@section @code{plain}
@cindex @code{plain}
This is the default @code{Asymptote} base file, which defines key parts of the
drawing language (such as the @code{picture} structure).
By default, an implicit @code{private import plain;} occurs before
translating a file and before the first command given in interactive
mode. This also applies when translating files for module definitions
(except when translating @code{plain}, of course). This means that
the types and functions defined in @code{plain} are accessible in
almost all @code{Asymptote} code. Use the @code{-noautoplain} command-line
option to disable this feature.
@node simplex
@section @code{simplex}
@cindex @code{simplex}
@cindex @code{deferred drawing}
This package solves the two-variable linear programming problem using the
simplex method. It is used by the module @code{plain} for automatic
sizing of pictures.
@node math
@section @code{math}
@cindex @code{math}
This package extends @code{Asymptote}'s mathematical capabilities with
useful functions such as
@table @code
@cindex @code{drawline}
@item void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen);
draw the visible portion of the (infinite) line going through
@code{P} and @code{Q}, without altering the size of picture @code{pic},
using pen @code{p}.
@cindex @code{intersect}
@item real intersect(triple P, triple Q, triple n, triple Z);
returns the intersection time of the extension of the line segment @code{PQ}
with the plane perpendicular to @code{n} and passing through @code{Z}.
@cindex @code{intersectionpoint}
@item triple intersectionpoint(triple n0, triple P0, triple n1, triple P1);
Return any point on the intersection of the two planes with normals
@code{n0} and @code{n1} passing through points @code{P0} and @code{P1},
respectively. If the planes are parallel, return
@code{(infinity,infinity,infinity)}.
@cindex @code{quarticroots}
@item pair[] quarticroots(real a, real b, real c, real d, real e);
returns the four complex roots of the quartic equation
@math{ax^4+bx^3+cx^2+dx+e=0}.
@cindex @code{fft}
@item pair[][] fft(pair[][] a, int sign=1)
returns the two-dimensional Fourier transform of a using the given
@code{sign}.
@cindex @code{time}
@item real time(path g, real x, int n=0)
returns the @code{n}th intersection time of path @code{g} with the vertical
line through x.
@cindex @code{time}
@item real time(path g, explicit pair z, int n=0)
returns the @code{n}th intersection time of path @code{g} with the horizontal
line through @code{(0,z.y)}.
@cindex @code{value}
@item real value(path g, real x, int n=0)
returns the @code{n}th @code{y} value of @code{g} at @code{x}.
@cindex @code{value}
@item real value(path g, real x, int n=0)
returns the @code{n}th @code{x} value of @code{g} at @code{y=z.y}.
@cindex @code{slope}
@item real slope(path g, real x, int n=0)
returns the @code{n}th slope of @code{g} at @code{x}.
@cindex @code{slope}
@item real slope(path g, explicit pair z, int n=0)
returns the @code{n}th slope of @code{g} at @code{y=z.y}.
@cindex @code{segment}
int[][] segment(bool[] b)
returns the indices of consecutive true-element segments of bool[] @code{b}.
@cindex @code{partialsum}
@item real[] partialsum(real[] a)
returns the partial sums of a real array @code{a}.
@cindex @code{partialsum}
@item real[] partialsum(real[] a, real[] dx)
returns the partial @code{dx}-weighted sums of a real array @code{a}.
@cindex @code{increasing}
@item bool increasing(real[] a, bool strict=false)
returns, if @code{strict=false}, whether @code{i > j} implies
@code{a[i] >= a[j]}, or if @code{strict=true}, whether @code{i > j} implies
implies @code{a[i] > a[j]}.
@cindex @code{unique}
@item int unique(real[] a, real x)
if the sorted array @code{a} does not contain @code{x}, insert it
sequentially, returning the index of @code{x} in the resulting array.
@cindex @code{lexorder}
@item bool lexorder(pair a, pair b)
returns the strict lexicographical partial order of @code{a} and @code{b}.
@cindex @code{lexorder}
@item bool lexorder(triple a, triple b)
returns the strict lexicographical partial order of @code{a} and @code{b}.
@end table
@node interpolate
@section @code{interpolate}
@cindex @code{interpolate}
This module implements Lagrange, Hermite, and standard cubic spline
interpolation in @code{Asymptote}, as illustrated in the example
@code{interpolate1.asy}.
@node geometry
@section @code{geometry}
@cindex @code{geometry}
@cindex @code{triangle}
@cindex @code{perpendicular}
This module, written by Philippe Ivaldi, provides an extensive set of
geometry routines, including @code{perpendicular} symbols and a @code{triangle}
structure. Link to the documentation for the @code{geometry} module
are posted here:
@url{http://asymptote.sourceforge.net/links.html},
including an extensive set of examples,
@url{http://www.piprime.fr/files/asymptote/geometry/}, and an index:
@quotation
@url{http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.index.type.html}
@end quotation
@node trembling
@section @code{trembling}
@cindex @code{trembling}
This module, written by Philippe Ivaldi and illustrated in the example
@code{floatingdisk.asy}, allows one to draw wavy lines, as if drawn by
hand. Further examples are posted at
@url{http://www.piprime.fr/files/asymptote/trembling/}
@node stats
@section @code{stats}
@cindex @code{stats}
@cindex @code{leastsquares}
This package implements a Gaussian random number generator
and a collection of statistics routines, including @code{histogram}
and @code{leastsquares}.
@node patterns
@section @code{patterns}
@cindex @code{patterns}
This package implements @code{Postscript} tiling patterns and includes
several convenient pattern generation routines.
@node markers
@section @code{markers}
@cindex @code{markers}
This package implements specialized routines for marking paths and angles.
The principal mark routine provided by this package is
@verbatim
markroutine markinterval(int n=1, frame f, bool rotated=false);
@end verbatim
@noindent
which centers @code{n} copies of frame @code{f} within uniformly space
intervals in arclength along the path, optionally rotated by the angle of the
local tangent.
The @code{marker} (@pxref{marker}) routine can be used to construct new
markers from these predefined frames:
@cindex @code{stickframe}
@verbatim
frame stickframe(int n=1, real size=0, pair space=0, real angle=0,
pair offset=0, pen p=currentpen);
@end verbatim
@cindex @code{circlebarframe}
@verbatim
frame circlebarframe(int n=1, real barsize=0,
real radius=0,real angle=0,
pair offset=0, pen p=currentpen,
filltype filltype=NoFill, bool above=false);
@end verbatim
@cindex @code{crossframe}
@verbatim
frame crossframe(int n=3, real size=0, pair space=0,
real angle=0, pair offset=0, pen p=currentpen);
@end verbatim
@cindex @code{tildeframe}
@verbatim
frame tildeframe(int n=1, real size=0, pair space=0,
real angle=0, pair offset=0, pen p=currentpen);
@end verbatim
For convenience, this module also constructs the markers
@code{StickIntervalMarker}, @code{CrossIntervalMarker},
@code{CircleBarIntervalMarker}, and @code{TildeIntervalMarker}
from the above frames. The example @code{markers1.asy} illustrates the
use of these markers:
@sp 1
@center @image{markers1}
This package also provides a routine for marking an angle @math{AOB}:
@cindex @code{markangle}
@verbatim
void markangle(picture pic=currentpicture, Label L="",
int n=1, real radius=0, real space=0,
pair A, pair O, pair B, arrowbar arrow=None,
pen p=currentpen, margin margin=NoMargin,
marker marker=nomarker);
@end verbatim
@noindent
as illustrated in the example @code{markers2.asy}.
@sp 1
@center @image{markers2}
@node tree
@section @code{tree}
@cindex @code{tree}
This package implements an example of a dynamic binary search tree.
@node binarytree
@section @code{binarytree}
@cindex @code{binarytree}
This module can be used to draw an arbitrary binary tree and includes an
input routine for the special case of a binary search tree, as
illustrated in the example @code{binarytreetest.asy}:
@verbatiminclude binarytreetest.asy
@sp 1
@center @image{binarytreetest}
@node drawtree
@section @code{drawtree}
@cindex @code{drawtree}
This is a simple tree drawing module used by the example @code{treetest.asy}.
@node syzygy
@section @code{syzygy}
@cindex @code{syzygy}
This module automates the drawing of braids, relations, and syzygies,
along with the corresponding equations, as illustrated in the example
@code{knots.asy}.
@node feynman
@section @code{feynman}
@cindex @code{feynman}
This package, contributed by Martin Wiebusch, is useful for drawing
Feynman diagrams, as illustrated by the examples @code{eetomumu.asy}
and @code{fermi.asy}.
@node roundedpath
@section @code{roundedpath}
@cindex @code{roundedpath}
This package, contributed by Stefan Knorr, is useful for rounding the
sharp corners of paths, as illustrated in the example file @code{roundpath.asy}.
@node animation
@section @code{animation}
@cindex @code{animation}
@cindex @code{convert}
@cindex animation
@cindex @code{ImageMagick}
This module allows one to generate animations, as illustrated by the
files @code{wheel.asy}, @code{wavelet.asy}, and @code{cube.asy} in
the @code{animations} subdirectory of the examples directory. These
animations use the @code{ImageMagick} @code{convert} program to
merge multiple images into a @acronym{GIF} or @acronym{MPEG}
movie.
@cindex @code{animate}
@anchor{animate}
The related @code{animate} module, derived from the @code{animation}
module, generates higher-quality portable clickable @acronym{PDF} movies, with
optional controls. This requires installing the package
@quotation
@url{http://www.ctan.org/tex-archive/macros/latex/contrib/animate/animate.sty}
@noindent
@end quotation
@noindent
(version 2007/11/30 or later) in a new directory @code{animate} in the
local @code{LaTeX} directory (for example, in
@code{/usr/local/share/texmf/tex/latex/animate}). On @code{UNIX} systems,
one must then execute the command @code{texhash}.
The example @code{pdfmovie.asy} in the @code{animations}
directory, along with the slide presentations @code{slidemovies.asy}
and @code{intro.asy}, illustrate the use of embedded @acronym{PDF} movies.
The examples @code{inlinemovie.tex} and @code{inlinemovie3.tex}
show how to generate and embed @acronym{PDF} movies directly within a
@code{LaTeX} file (@pxref{LaTeX usage}).
The member function
@verbatim
string pdf(fit fit=NoBox, real delay=animationdelay, string options="",
bool keep=settings.keep, bool multipage=true);
@end verbatim
@noindent
of the @code{animate} structure accepts any of the @code{animate.sty} options,
as described here:
@quotation
@url{http://www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.pdf}
@end quotation
@node embed
@section @code{embed}
@cindex @code{embed}
This module provides an interface to the @code{LaTeX} package
(included with @code{MikTeX})
@quotation
@url{http://www.ctan.org/tex-archive/macros/latex/contrib/movie15}
@end quotation
@noindent
for embedding movies, sounds, and 3D objects into a @acronym{PDF} document.
@noindent
@cindex @code{xelatex}
However, @code{XeLaTeX} users need to rename the modified version
@code{movie15_dvipdfmx.sty} from
@quotation
@url{http://asymptote.svn.sourceforge.net/viewvc/asymptote/trunk/asymptote/patches/}
@end quotation
to @code{movie15.sty} and place it in their @code{LaTeX} path.
The latest version of the @code{movie15} package requires both
@code{pdflatex} version 1.20 or later and the file
@quotation
@url{http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/ifdraft.dtx}
@end quotation
@noindent
which can be installed by placing it in a directory @code{ifdraft} in
the local @code{LaTeX} directory
(e.g.@ @code{/usr/local/share/texmf/tex/latex/ifdraft}) and executing in that
directory the commands:
@verbatim
tex ifdraft.dtx
texhash
@end verbatim
@cindex @code{external}
A more portable method for embedding movie files, which should work on any
platform and does not require the @code{movie15} or @code{ifdraft}
packages, is provided by using the @code{external} module instead of
@code{embed}. An example of these
interfaces is provided in the file @code{embeddedmovie.asy} and
@code{externalmovie.asy} in the @code{animations} subdirectory of the
examples directory. For a higher quality movie generated directly by
@code{Asymptote}, use the @code{animate} module along with the
@code{animate.sty} package to embed a portable @acronym{PDF} animation
(@pxref{animate}).
@cindex @code{U3D}
An example of embedding @code{U3D} code is provided in the file
@code{embeddedu3d.asy}.
@node slide
@section @code{slide}
@cindex @code{slide}
This package provides a simple yet high-quality facility for making
presentation slides, including portable embedded @acronym{PDF} animations (see
the file @code{slidemovies.asy}). A simple example is provided in the file
@code{slidedemo.asy}.
@node MetaPost
@section @code{MetaPost}
@cindex @code{MetaPost}
This package provides some useful routines to help @code{MetaPost} users
migrate old @code{MetaPost} code to @code{Asymptote}. Further
contributions here are welcome.
@cindex @code{implicit linear solver}
@cindex @code{MetaPost whatever}
@cindex @code{extension}
Unlike @code{MetaPost}, @code{Asymptote} does not implicitly solve
linear equations and therefore does not have the notion of a
@code{whatever} unknown. The routine @code{extension} (@pxref{extension})
provides a useful replacement for a common use of @code{whatever}: finding the
intersection point of the lines through @code{P}, @code{Q} and
@code{p}, @code{q}. For less common occurrences of @code{whatever}, one
can use the built-in explicit linear equation solver @code{solve} instead.
@node unicode
@section @code{unicode}
@cindex @code{unicode}
@cindex international characters
Import this package at the beginning of the file to instruct
@code{LaTeX} to accept @code{unicode} (UTF-8) standardized international
characters.
@noindent
@cindex Cyrillic
@cindex Russian
To use Cyrillic fonts, you will need to change the font encoding:
@verbatim
import unicode;
texpreamble("\usepackage{mathtext}\usepackage[russian]{babel}");
defaultpen(font("T2A","cmr","m","n"));
@end verbatim
@noindent
@cindex Chinese
@cindex Japanese
@cindex Korean
@cindex CJK
Support for Chinese, Japanese, and Korean fonts is provided by the
CJK package:
@quotation
@url{http://www.ctan.org/tex-archive/languages/chinese/CJK/}
@end quotation
@noindent
The following commands enable the CJK song family (within a label, you
can also temporarily switch to another family, say kai, by prepending
@code{"\CJKfamily@{kai@}"} to the label string):
@verbatim
texpreamble("\usepackage{CJK}
\AtBeginDocument{\begin{CJK*}{GBK}{song}}
\AtEndDocument{\clearpage\end{CJK*}}");
@end verbatim
@node latin1
@section @code{latin1}
@cindex @code{latin1}
If you don't have @code{LaTeX} support for @code{unicode} installed,
you can enable support for Western European languages (ISO 8859-1) by
importing the module @code{latin1}. This module can be used as a
template for providing support for other ISO 8859 alphabets.
@node babel
@section @code{babel}
@cindex @code{babel}
This module implements the @code{LaTeX} @code{babel} package in
@code{Asymptote}. For example:
@verbatim
import babel;
babel("german");
@end verbatim
@node labelpath
@section @code{labelpath}
@cindex @code{labelpath}
This module uses the @code{PSTricks} @code{pstextpath} macro to fit labels
along a path (properly kerned, as illustrated in the example file
@code{curvedlabel.asy}), using the command
@verbatim
void labelpath(picture pic=currentpicture, Label L, path g,
string justify=Centered, pen p=currentpen);
@end verbatim
@noindent
Here @code{justify} is one of @code{LeftJustified}, @code{Centered}, or
@code{RightJustified}. The @math{x} component of a shift transform
applied to the Label is interpreted as a shift along the curve, whereas
the @math{y} component is interpreted as a shift away from the curve.
All other Label transforms are ignored. This package requires the
@code{latex} tex engine and inherits the limitations of the
@code{PSTricks} @code{\pstextpath} macro.
@node labelpath3
@section @code{labelpath3}
@cindex @code{labelpath3}
This module, contributed by Jens Schwaiger, implements a 3D version of
@code{labelpath} that does not require the @code{PSTricks} package.
An example is provided in @code{curvedlabel3.asy}.
@node annotate
@section @code{annotate}
@cindex @code{annotate}
This module supports @acronym{PDF} annotations for viewing with
@code{Adobe Reader}, via the function
@verbatim
void annotate(picture pic=currentpicture, string title, string text,
pair position);
@end verbatim
@noindent
Annotations are illustrated in the example file @code{annotation.asy}.
Currently, annotations are only implemented for the @code{latex}
(default) and @code{tex} @TeX{} engines.
@node CAD
@section @code{CAD}
@cindex @code{CAD}
This package, contributed by Mark Henning, provides basic pen
definitions and measurement functions for simple 2D CAD drawings
according to DIN 15. It is documented separately, in the file
@code{CAD.pdf}.
@node graph
@section @code{graph}
@cindex @code{graph}
@cindex 2D graphs
This package implements two-dimensional linear and logarithmic graphs,
including automatic scale and tick selection (with the ability to
override manually). A graph is a @code{guide} (that can be drawn with
the draw command, with an optional legend) constructed with one of
the following routines:
@itemize
@item
@verbatim
guide graph(picture pic=currentpicture, real f(real), real a, real b,
int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, real f(real), real a, real b,
int n=ngraph, real T(real)=identity, bool3 cond(real),
interpolate join=operator --);
@end verbatim
Returns a graph using the scaling information for picture @code{pic}
(@pxref{automatic scaling}) of the function @code{f} on the interval
[@code{T}(@code{a}),@code{T}(@code{b})], sampling at @code{n} points
evenly spaced in [@code{a},@code{b}], optionally restricted by the
bool3 function @code{cond} on [@code{a},@code{b}]. If @code{cond} is:
@itemize @bullet
@item @code{true}, the point is added to the existing guide;
@item @code{default}, the point is added to a new guide;
@item @code{false}, the point is omitted and a new guide is begun.
@end itemize
The points are connected using the interpolation specified by @code{join}:
@itemize @bullet
@cindex @code{operator --}
@cindex @code{Straight}
@item @code{operator --} (linear interpolation; the abbreviation
@code{Straight} is also accepted);
@cindex @code{operator ..}
@cindex @code{Spline}
@item @code{operator ..} (piecewise Bezier cubic spline interpolation;
the abbreviation @code{Spline} is also accepted);
@cindex @code{Hermite}
@cindex @code{notaknot}
@cindex @code{natural}
@cindex @code{periodic}
@cindex @code{clamped}
@cindex @code{monotonic}
@cindex @code{Hermite(splinetype splinetype}
@item @code{Hermite} (standard cubic spline interpolation using boundary
condition @code{notaknot}, @code{natural}, @code{periodic},
@code{clamped(real slopea, real slopeb)}), or @code{monotonic}.
The abbreviation @code{Hermite} is equivalent to
@code{Hermite(notaknot)} for nonperiodic data and
@code{Hermite(periodic)} for periodic data).
@end itemize
@item
@verbatim
guide graph(picture pic=currentpicture, real x(real), real y(real),
real a, real b, int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, real x(real), real y(real),
real a, real b, int n=ngraph, real T(real)=identity,
bool3 cond(real), interpolate join=operator --);
@end verbatim
Returns a graph using the scaling information for picture @code{pic}
of the parametrized function
(@code{x}(@math{t}),@code{y}(@math{t})) for @math{t} in the interval
[@code{T}(@code{a}),@code{T}(@code{b})], sampling at @code{n} points
evenly spaced in [@code{a},@code{b}], optionally restricted by the
bool3 function @code{cond} on [@code{a},@code{b}], using the given
interpolation type.
@item
@verbatim
guide graph(picture pic=currentpicture, pair z(real), real a, real b,
int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, pair z(real), real a, real b,
int n=ngraph, real T(real)=identity, bool3 cond(real),
interpolate join=operator --);
@end verbatim
Returns a graph using the scaling information for picture @code{pic}
of the parametrized function
@code{z}(@math{t}) for @math{t} in the interval
[@code{T}(@code{a}),@code{T}(@code{b})], sampling at @code{n} points
evenly spaced in [@code{a},@code{b}], optionally restricted by the
bool3 function @code{cond} on [@code{a},@code{b}], using the given
interpolation type.
@item
@verbatim
guide graph(picture pic=currentpicture, pair[] z,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, pair[] z, bool3[] cond,
interpolate join=operator --);
@end verbatim
Returns a graph using the scaling information for picture @code{pic}
of the elements of the array @code{z}, optionally restricted to
those indices for which the elements of the boolean array @code{cond} are
@code{true}, using the given interpolation type.
@item
@verbatim
guide graph(picture pic=currentpicture, real[] x, real[] y,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, real[] x, real[] y,
bool3[] cond, interpolate join=operator --);
@end verbatim
Returns a graph using the scaling information for picture @code{pic}
of the elements of the arrays (@code{x},@code{y}), optionally
restricted to those indices for which the elements of the boolean
array @code{cond} are @code{true}, using the given interpolation type.
@item
@cindex @code{polargraph}
@verbatim
guide polargraph(picture pic=currentpicture, real f(real), real a,
real b, int n=ngraph, interpolate join=operator --);
@end verbatim
Returns a polar-coordinate graph using the scaling information for
picture @code{pic} of the function @code{f} on the interval
[@code{a},@code{b}], sampling at @code{n} evenly spaced points, with
the given interpolation type.
@item
@verbatim
guide polargraph(picture pic=currentpicture, real[] r, real[] theta,
interpolate join=operator--);
@end verbatim
Returns a polar-coordinate graph using the scaling information for
picture @code{pic} of the elements of the arrays (@code{r},@code{theta}),
using the given interpolation type.
@end itemize
@verbatim
@end verbatim
An axis can be drawn on a picture with one of the following commands:
@itemize
@item
@verbatim
void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,
real xmin=-infinity, real xmax=infinity, pen p=currentpen,
ticks ticks=NoTicks, arrowbar arrow=None, bool above=false);
@end verbatim
Draw an @math{x} axis on picture @code{pic} from @math{x}=@code{xmin} to
@math{x}=@code{xmax} using pen @code{p}, optionally labelling it with
Label @code{L}. The relative label location along the axis (a real number from
[0,1]) defaults to 1 (@pxref{Label}), so that the label is drawn at the
end of the axis. An infinite value of @code{xmin}
or @code{xmax} specifies that the corresponding axis limit will be
automatically determined from the picture limits.
The optional @code{arrow} argument takes the same values as in the
@code{draw} command (@pxref{arrows}). The axis is drawn before any
existing objects in @code{pic} unless @code{above=true}.
The axis placement is determined by one of the following @code{axis} types:
@table @code
@cindex @code{YZero}
@item YZero(bool extend=true)
Request an @math{x} axis at @math{y}=0 (or @math{y}=1 on a logarithmic axis)
extending to the full dimensions of the picture, unless @code{extend}=false.
@cindex @code{YEquals}
@item YEquals(real Y, bool extend=true)
Request an @math{x} axis at @math{y}=@code{Y} extending to the full
dimensions of the picture, unless @code{extend}=false.
@cindex @code{Bottom}
@item Bottom(bool extend=false)
Request a bottom axis.
@cindex @code{Top}
@item Top(bool extend=false)
Request a top axis.
@cindex @code{BottomTop}
@item BottomTop(bool extend=false)
Request a bottom and top axis.
@end table
@cindex custom axis types
Custom axis types can be created by following the examples in @code{graph.asy}.
One can easily override the default values for the standard axis types:
@verbatim
import graph;
YZero=new axis(bool extend=true) {
return new void(picture pic, axisT axis) {
real y=pic.scale.x.scale.logarithmic ? 1 : 0;
axis.value=I*pic.scale.y.T(y);
axis.position=1;
axis.side=right;
axis.align=2.5E;
axis.value2=Infinity;
axis.extend=extend;
};
};
YZero=YZero();
@end verbatim
@anchor{ticks}
@cindex @code{ticks}
@cindex @code{NoTicks}
@cindex @code{LeftTicks}
@cindex @code{RightTicks}
@cindex @code{Ticks}
The default tick option is @code{NoTicks}.
The options @code{LeftTicks}, @code{RightTicks}, or @code{Ticks} can be
used to draw ticks on the left, right, or both sides of the path,
relative to the direction in which the path is drawn.
These tick routines accept a number of optional arguments:
@verbatim
ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
bool begin=true, bool end=true, tickmodifier modify=None,
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen);
@end verbatim
If any of these parameters are omitted, reasonable defaults will
be chosen:
@table @code
@item Label format
@cindex @code{defaultformat}
@cindex @code{trailingzero}
override the default tick label format (@code{defaultformat}, initially
"$%.4g$"), rotation, pen, and alignment (for example, @code{LeftSide},
@code{Center}, or @code{RightSide}) relative to the axis. To enable
@code{LaTeX} math mode fonts, the format string should begin and
end with @code{$} @pxref{format}. If the format string is @code{trailingzero},
trailing zeros will be added to the tick labels; if the format string is
@code{"%"}, the tick label will be suppressed;
@item ticklabel
is a function @code{string(real x)} returning the label (by default,
format(format.s,x)) for each major tick value @code{x};
@item bool beginlabel
include the first label;
@item bool endlabel
include the last label;
@item int N
when automatic scaling is enabled (the default; @pxref{automatic scaling}),
divide a linear axis evenly into this many intervals, separated by major ticks;
for a logarithmic axis, this is the number of decades between labelled ticks;
@item int n
divide each interval into this many subintervals, separated by minor ticks;
@item real Step
the tick value spacing between major ticks
(if @code{N}=@code{0});
@item real step
the tick value spacing between minor ticks (if @code{n}=@code{0});
@item bool begin
include the first major tick;
@item bool end
include the last major tick;
@item tickmodifier modify;
an optional function that takes and returns a @code{tickvalue} structure having
real[] members @code{major} and @code{minor} consisting of the tick values
(to allow modification of the automatically generated tick values);
@item real Size
the size of the major ticks (in @code{PostScript} coordinates);
@item real size
the size of the minor ticks (in @code{PostScript} coordinates);
@item bool extend;
extend the ticks between two axes (useful for drawing a grid on the graph);
@item pen pTick
an optional pen used to draw the major ticks;
@item pen ptick
an optional pen used to draw the minor ticks.
@end table
@cindex @code{OmitTick}
@cindex @code{OmitTickInterval}
@cindex @code{OmitTickIntervals}
For convenience, the predefined tickmodifiers @code{OmitTick(... real[] x)},
@code{OmitTickInterval(real a, real b)}, and
@code{OmitTickIntervals(real[] a, real[] b)}
can be used to remove specific auto-generated ticks and
their labels. The @code{OmitFormat(string s=defaultformat ... real[] x)}
ticklabel can be used to remove specific tick labels but not the
corresponding ticks. The tickmodifier @code{NoZero} is an abbreviation for
@code{OmitTick(0)} and the ticklabel @code{NoZeroFormat} is an
abbrevation for @code{OmitFormat(0)}.
@cindex custom tick locations
@cindex @code{LeftTicks}
@cindex @code{RightTicks}
@cindex @code{Ticks}
It is also possible to specify custom tick locations with
@code{LeftTicks}, @code{RightTicks}, and @code{Ticks} by passing explicit real
arrays @code{Ticks} and (optionally) @code{ticks} containing the
locations of the major and minor ticks, respectively:
@verbatim
ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
real[] Ticks, real[] ticks=new real[],
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen)
@end verbatim
@item
@verbatim
void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,
real ymin=-infinity, real ymax=infinity, pen p=currentpen,
ticks ticks=NoTicks, arrowbar arrow=None, bool above=false,
bool autorotate=true);
@end verbatim
Draw a @math{y} axis on picture @code{pic} from @math{y}=@code{ymin} to
@math{y}=@code{ymax} using pen @code{p}, optionally labelling it with
a Label @code{L} that is autorotated unless @code{autorotate=false}.
The relative location of the label (a real number from
[0,1]) defaults to 1 (@pxref{Label}). An infinite value of @code{ymin}
or @code{ymax} specifies that the corresponding axis limit will be
automatically determined from the picture limits.
The optional @code{arrow} argument takes the same values as in the
@code{draw} command (@pxref{arrows}). The axis is drawn before any
existing objects in @code{pic} unless @code{above=true}.
The tick type is specified by @code{ticks} and the axis placement is
determined by one of the following @code{axis} types:
@table @code
@cindex @code{XZero}
@item XZero(bool extend=true)
Request a @math{y} axis at @math{x}=0 (or @math{x}=1 on a logarithmic axis)
extending to the full dimensions of the picture, unless @code{extend}=false.
@cindex @code{XEquals}
@item XEquals(real X, bool extend=true)
Request a @math{y} axis at @math{x}=@code{X} extending to the full
dimensions of the picture, unless @code{extend}=false.
@cindex @code{Left}
@item Left(bool extend=false)
Request a left axis.
@cindex @code{Right}
@item Right(bool extend=false)
Request a right axis.
@cindex @code{LeftRight}
@item LeftRight(bool extend=false)
Request a left and right axis.
@end table
@item
@cindex @code{xequals}
@cindex @code{yequals}
For convenience, the functions
@verbatim
void xequals(picture pic=currentpicture, Label L="", real x,
bool extend=false, real ymin=-infinity, real ymax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool above=true,
arrowbar arrow=None);
@end verbatim
and
@verbatim
void yequals(picture pic=currentpicture, Label L="", real y,
bool extend=false, real xmin=-infinity, real xmax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool above=true,
arrowbar arrow=None);
@end verbatim
can be respectively used to call @code{yaxis} and
@code{xaxis} with the appropriate axis types @code{XEquals(x,extend)} and
@code{YEquals(y,extend)}. This is the recommended way of drawing vertical
or horizontal lines and axes at arbitrary locations.
@item
@verbatim
void axes(picture pic=currentpicture, Label xlabel="", Label ylabel="",
pair min=(-infinity,-infinity), pair max=(infinity,infinity),
pen p=currentpen, arrowbar arrow=None, bool above=false);
@end verbatim
This convenience routine draws both @math{x} and @math{y} axes
on picture @code{pic} from @code{min} to @code{max},
with optional labels @code{xlabel} and @code{ylabel}
and any arrows specified by @code{arrow}. The axes are drawn on top of
existing objects in @code{pic} only if @code{above=true}.
@item
@verbatim
void axis(picture pic=currentpicture, Label L="", path g,
pen p=currentpen, ticks ticks, ticklocate locate,
arrowbar arrow=None, int[] divisor=new int[],
bool above=false, bool opposite=false);
@end verbatim
This routine can be used to draw on picture @code{pic} a general axis
based on an arbitrary path @code{g}, using pen @code{p}.
One can optionally label the axis with Label @code{L} and add an arrow
@code{arrow}. The tick type is given by @code{ticks}.
The optional integer array @code{divisor} specifies what tick divisors
to try in the attempt to produce uncrowded tick labels. A @code{true}
value for the flag @code{opposite} identifies an unlabelled secondary
axis (typically drawn opposite a primary axis). The axis is drawn before
any existing objects in @code{pic} unless @code{above=true}.
The tick locator @code{ticklocate} is constructed by the routine
@verbatim
ticklocate ticklocate(real a, real b, autoscaleT S=defaultS,
real tickmin=-infinity, real tickmax=infinity,
real time(real)=null, pair dir(real)=zero);
@end verbatim
@noindent
where @code{a} and @code{b} specify the respective tick values at
@code{point(g,0)} and @code{point(g,length(g))}, @code{S} specifies
the autoscaling transformation, the function @code{real time(real v)}
returns the time corresponding to the value @code{v}, and
@code{pair dir(real t)} returns the absolute tick direction as a
function of @code{t} (zero means draw the tick perpendicular to the axis).
@item These routines are useful for manually putting ticks and labels on axes
(if the variable @code{Label} is given as the @code{Label}
argument, the @code{format} argument will be used to format a string based on
the tick location):
@cindex xtick
@cindex ytick
@cindex labelx
@cindex labely
@cindex tick
@cindex Label
@verbatim
void xtick(picture pic=currentpicture, Label L="", explicit pair z,
pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);
void xtick(picture pic=currentpicture, Label L="", real x,
pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", explicit pair z,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", real y,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void tick(picture pic=currentpicture, pair z,
pair dir, real size=Ticksize, pen p=currentpen);
void labelx(picture pic=currentpicture, Label L="", explicit pair z,
align align=S, string format="", pen p=nullpen);
void labelx(picture pic=currentpicture, Label L="", real x,
align align=S, string format="", pen p=nullpen);
void labelx(picture pic=currentpicture, Label L,
string format="", explicit pen p=currentpen);
void labely(picture pic=currentpicture, Label L="", explicit pair z,
align align=W, string format="", pen p=nullpen);
void labely(picture pic=currentpicture, Label L="", real y,
align align=W, string format="", pen p=nullpen);
void labely(picture pic=currentpicture, Label L,
string format="", explicit pen p=nullpen);
@end verbatim
@end itemize
Here are some simple examples of two-dimensional graphs:
@enumerate
@cindex textbook graph
@item This example draws a textbook-style graph of
@math{y=} exp@math{(x)}, with the @math{y} axis starting at @math{y=0}:
@verbatiminclude exp.asy
@sp 1
@center @image{exp}
@item The next example draws a scientific-style graph with a legend.
The position of the legend can be adjusted either explicitly or by using the
graphical user interface @code{xasy} (@pxref{GUI}). If an
@code{UnFill(real xmargin=0, real ymargin=xmargin)} or
@code{Fill(pen)} option is specified to @code{add}, the legend will obscure
any underlying objects. Here we illustrate how to clip the portion of
the picture covered by a label:
@cindex scientific graph
@verbatiminclude lineargraph0.asy
@sp 1
@center @image{lineargraph0}
@cindex @code{attach}
To specify a fixed size for the graph proper, use @code{attach}:
@verbatiminclude lineargraph.asy
@cindex @code{legend}
A legend can have multiple entries per line:
@verbatiminclude legend.asy
@sp 1
@center @image{legend}
@item This example draws a graph of one array versus another (both of
the same size) using custom tick locations and a smaller font size for
the tick labels on the @math{y} axis.
@verbatiminclude datagraph.asy
@sp 1
@center @image{datagraph}
@item This example shows how to graph columns of data read from a file.
@verbatiminclude filegraph.asy
@sp 1
@center @image{filegraph}
@cindex @code{polygon}
@cindex @code{cross}
@cindex @code{errorbars}
@cindex @code{marker}
@cindex @code{marknodes}
@cindex @code{markuniform}
@cindex @code{mark}
@cindex path markers
@anchor{pathmarkers}
@item The next example draws two graphs of an array of coordinate pairs,
using frame alignment and data markers. In the left-hand graph, the
markers, constructed with
@verbatim
marker marker(path g, markroutine markroutine=marknodes,
pen p=currentpen, filltype filltype=NoFill,
bool above=true);
@end verbatim
using the path @code{unitcircle} (@pxref{filltype}), are drawn
below each node. Any frame can be converted to a marker, using
@anchor{marker}
@verbatim
marker marker(frame f, markroutine markroutine=marknodes,
bool above=true);
@end verbatim
In the right-hand graph, the unit @math{n}-sided regular polygon
@code{polygon(int n)} and the unit @math{n}-point cyclic cross
@code{cross(int n, bool round=true, real r=0)} (where @code{r} is an
optional ``inner'' radius) are used to build a custom marker frame.
@anchor{markuniform}
Here @code{markuniform(bool centered=false, int n, bool rotated=false)}
adds this frame at @code{n} uniformly spaced points along the arclength
of the path, optionally rotated by the angle of the local tangent to the path
(if centered is true, the frames will be centered within @code{n} evenly
spaced arclength intervals). Alternatively, one can use
markroutine @code{marknodes} to request that the marks be placed at each
Bezier node of the path, or
markroutine @code{markuniform(pair z(real t), real a, real b, int n)}
to place marks at points @code{z(t)} for n evenly spaced values of
@code{t} in @code{[a,b]}.
These markers are predefined:
@verbatim
marker[] Mark={
marker(scale(circlescale)*unitcircle),
marker(polygon(3)),marker(polygon(4)),
marker(polygon(5)),marker(invert*polygon(3)),
marker(cross(4)),marker(cross(6))
};
marker[] MarkFill={
marker(scale(circlescale)*unitcircle,Fill),marker(polygon(3),Fill),
marker(polygon(4),Fill),marker(polygon(5),Fill),
marker(invert*polygon(3),Fill)
};
@end verbatim
The example also illustrates the @code{errorbar} routines:
@verbatim
void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,
pair[] dm={}, bool[] cond={}, pen p=currentpen,
real size=0);
void errorbars(picture pic=currentpicture, real[] x, real[] y,
real[] dpx, real[] dpy, real[] dmx={}, real[] dmy={},
bool[] cond={}, pen p=currentpen, real size=0);
@end verbatim
@noindent
Here, the positive and negative extents of the error are given by the
absolute values of the elements of the pair array @code{dp} and the
optional pair array @code{dm}. If @code{dm} is not specified, the
positive and negative extents of the error are assumed to be equal.
@anchor{errorbars}
@cindex error bars
@verbatiminclude errorbars.asy
@sp 1
@center @image{errorbars}
@cindex custom mark routine
@item A custom mark routine can be also be specified:
@verbatiminclude graphmarkers.asy
@sp 1
@center @image{graphmarkers}
@item This example shows how to label an axis with arbitrary strings.
@verbatiminclude monthaxis.asy
@sp 1
@center @image{monthaxis}
@item The next example draws a graph of a parametrized curve.
@cindex parametrized curve
@cindex cropping graphs
@cindex @code{xlimits}
@cindex @code{ylimits}
@cindex @code{limits}
@cindex @code{crop}
The calls to
@verbatim
xlimits(picture pic=currentpicture, real min=-infinity,
real max=infinity, bool crop=NoCrop);
@end verbatim
@noindent
and the analogous function @code{ylimits} can be uncommented
to set the respective axes limits for picture @code{pic} to the
specified @code{min} and @code{max} values. Alternatively, the function
@verbatim
void limits(picture pic=currentpicture, pair min, pair max, bool crop=NoCrop);
@end verbatim
can be used to limit the axes to the box having opposite vertices at
the given pairs). Existing objects in picture @code{pic} will be cropped to lie
within the given limits if @code{crop}=@code{Crop}. The function
@code{crop(picture pic)} can be used to crop a graph to the current
graph limits.
@verbatiminclude parametricgraph.asy
@sp 1
@center @image{parametricgraph}
@cindex scaled graph
The next example illustrates how one can extract a common axis scaling
factor.
@verbatiminclude scaledgraph.asy
@sp 1
@center @image{scaledgraph}
@anchor{automatic scaling}
@cindex automatic scaling
@cindex @code{scale}
@cindex @code{Linear}
@cindex @code{Log}
@cindex automatic scaling
Axis scaling can be requested and/or automatic selection of the
axis limits can be inhibited with one of these @code{scale} routines:
@verbatim
void scale(picture pic=currentpicture, scaleT x, scaleT y);
void scale(picture pic=currentpicture, bool xautoscale=true,
bool yautoscale=xautoscale, bool zautoscale=yautoscale);
@end verbatim
This sets the scalings for picture @code{pic}. The @code{graph} routines
accept an optional @code{picture} argument for determining the appropriate
scalings to use; if none is given, it uses those set for
@code{currentpicture}.
Two frequently used scaling routines
@code{Linear} and @code{Log} are predefined in @code{graph}.
All picture coordinates (including those in paths and those given
to the @code{label} and @code{limits} functions) are always treated as linear
(post-scaled) coordinates. Use
@cindex @code{Scale}
@verbatim
pair Scale(picture pic=currentpicture, pair z);
@end verbatim
to convert a graph coordinate into a scaled picture coordinate.
The @math{x} and @math{y} components can be individually scaled using
the analogous routines
@verbatim
real ScaleX(picture pic=currentpicture, real x);
real ScaleY(picture pic=currentpicture, real y);
@end verbatim
The predefined scaling routines can be given two optional boolean arguments:
@code{automin=false} and @code{automax=automin}. These default to
@code{false} but can be respectively set to @code{true} to enable
automatic selection of "nice" axis minimum and maximum values. The
@code{Linear} scaling can also take as optional final arguments a
multiplicative scaling factor and intercept (e.g.@ for a depth axis,
@code{Linear(-1)} requests axis reversal).
@cindex logarithmic graph
@cindex log-log graph
For example, to draw a log/log graph of a function, use @code{scale(Log,Log)}:
@verbatiminclude loggraph.asy
@sp 1
@center @image{loggraph}
@cindex grid
By extending the ticks, one can easily produce a logarithmic grid:
@verbatiminclude loggrid.asy
@sp 1
@center @image{loggrid}
One can also specify custom tick locations and formats for logarithmic axes:
@verbatiminclude logticks.asy
@sp 1
@center @image{logticks}
@cindex @code{log2} graph
It is easy to draw logarithmic graphs with respect to other bases:
@verbatiminclude log2graph.asy
@sp 1
@center @image{log2graph}
@cindex broken axis
Here is an example of "broken" linear @math{x} and logarithmic
@math{y} axes that omit the segments [3,8] and [100,1000], respectively.
In the case of a logarithmic axis, the break endpoints are automatically
rounded to the nearest integral power of the base.
@verbatiminclude brokenaxis.asy
@sp 1
@center @image{brokenaxis}
@cindex secondary axis
@cindex @code{secondaryX}
@cindex @code{secondaryY}
@item @code{Asymptote} can draw secondary axes with the routines
@verbatim
picture secondaryX(picture primary=currentpicture, void f(picture));
picture secondaryY(picture primary=currentpicture, void f(picture));
@end verbatim
In this example, @code{secondaryY} is used to draw a secondary linear
@math{y} axis against a primary logarithmic @math{y} axis:
@verbatiminclude Bode.asy
@sp 1
@center @image{Bode}
A secondary logarithmic @math{y} axis can be drawn like this:
@verbatiminclude secondaryaxis.asy
@sp 1
@center @image{secondaryaxis}
@item Here is a histogram example, which uses the @code{stats} module.
@cindex @code{axis}
@verbatiminclude histogram.asy
@sp 1
@center @image{histogram}
@item Here is an example of reading column data in from a file and a
least-squares fit, using the @code{stats} module.
@cindex @code{leastsquares}
@verbatiminclude leastsquares.asy
@sp 1
@center @image{leastsquares}
@item Here is an example that illustrates the general @code{axis} routine.
@cindex @code{axis}
@verbatiminclude generalaxis.asy
@sp 1
@center @image{generalaxis}
@item To draw a vector field of @code{n} arrows evenly spaced along the arclength of a path, use the routine
@cindex @code{vectorfield}
@verbatim
picture vectorfield(path vector(real), path g, int n, bool truesize=false,
pen p=currentpen, arrowbar arrow=Arrow);
@end verbatim
as illustrated in this simple example of a flow field:
@verbatiminclude flow.asy
@sp 1
@center @image{flow}
@item To draw a vector field of @code{nx}@math{\times}@code{ny} arrows in @code{box(a,b)}, use the routine
@cindex @code{vectorfield}
@verbatim
picture vectorfield(path vector(pair), pair a, pair b,
int nx=nmesh, int ny=nx, bool truesize=false,
real maxlength=truesize ? 0 : maxlength(a,b,nx,ny),
bool cond(pair z)=null, pen p=currentpen,
arrowbar arrow=Arrow, margin margin=PenMargin)
@end verbatim
as illustrated in this example:
@verbatiminclude vectorfield.asy
@sp 1
@center @image{vectorfield}
@item The following scientific graphs, which illustrate many features of
@code{Asymptote}'s graphics routines, were generated from the examples
@code{diatom.asy} and @code{westnile.asy}, using the comma-separated
data in @code{diatom.csv} and @code{westnile.csv}.
@page
@sp 1
@center @image{diatom}
@sp 1
@center @image{westnile,,7.5cm}
@end enumerate
@page
@node palette
@section @code{palette}
@anchor{images}
@cindex images
@code{Asymptote} can also generate color density images
and palettes. The following palettes are predefined in
@code{palette.asy}:
@table @code
@cindex @code{Grayscale}
@item pen[] Grayscale(int NColors=256)
a grayscale palette;
@cindex @code{Rainbow}
@item pen[] Rainbow(int NColors=32766)
a rainbow spectrum;
@cindex @code{BWRainbow}
@item pen[] BWRainbow(int NColors=32761)
a rainbow spectrum tapering off to black/white at the ends;
@cindex @code{BWRainbow2}
@item pen[] BWRainbow2(int NColors=32761)
a double rainbow palette tapering off to black/white at the ends, with
a linearly scaled intensity.
@cindex @code{Wheel}
@item pen[] Wheel(int NColors=32766)
a full color wheel palette;
@cindex @code{Gradient}
@item pen[] Gradient(int NColors=256 ... pen[] p)
a palette varying linearly over the specified array of pens, using
NColors in each interpolation interval;
@end table
The function @code{cmyk(pen[] Palette)} may be used to convert any
of these palettes to the @acronym{CMYK} colorspace.
A color density plot using palette @code{palette} can be generated from
a function @code{f}(@math{x},@math{y}) and added to a picture @code{pic}:
@cindex @code{image}
@verbatim
bounds image(picture pic=currentpicture, real f(real, real),
range range=Full, pair initial, pair final,
int nx=ngraph, int ny=nx, pen[] palette, bool antialias=false)
@end verbatim
The function @code{f} will be sampled at @code{nx} and @code{ny}
evenly spaced points over a rectangle defined by the points
@code{initial} and @code{final}, respecting the current graphical
scaling of @code{pic}. The color space is scaled according to the
@math{z} axis scaling (@pxref{automatic scaling}). A bounds structure
for the function values is returned:
@verbatim
struct bounds {
real min;
real max;
// Possible tick intervals:
int[] divisor;
}
@end verbatim
@noindent
This information can be used for generating an optional palette bar.
The palette color space corresponds to a range of values specified by
the argument @code{range}, which can be @code{Full}, @code{Automatic},
or an explicit range @code{Range(real min, real max)}.
Here @code{Full} specifies a range varying from the
minimum to maximum values of the function over the sampling interval,
while @code{Automatic} selects "nice" limits.
The example @code{imagecontour.asy} illustrates how level sets
(contour lines) can be drawn on a color density plot (@pxref{contour}).
A color density plot can also be generated from an explicit real[][]
array @code{data}:
@cindex @code{image}
@verbatim
bounds image(picture pic=currentpicture, real[][] f, range range=Full,
pair initial, pair final, pen[] palette,
bool transpose=(initial.x < final.x && initial.y < final.y),
bool copy=true, bool antialias=false);
@end verbatim
@noindent
If the initial point is to the left and below the final point,
by default the array indices are interpreted according to the
Cartesian convention (first index: @math{x}, second index: @math{y})
rather than the usual matrix convention (first index: @math{-y},
second index: @math{x}).
To construct an image from an array of irregularly spaced points
and an array of values @code{f} at these points, use one of the routines
@verbatim
bounds image(picture pic=currentpicture, pair[] z, real[] f,
range range=Full, pen[] palette)
bounds image(picture pic=currentpicture, real[] x, real[] y, real[] f,
range range=Full, pen[] palette)
@end verbatim
An optionally labelled palette bar may be generated with the routine
@verbatim
void palette(picture pic=currentpicture, Label L="", bounds bounds,
pair initial, pair final, axis axis=Right, pen[] palette,
pen p=currentpen, paletteticks ticks=PaletteTicks,
bool copy=true, bool antialias=false);
@end verbatim
The color space of @code{palette} is taken to be over bounds @code{bounds} with
scaling given by the @math{z} scaling of @code{pic}.
The palette orientation is specified by @code{axis}, which may be one of
@code{Right}, @code{Left}, @code{Top}, or @code{Bottom}.
The bar is drawn over the rectangle from @code{initial} to @code{final}.
The argument @code{paletteticks} is a special tick type (@pxref{ticks})
that takes the following arguments:
@verbatim
paletteticks PaletteTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
pen pTick=nullpen, pen ptick=nullpen);
@end verbatim
The image and palette bar can be fit to a frame and added and
optionally aligned to a picture at the desired location:
@anchor{image}
@verbatiminclude image.asy
@sp 1
@center @image{image}
Here is an example that uses logarithmic scaling of the function values:
@anchor{logimage}
@verbatiminclude logimage.asy
@sp 1
@center @image{logimage}
One can also draw an image directly from a two-dimensional pen array
or a function @code{pen f(int, int)}:
@verbatim
void image(picture pic=currentpicture, pen[][] data,
pair initial, pair final,
bool transpose=(initial.x < final.x && initial.y < final.y),
bool copy=true, bool antialias=false);
void image(picture pic=currentpicture, pen f(int, int), int width, int height,
pair initial, pair final,
bool transpose=(initial.x < final.x && initial.y < final.y),
bool antialias=false);
@end verbatim
@noindent
as illustrated in the following examples:
@anchor{penimage}
@verbatiminclude penimage.asy
@sp 1
@center @image{penimage}
@anchor{penfunctionimage}
@verbatiminclude penfunctionimage.asy
@sp 1
@center @image{penfunctionimage}
For convenience, the module @code{palette} also defines functions
that may be used to construct a pen array from a given function and palette:
@verbatim
pen[] palette(real[] f, pen[] palette);
pen[][] palette(real[][] f, pen[] palette);
@end verbatim
@node three
@section @code{three}
@cindex @code{three}
@cindex @code{guide3}
@cindex @code{path3}
@cindex @code{cycle}
@cindex @code{curl}
@cindex @code{tension}
@cindex @code{controls}
This module fully extends the notion of guides and paths in @code{Asymptote}
to three dimensions. It introduces the new types guide3, path3, and surface.
Guides in three dimensions are specified with the same syntax as in two
dimensions except that triples @code{(x,y,z)} are used in place of pairs
@code{(x,y)} for the nodes and direction specifiers. This
generalization of John Hobby's spline algorithm is shape-invariant under
three-dimensional rotation, scaling, and shifting, and reduces in the
planar case to the two-dimensional algorithm used in @code{Asymptote},
@code{MetaPost}, and @code{MetaFont} [cf.@ J. C. Bowman, Proceedings in
Applied Mathematics and Mechanics, 7:1, 2010021-2010022 (2007)].
For example, a unit circle in the @math{XY} plane may be filled and
drawn like this:
@verbatiminclude unitcircle3.asy
@sp 1
@center @image{unitcircle3}
@noindent
and then distorted into a saddle:
@verbatiminclude saddle.asy
@sp 1
@center @image{saddle}
@noindent
Module @code{three} provides constructors for converting two-dimensional
paths to three-dimensional ones, and vice-versa:
@cindex @code{path3}
@cindex @code{path}
@verbatim
path3 path3(path p, triple plane(pair)=XYplane);
path path(path3 p, pair P(triple)=xypart);
@end verbatim
@cindex @code{surface}
@cindex @code{render}
@cindex @code{defaultrender}
A Bezier surface, the natural two-dimensional generalization of Bezier
curves, is defined in @code{three_surface.asy} as a structure
containing an array of Bezier patches. Surfaces may drawn with one of
the routines
@verbatim
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
material surfacepen=currentpen, pen meshpen=nullpen,
light light=currentlight, light meshlight=light, string name="",
render render=defaultrender);
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
material[] surfacepen, pen meshpen,
light light=currentlight, light meshlight=light, string name="",
render render=defaultrender);
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
material[] surfacepen, pen[] meshpen=nullpens,
light light=currentlight, light meshlight=light, string name="",
render render=defaultrender);
@end verbatim
The parameters @code{nu} and @code{nv} specify the number of subdivisions
for drawing optional mesh lines for each Bezier patch. The optional
@code{name} parameter is used as a prefix for naming the surface
patches in the @acronym{PRC} model tree.
Here material is a structure defined in @code{three_light.asy}:
@verbatim
struct material {
pen[] p; // diffusepen,ambientpen,emissivepen,specularpen
real opacity;
real shininess;
...
}
@end verbatim
@noindent
These material properties are used to implement @code{OpenGL}-style lighting,
based on the Phong-Blinn specular model. Sample Bezier surfaces are
contained in the example files @code{BezierSurface.asy}, @code{teapot.asy},
and @code{parametricsurface.asy}. The structure @code{render} contains
specialized rendering options documented at the beginning of module
@code{three.asy}.
@cindex patch-dependent colors
@cindex vertex-dependent colors
The examples
@code{elevation.asy} and @code{sphericalharmonic.asy}
illustrate how to draw a surface with patch-dependent colors.
The examples @code{vertexshading} and @code{smoothelevation} illustrate
vertex-dependent colors, which is supported for both
@code{Asymptote}'s native @code{OpenGL} renderer and two-dimensional
projections. Since the @acronym{PRC} output format does not currently support
vertex shading of Bezier surfaces, @acronym{PRC} patches are shaded
with the mean of the four vertex colors.
@cindex @code{surface}
@cindex @code{planar}
A surface can be constructed from a cyclic @code{path3} with the constructor
@verbatim
surface surface(path3 external, triple[] internal=new triple[],
triple[] normals=new triple[], pen[] colors=new pen[],
bool3 planar=default);
@end verbatim
@noindent
and then filled:
@verbatim
draw(surface(path3(polygon(5))),red,nolight);
draw(surface(unitcircle3),red,nolight);
draw(surface(unitcircle3,new pen[] {red,green,blue,black}),nolight);
@end verbatim
@noindent
The last example constructs a patch with vertex-specific colors.
A three-dimensional planar surface in the plane @code{plane} can be
constructed from a two-dimensional cyclic path @code{g} with the constructor
@cindex @code{surface}
@verbatim
surface surface(path p, triple plane(pair)=XYplane);
@end verbatim
@noindent
and then filled:
@verbatim
draw(surface((0,0)--E+2N--2E--E+N..0.2E..cycle),red);
@end verbatim
@noindent
@cindex @code{bezulate}
Planar Bezier surfaces patches are constructed using Orest Shardt's
@code{bezulate} routine, which decomposes (possibly nonsimply
connected) regions bounded (according to the @code{zerowinding} fill rule)
by simple cyclic paths (intersecting only at the endpoints)
into subregions bounded by cyclic paths of length @code{4} or less.
@cindex @code{thin}
@cindex @code{thick}
@cindex @code{tube}
Arbitrary thick three-dimensional curves and line caps (which the
@code{OpenGL} standard does not require implementations to provide) are
constructed with
@verbatim
tube tube(path3 p, real width, render render=defaultrender);
@end verbatim
@noindent
this returns a tube structure representing a tube of diameter @code{width}
centered approximately on @code{g}. The tube structure consists of a
surface @code{s} and the actual tube center, path3 @code{center}.
Drawing thick lines as tubes can be slow to render,
especially with the @code{Adobe Reader} renderer. The setting
@code{thick=false} can be used to disable this feature and force all
lines to be drawn with @code{linewidth(0)} (one pixel wide, regardless
of the resolution). By default, mesh and contour lines in three-dimensions
are always drawn thin, unless an explicit line width is given in the pen
parameter or the setting @code{thin} is set to @code{false}. The pens
@code{thin()} and @code{thick()} defined in plain_pens.asy can also be used
to override these defaults for specific draw commands.
@noindent
There are four choices for viewing 3D @code{Asymptote} output:
@enumerate
@cindex @code{OpenGL}
@cindex @code{render}
@cindex @code{outformat}
@cindex @code{multisample}
@item Use the native @code{Asymptote} adaptive @code{OpenGL}-based
renderer (with the command-line option @code{-V} and the default settings
@code{outformat=""} and @code{render=-1}). If you encounter warnings
from your graphics card driver, try specifying @code{-glOptions=-indirect}
on the command line. On @code{UNIX} systems with graphics support for
multisampling, we recommend installing the latest SVN (antialiased)
version of the @code{freeglut} library
(@pxref{multisampling}); the sample width can be
controlled with the setting @code{multisample}. An initial screen
position can be specified with the pair setting @code{position}, where
negative values are interpreted as relative to the corresponding
maximum screen dimension. The default settings
@cindex mouse bindings
@verbatim
import settings;
leftbutton=new string[] {"rotate","zoom","shift","pan"};
middlebutton=new string[] {"menu"};
rightbutton=new string[] {"zoom/menu","rotateX","rotateY","rotateZ"};
wheelup=new string[] {"zoomin"};
wheeldown=new string[] {"zoomout"};
@end verbatim
bind the mouse buttons as follows:
@itemize
@item Left: rotate
@item Shift Left: zoom
@item Ctrl Left: shift viewport
@item Alt Left: pan
@item Middle: menu (must be unmodified; ignores Shift, Ctrl, and Alt)
@item Wheel Up: zoom in
@item Wheel Down: zoom out
@item Right: zoom/menu (must be unmodified)
@item Right double click: menu
@item Shift Right: rotate about the X axis
@item Ctrl Right: rotate about the Y axis
@item Alt Right: rotate about the Z axis
@end itemize
The keyboard shortcuts are:
@cindex keyboard bindings:
@itemize
@item h: home
@item f: toggle fitscreen
@item x: spin about the X axis
@item y: spin about the Y axis
@item z: spin about the Z axis
@item s: stop spinning
@item m: rendering mode (solid/mesh/patch)
@item e: export
@item c: show camera parameters
@item p: play animation
@item r: reverse animation
@item : step animation
@item +: expand
@item =: expand
@item >: expand
@item -: shrink
@item _: shrink
@item <: shrink
@item q: exit
@item Ctrl-q: exit
@end itemize
@cindex @code{antialias}
@cindex @code{maxviewport}
@cindex @code{maxtile}
@cindex @code{glOptions}
@cindex @code{iconic}
@cindex @code{black stripes}
@item Render the scene to a specified rasterized format @code{outformat}
at the resolution of @code{n} pixels per @code{bp}, as specified by the
setting @code{render=n}. A negative value of @code{n} is interpreted
as @code{|2n|} for @acronym{EPS} and @acronym{PDF} formats and
@code{|n|} for other formats. The default value of @code{render} is -1.
By default, the scene is internally rendered at twice the specified
resolution; this can be disabled by setting @code{antialias=1}.
High resolution rendering is done by tiling the image. If your
graphics card allows it, the rendering can be made more efficient by
increasing the maximum tile size @code{maxtile} to your screen
dimensions (indicated by @code{maxtile=(0,0)}. If your video card
generates unwanted black stripes in the output, try setting the
horizontal and vertical components of @code{maxtiles} to something
less than your screen dimensions. The tile size is also limited by the
setting @code{maxviewport}, which restricts the maximum width and
height of the viewport. On @code{UNIX} systems some graphics
drivers support batch mode (@code{-noV}) rendering in an
iconified window; this can be enabled with the setting @code{iconify=true}.
Some (broken) @code{UNIX} graphics drivers may require the command line setting
@code{-glOptions=-indirect}, which requests (slower) indirect rendering.
@cindex @code{prc}
@cindex @code{views}
@item Embed the 3D @acronym{PRC} format in a @acronym{PDF} file
and view the resulting @acronym{PDF} file with
version @code{9.0} or later of @code{Adobe Reader}.
In addition to the default @code{settings.prc=true}, this requires
@code{settings.outformat="pdf"}, which can be specified by the command
line option @code{-f pdf}, put in the @code{Asymptote} configuration
file (@pxref{configuration file}), or specified in the script before
@code{three.asy} (or @code{graph3.asy}) is imported.
Version 2008/10/08 or later of the @code{movie15} package is also
required (@pxref{embed}). The example @code{pdb.asy} illustrates
how one can generate a list of predefined views (see @code{100d.views}).
A stationary preview image with a resolution of @code{n} pixels per
@code{bp} can be embedded with the setting @code{render=n}; this allows
the file to be viewed with other @code{PDF} viewers. Alternatively, the
file @code{externalprc.tex} illustrates how the resulting @acronym{PRC} and
rendered image files can be extracted and processed in a separate
@code{LaTeX} file. However, see @ref{LaTeX usage} for an easier way
to embed three-dimensional @code{Asymptote} pictures within @code{LaTeX}.
The open-source @acronym{PRC} specification is available from
@url{http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/}.
@item Project the scene to a two-dimensional vector (@acronym{EPS} or
@acronym{PDF}) format with @code{render=0}. Only limited hidden surface
removal facilities are currently available with this approach
(@pxref{PostScript3D}).
@end enumerate
@cindex @code{double deferred drawing}
Automatic picture sizing in three dimensions is accomplished with double
deferred drawing. The maximal desired dimensions of the scene in each of
the three dimensions can optionally be specified with the routine
@cindex @code{size3}
@verbatim
void size3(picture pic=currentpicture, real x, real y=x, real z=y,
bool keepAspect=pic.keepAspect);
@end verbatim
@noindent
@cindex margins
@cindex @code{viewportmargin}
@cindex @code{viewportsize}
The resulting simplex linear programming problem is then solved to
produce a 3D version of a frame (actually implemented as a 3D picture).
The result is then fit with another application of deferred drawing
to the viewport dimensions corresponding to the usual two-dimensional
picture @code{size} parameters. The global pair @code{viewportmargin}
may be used to add horizontal and vertical margins to the viewport
dimensions. Alternatively, a minimum @code{viewportsize} may be specified.
A 3D picture @code{pic} can be explicitly fit to a 3D frame by calling
@cindex @code{fit3}
@verbatim
frame pic.fit3(projection P=currentprojection);
@end verbatim
@noindent
and then added to picture @code{dest} about @code{position} with
@cindex @code{add}
@verbatim
void add(picture dest=currentpicture, frame src, triple position=(0,0,0));
@end verbatim
@cindex @code{O}
@cindex @code{X}
@cindex @code{Y}
@cindex @code{Z}
@cindex @code{unitcircle}
For convenience, the @code{three} module defines @code{O=(0,0,0)},
@code{X=(1,0,0)}, @code{Y=(0,1,0)}, and @code{Z=(0,0,1)}, along with a
unitcircle in the XY plane:
@verbatim
path3 unitcircle3=X..Y..-X..-Y..cycle;
@end verbatim
@cindex @code{circle}
A general (approximate) circle can be drawn perpendicular to the direction
@code{normal} with the routine
@verbatim
path3 circle(triple c, real r, triple normal=Z);
@end verbatim
@cindex @code{arc}
A circular arc centered at @code{c} with radius @code{r} from
@code{c+r*dir(theta1,phi1)} to @code{c+r*dir(theta2,phi2)},
drawing counterclockwise relative to the normal vector
@code{cross(dir(theta1,phi1),dir(theta2,phi2))} if @code{theta2 > theta1}
or if @code{theta2 == theta1} and @code{phi2 >= phi1}, can be constructed with
@verbatim
path3 arc(triple c, real r, real theta1, real phi1, real theta2, real phi2,
triple normal=O);
@end verbatim
The normal must be explicitly specified if @code{c} and the endpoints
are colinear. If @code{r} < 0, the complementary arc of radius
@code{|r|} is constructed.
For convenience, an arc centered at @code{c} from triple @code{v1} to
@code{v2} (assuming @code{|v2-c|=|v1-c|}) in the direction CCW
(counter-clockwise) or CW (clockwise) may also be constructed with
@verbatim
path3 arc(triple c, triple v1, triple v2, triple normal=O,
bool direction=CCW);
@end verbatim
@noindent
When high accuracy is needed, the routines @code{Circle} and
@code{Arc} defined in @code{graph3} may be used instead.
See @ref{GaussianSurface} for an example of a three-dimensional circular arc.
@cindex @code{plane}
The representation @code{O--O+u--O+u+v--O+v--cycle}
of the plane passing through point @code{O} with normal
@code{cross(u,v)} is returned by
@verbatim
path3 plane(triple u, triple v, triple O=O);
@end verbatim
A three-dimensional box with opposite vertices at triples @code{v1}
and @code{v2} may be drawn with the function
@cindex @code{box}
@verbatim
path3[] box(triple v1, triple v2);
@end verbatim
@noindent
For example, a unit box is predefined as
@cindex @code{box}
@cindex @code{unitbox}
@verbatim
path3[] unitbox=box(O,(1,1,1));
@end verbatim
@code{Asymptote} also provides optimized definitions for the
three-dimensional paths @code{unitsquare3} and @code{unitcircle3},
along with the surfaces @code{unitdisk}, @code{unitplane}, @code{unitcube},
@code{unitcylinder}, @code{unitcone}, @code{unitsolidcone},
@code{unitfrustum(real t1, real t2)}, @code{unitsphere}, and
@code{unithemisphere}.
@noindent
These projections to two dimensions are predefined:
@table @code
@item oblique
@item oblique(real angle)
@cindex @code{oblique}
@cindex @code{obliqueZ}
The point @code{(x,y,z)} is projected to @code{(x-0.5z,y-0.5z)}.
If an optional real argument is given, the
negative @math{z} axis is drawn at this angle in degrees.
The projection @code{obliqueZ} is a synonym for @code{oblique}.
@item obliqueX
@item obliqueX(real angle)
@cindex @code{obliqueX}
The point @code{(x,y,z)} is projected to @code{(y-0.5x,z-0.5x)}.
If an optional real argument is given, the
negative @math{x} axis is drawn at this angle in degrees.
@item obliqueY
@item obliqueY(real angle)
@cindex @code{obliqueY}
The point @code{(x,y,z)} is projected to @code{(x+0.5y,z+0.5y)}.
If an optional real argument is given, the
positive @math{y} axis is drawn at this angle in degrees.
@cindex @code{orthographic}
@cindex @code{up}
@cindex @code{target}
@cindex @code{showtarget}
@cindex @code{center}
@item orthographic(triple camera, triple up=Z, triple target=O, @*@ @ @ @ @ @ @ @ @ @ @ @ @ real zoom=1, pair viewportshift=0, bool showtarget=true, @*@ @ @ @ @ @ @ @ @ @ @ @ @ bool center=false)
This projects from three to two dimensions using the view as seen at a point
infinitely far away in the direction @code{unit(camera)}, orienting the camera
so that, if possible, the vector @code{up} points upwards. Parallel
lines are projected to parallel lines. The bounding volume is expanded
to include @code{target} if @code{showtarget=true}.
If @code{center=true}, the target will be adjusted to the center of the
bounding volume.
@item orthographic(real x, real y, real z, triple up=Z, triple target=O, @*@ @ @ @ @ @ @ @ @ @ @ @ @ real zoom=1, pair viewportshift=0, bool showtarget=true, @*@ @ @ @ @ @ @ @ @ @ @ @ @ bool center=false)
This is equivalent to
@verbatim
orthographic((x,y,z),up,target,zoom,viewportshift,showtarget,center)
@end verbatim
@cindex @code{autoadjust}
@item perspective(triple camera, triple up=Z, triple target=O, @*@ @ @ @ @ @ @ @ @ @ @ @ real zoom=1, real angle=0, pair viewportshift=0, @*@ @ @ @ @ @ @ @ @ @ @ @ bool showtarget=true, bool autoadjust=true, @*@ @ @ @ @ @ @ @ @ @ @ @ bool center=autoadjust)
@cindex @code{perspective}
@cindex @code{NURBS}
This projects from three to two dimensions, taking account of
perspective, as seen from the location @code{camera} looking at @code{target},
orienting the camera so that, if possible, the vector @code{up} points upwards.
If @code{render=0}, projection of three-dimensional cubic Bezier splines
is implemented by approximating a two-dimensional nonuniform rational B-spline
(@acronym{NURBS}) with a two-dimensional Bezier curve containing
additional nodes and control points. If @code{autoadjust=true},
the camera will automatically be adjusted to lie outside the bounding volume
for all possible interactive rotations about @code{target}.
If @code{center=true}, the target will be adjusted to the center of the
bounding volume.
@item perspective(real x, real y, real z, triple up=Z, triple target=O, @*@ @ @ @ @ @ @ @ @ @ @ @ real zoom=1, real angle=0, pair viewportshift=0, @*@ @ @ @ @ @ @ @ @ @ @ @ bool showtarget=true, bool autoadjust=true, @*@ @ @ @ @ @ @ @ @ @ @ @ bool center=autoadjust)
This is equivalent to
@verbatim
perspective((x,y,z),up,target,zoom,angle,viewportshift,showtarget,
autoadjust,center)
@end verbatim
@end table
@cindex @code{currentprojection}
@noindent
The default projection, @code{currentprojection}, is initially set to
@code{perspective(5,4,2)}.
@cindex @code{LeftView}
@cindex @code{RightView}
@cindex @code{FrontView}
@cindex @code{BackView}
@cindex @code{BottomView}
@cindex @code{TopView}
We also define standard orthographic views used in technical drawing:
@verbatim
projection LeftView=orthographic(-X,showtarget=true);
projection RightView=orthographic(X,showtarget=true);
projection FrontView=orthographic(-Y,showtarget=true);
projection BackView=orthographic(Y,showtarget=true);
projection BottomView=orthographic(-Z,showtarget=true);
projection TopView=orthographic(Z,showtarget=true);
@end verbatim
@noindent
The function
@cindex @code{addViews}
@verbatim
void addViews(picture dest=currentpicture, picture src,
projection[][] views=SixViewsUS,
bool group=true, filltype filltype=NoFill);
@end verbatim
@noindent
adds to picture @code{dest} an array of views of picture @code{src}
using the layout projection[][] @code{views}. The default layout
@code{SixViewsUS} aligns the projection @code{FrontView} below
@code{TopView} and above @code{BottomView}, to the right of
@code{LeftView} and left of @code{RightView} and @code{BackView}.
The predefined layouts are:
@cindex @code{ThreeViewsUS}
@cindex @code{SixViewsUS}
@cindex @code{ThreeViewsFR}
@cindex @code{SixViewsFR}
@cindex @code{ThreeViews}
@cindex @code{SixViews}
@verbatim
projection[][] ThreeViewsUS={{TopView},
{FrontView,RightView}};
projection[][] SixViewsUS={{null,TopView},
{LeftView,FrontView,RightView,BackView},
{null,BottomView}};
projection[][] ThreeViewsFR={{RightView,FrontView},
{null,TopView}};
projection[][] SixViewsFR={{null,BottomView},
{RightView,FrontView,LeftView,BackView},
{null,TopView}};
projection[][] ThreeViews={{FrontView,TopView,RightView}};
projection[][] SixViews={{FrontView,TopView,RightView},
{BackView,BottomView,LeftView}};
@end verbatim
A triple or path3 can be projected to a pair or path,
with @code{project(triple, projection P=currentprojection)} or
@code{project(path3, projection P=currentprojection)}.
It is occasionally useful to be able to invert a projection, sending
a pair @code{z} onto the plane perpendicular to @code{normal} and passing
through @code{point}:
@cindex @code{invert}
@verbatim
triple invert(pair z, triple normal, triple point,
projection P=currentprojection);
@end verbatim
@noindent
A pair @code{z} on the projection plane can be inverted to a triple
with the routine
@verbatim
triple invert(pair z, projection P=currentprojection);
@end verbatim
@noindent
A pair direction @code{dir} on the projection plane can be inverted to
a triple direction relative to a point @code{v} with the routine
@verbatim
triple invert(pair dir, triple v, projection P=currentprojection).
@end verbatim
@cindex @code{transform3}
@cindex @code{identity4}
Three-dimensional objects may be transformed with one of the following
built-in transform3 types (the identity transformation is @code{identity4}):
@table @code
@item shift(triple v)
@cindex @code{shift}
translates by the triple @code{v};
@item xscale3(real x)
@cindex @code{xscale3}
scales by @code{x} in the @math{x} direction;
@item yscale3(real y)
@cindex @code{yscale3}
scales by @code{y} in the @math{y} direction;
@item zscale3(real z)
@cindex @code{zscale3}
scales by @code{z} in the @math{z} direction;
@item scale3(real s)
@cindex @code{scale3}
scales by @code{s} in the @math{x}, @math{y}, and @math{z} directions;
@item scale(real x, real y, real z)
@cindex @code{scale}
scales by @code{x} in the @math{x} direction,
by @code{y} in the @math{y} direction, and by @code{z} in the @math{z}
direction;
@cindex @code{rotate}
@item rotate(real angle, triple v)
rotates by @code{angle} in degrees about an axis @code{v} through the origin;
@item rotate(real angle, triple u, triple v)
rotates by @code{angle} in degrees about the axis @code{u--v};
@item reflect(triple u, triple v, triple w)
reflects about the plane through @code{u}, @code{v}, and @code{w}.
@cindex @code{XY}
@end table
When not multiplied on the left by a transform3, three-dimensional
@TeX{} Labels are drawn as Bezier surfaces directly on the projection plane:
@cindex @code{label}
@verbatim
void label(picture pic=currentpicture, Label L, triple position,
align align=NoAlign, pen p=currentpen,
light light=nolight, string name="",
render render=defaultrender, interaction interaction=
settings.autobillboard ? Billboard : Embedded)
@end verbatim
@noindent
@cindex @code{Billboard}
@cindex @code{Embedded}
The optional @code{name} parameter is used as a prefix for naming the label
patches in the @acronym{PRC} model tree.
The default interaction is @code{Billboard}, which means that labels
are rotated interactively so that they always face the camera.
The interaction @code{Embedded} means that the label interacts as a
normal @code{3D} surface, as illustrated in the example @code{billboard.asy}.
@cindex @code{transform}
@cindex @code{XY}
@cindex @code{YZ}
@cindex @code{ZX}
@cindex @code{YX}
@cindex @code{ZY}
@cindex @code{ZX}
Alternatively, a label can be transformed from the @code{XY} plane by an
explicit transform3 or mapped to a specified two-dimensional plane with
the predefined transform3 types @code{XY}, @code{YZ}, @code{ZX}, @code{YX},
@code{ZY}, @code{ZX}. There are also modified versions of these
transforms that take an optional argument @code{projection
P=currentprojection} that rotate and/or flip the label so that it is
more readable from the initial viewpoint.
@cindex @code{planeproject}
A transform3 that projects in the direction @code{dir} onto the plane
with normal @code{n} through point @code{O} is returned by
@verbatim
transform3 planeproject(triple n, triple O=O, triple dir=n);
@end verbatim
@noindent
One can use
@cindex @code{normal}
@verbatim
triple normal(path3 p);
@end verbatim
@noindent
to find the unit normal vector to a planar three-dimensional path @code{p}.
As illustrated in the example @code{planeproject.asy}, a transform3
that projects in the direction @code{dir} onto the plane defined by a
planar path @code{p} is returned by
@verbatim
transform3 planeproject(path3 p, triple dir=normal(p));
@end verbatim
The functions
@cindex @code{extrude}
@verbatim
surface extrude(path p, triple axis=Z);
surface extrude(Label L, triple axis=Z);
@end verbatim
@noindent
return the surface obtained by extruding path @code{p} or
Label @code{L} along @code{axis}.
@cindex @code{length}
@cindex @code{size}
@cindex @code{point}
@cindex @code{dir}
@cindex @code{accel}
@cindex @code{radius}
@cindex @code{precontrol}
@cindex @code{postcontrol}
@cindex @code{arclength}
@cindex @code{arctime}
@cindex @code{reverse}
@cindex @code{subpath}
@cindex @code{intersect}
@cindex @code{intersections}
@cindex @code{intersectionpoint}
@cindex @code{intersectionpoints}
@cindex @code{min}
@cindex @code{max}
@cindex @code{cyclic}
@cindex @code{straight}
Three-dimensional versions of the path functions @code{length},
@code{size}, @code{point}, @code{dir}, @code{accel}, @code{radius},
@code{precontrol}, @code{postcontrol},
@code{arclength}, @code{arctime}, @code{reverse}, @code{subpath},
@code{intersect}, @code{intersections}, @code{intersectionpoint},
@code{intersectionpoints}, @code{min}, @code{max}, @code{cyclic}, and
@code{straight} are also defined.
The routine
@cindex @code{intersections}
@verbatim
real[][] intersections(path3 p, surface s, real fuzz=-1);
@end verbatim
@noindent
returns the intersection times of a path @code{p} with a surface
@code{s} as a sorted array of real arrays of length 2, and
@cindex @code{intersectionpoints}
@verbatim
triple[] intersectionpoints(path3 p, surface s, real fuzz=-1);
@end verbatim
@noindent
returns the corresponding intersection points.
Here, the computations are performed to the absolute error specified by
@code{fuzz}, or if @code{fuzz < 0}, to machine precision.
Here is an example showing all five guide3 connectors:
@verbatiminclude join3.asy
@sp 1
@center @image{join3}
@cindex @code{BeginBar3}
@cindex @code{EndBar3}
@cindex @code{Bar3}
@cindex @code{Bars3}
@cindex @code{BeginArrow3}
@cindex @code{MidArrow3}
@cindex @code{EndArrow3}
@cindex @code{Arrow3}
@cindex @code{Arrows3}
@cindex @code{BeginArcArrow3}
@cindex @code{MidArcArrow3}
@cindex @code{EndArcArrow3}
@cindex @code{ArcArrow3}
@cindex @code{ArcArrows3}
@cindex @code{DefaultHead3}
@cindex @code{HookHead3}
@cindex @code{TeXHead3}
Three-dimensional versions of bars or arrows can be drawn with one of
the specifiers @code{None}, @code{Blank},
@code{BeginBar3}, @code{EndBar3} (or equivalently @code{Bar3}), @code{Bars3},
@code{BeginArrow3}, @code{MidArrow3},
@code{EndArrow3} (or equivalently @code{Arrow3}), @code{Arrows3},
@code{BeginArcArrow3}, @code{EndArcArrow3} (or equivalently
@code{ArcArrow3}), @code{MidArcArrow3}, and @code{ArcArrows3}.
Three-dimensional bars accept the optional arguments @code{(real size=0,
triple dir=O)}. If @code{size=O}, the default bar length is used; if
@code{dir=O}, the bar is drawn perpendicular to the path
and the initial viewing direction. The predefined three-dimensional
arrowhead styles are @code{DefaultHead3}, @code{HookHead3}, @code{TeXHead3}.
Versions of the two-dimensional arrowheads lifted to three-dimensional
space and aligned according to the initial viewpoint (or an optionally
specified @code{normal} vector) are also defined:
@code{DefaultHead2(triple normal=O)}, @code{HookHead2(triple normal=O)},
@code{TeXHead2(triple normal=O)}. These are illustrated in the example
@code{arrows3.asy}.
@cindex @code{NoMargin3}
@cindex @code{BeginMargin3}
@cindex @code{EndMargin3}
@cindex @code{Margin3}
@cindex @code{Margins3}
@cindex @code{BeginPenMargin2}
@cindex @code{EndPenMargin2}
@cindex @code{PenMargin2}
@cindex @code{PenMargins2}
@cindex @code{BeginPenMargin3}
@cindex @code{EndPenMargin3}
@cindex @code{PenMargin3}
@cindex @code{PenMargins3}
@cindex @code{BeginDotMargin3}
@cindex @code{EndDotMargin3}
@cindex @code{DotMargin3}
@cindex @code{DotMargins3}
@cindex @code{Margin3}
@cindex @code{TrueMargin3}
Module @code{three} also defines the three-dimensional margins
@code{NoMargin3}, @code{BeginMargin3}, @code{EndMargin3},
@code{Margin3}, @code{Margins3},
@code{BeginPenMargin2}, @code{EndPenMargin2}, @code{PenMargin2},
@code{PenMargins2},
@code{BeginPenMargin3}, @code{EndPenMargin3}, @code{PenMargin3},
@code{PenMargins3},
@code{BeginDotMargin3}, @code{EndDotMargin3}, @code{DotMargin3},
@code{DotMargins3}, @code{Margin3}, and @code{TrueMargin3}.
@cindex @code{pixel}
The routine
@verbatim
void pixel(picture pic=currentpicture, triple v, pen p=currentpen,
real width=1);
@end verbatim
@noindent
can be used to draw on picture @code{pic} a pixel of width @code{width} at
position @code{v} using pen @code{p}.
Further three-dimensional examples are provided in the files
@code{near_earth.asy}, @code{conicurv.asy}, and (in the @code{animations}
subdirectory) @code{cube.asy}.
@anchor{PostScript3D}
@cindex 3D @code{PostScript}
Limited support for projected vector graphics (effectively three-dimensional
nonrendered @code{PostScript}) is available with the setting
@code{render=0}. This currently only works for piecewise planar
surfaces, such as those produced by the parametric @code{surface}
routines in the @code{graph3} module. Surfaces produced by the
@code{solids} package will also be properly rendered if the parameter
@code{nslices} is sufficiently large.
@cindex hidden surface removal
@cindex @code{face}
In the module @code{bsp}, hidden surface removal of planar pictures is
implemented using a binary space partition and picture clipping.
A planar path is first converted to a structure @code{face} derived from
@code{picture}. A @code{face} may be given to a two-dimensional drawing
routine in place of any @code{picture} argument. An array of such faces
may then be drawn, removing hidden surfaces:
@verbatim
void add(picture pic=currentpicture, face[] faces,
projection P=currentprojection);
@end verbatim
Labels may be projected to two dimensions, using projection @code{P},
onto the plane passing through point @code{O} with normal
@code{cross(u,v)} by multiplying it on the left by the transform
@verbatim
transform transform(triple u, triple v, triple O=O,
projection P=currentprojection);
@end verbatim
Here is an example that shows how a binary space partition may be used to draw a
two-dimensional vector graphics projection of three orthogonal
intersecting planes:
@verbatiminclude planes.asy
@sp 1
@center @image{planes}
@node obj
@section @code{obj}
@cindex @code{obj}
This module allows one to construct surfaces from simple obj files,
as illustrated in the example files @code{galleon.asy} and
@code{triceratops.asy}.
@node graph3
@section @code{graph3}
@cindex @code{graph3}
@cindex 3D graphs
This module implements three-dimensional versions of the
functions in @code{graph.asy}.
@cindex @code{xaxis3}
@cindex @code{yaxis3}
@cindex @code{zaxis3}
@noindent
To draw an @math{x} axis in three dimensions, use the routine
@verbatim
void xaxis3(picture pic=currentpicture, Label L="", axis axis=YZZero,
real xmin=-infinity, real xmax=infinity, pen p=currentpen,
ticks3 ticks=NoTicks3, arrowbar3 arrow=None, bool above=false);
@end verbatim
@noindent
Analogous routines @code{yaxis} and @code{zaxis} can be used to draw
@math{y} and @math{z} axes in three dimensions.
There is also a routine for drawing all three axis:
@verbatim
void axes3(picture pic=currentpicture,
Label xlabel="", Label ylabel="", Label zlabel="",
triple min=(-infinity,-infinity,-infinity),
triple max=(infinity,infinity,infinity),
pen p=currentpen, arrowbar3 arrow=None);
@end verbatim
@cindex @code{YZEquals}
@cindex @code{XZEquals}
@cindex @code{XYEquals}
@cindex @code{YZZero}
@cindex @code{XZZero}
@cindex @code{XYZero}
@cindex @code{Bounds}
@noindent
The predefined three-dimensional axis types are
@verbatim
axis YZEquals(real y, real z, triple align=O, bool extend=false);
axis XZEquals(real x, real z, triple align=O, bool extend=false);
axis XYEquals(real x, real y, triple align=O, bool extend=false);
axis YZZero(triple align=O, bool extend=false);
axis XZZero(triple align=O, bool extend=false);
axis XYZero(triple align=O, bool extend=false);
axis Bounds(int type=Both, int type2=Both, triple align=O, bool extend=false);
@end verbatim
@noindent
The optional @code{align} parameter to these routines can be used to
specify the default axis and tick label alignments. The @code{Bounds}
axis accepts two type parameters, each of which must be one of
@code{Min}, @code{Max}, or @code{Both}. These parameters specify which
of the four possible three-dimensional bounding box edges should be drawn.
@cindex @code{NoTicks3}
@cindex @code{InTicks}
@cindex @code{OutTicks}
@cindex @code{InOutTicks}
The three-dimensional tick options are @code{NoTicks3}, @code{InTicks},
@code{OutTicks}, and @code{InOutTicks}. These specify the tick
directions for the @code{Bounds} axis type; other axis types inherit
the direction that would be used for the @code{Bounds(Min,Min)} axis.
Here is an example of a helix and bounding box axes with ticks
and axis labels, using orthographic projection:
@verbatiminclude helix.asy
@sp 1
@center @image{helix}
The next example illustrates three-dimensional @math{x}, @math{y}, and
@math{z} axes, without autoscaling of the axis limits:
@cindex @code{axis}
@verbatiminclude axis3.asy
@sp 1
@center @image{axis3}
One can also place ticks along a general three-dimensional axis:
@cindex @code{axis}
@verbatiminclude generalaxis3.asy
@sp 1
@center @image{generalaxis3}
@cindex @code{surface}
@cindex @code{Spline}
@cindex parametric surface
Surface plots of matrices and functions over the region
@code{box(a,b)} in the @math{XY} plane are also implemented:
@verbatim
surface surface(real[][] f, pair a, pair b, bool[][] cond={});
surface surface(real[][] f, pair a, pair b, splinetype xsplinetype,
splinetype ysplinetype=xsplinetype, bool[][] cond={});
surface surface(real[][] f, real[] x, real[] y,
splinetype xsplinetype=null, splinetype ysplinetype=xsplinetype,
bool[][] cond={})
surface surface(triple[][] f, bool[][] cond={});
surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
bool cond(pair z)=null);
surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
splinetype xsplinetype, splinetype ysplinetype=xsplinetype,
bool cond(pair z)=null);
surface surface(triple f(pair z), real[] u, real[] v,
splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
bool cond(pair z)=null);
surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
bool cond(pair z)=null);
surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
bool cond(pair z)=null);
@end verbatim
@noindent
The final two versions draw parametric surfaces for a function
@math{f(u,v)} over the parameter space @code{box(a,b)},
as illustrated in the example @code{parametricsurface.asy}.
An optional splinetype @code{Spline} may be specified.
The boolean array or function @code{cond} can be used to control which
surface mesh cells are actually drawn (by default all mesh cells over
@code{box(a,b)} are drawn).
Surface lighting is illustrated in the example files
@code{parametricsurface.asy} and @code{sinc.asy}.
Lighting can be disabled by setting @code{light=nolight}, as in this example
of a Gaussian surface:
@anchor{GaussianSurface}
@verbatiminclude GaussianSurface.asy
@sp 1
@center @image{GaussianSurface}
@noindent
A mesh can be drawn without surface filling by specifying @code{nullpen}
for the surfacepen.
A vector field of @code{nu}@math{\times}@code{nv} arrows on a
parametric surface @code{f} over @code{box(a,b)} can be drawn with the routine
@cindex @code{vectorfield3}
@verbatim
picture vectorfield(path3 vector(pair v), triple f(pair z), pair a, pair b,
int nu=nmesh, int nv=nu, bool truesize=false,
real maxlength=truesize ? 0 : maxlength(f,a,b,nu,nv),
bool cond(pair z)=null, pen p=currentpen,
arrowbar3 arrow=Arrow3, margin3 margin=PenMargin3)
@end verbatim
as illustrated in the examples @code{vectorfield3.asy} and
@code{vectorfieldsphere.asy}.
@node grid3
@section @code{grid3}
@cindex @code{grid3}
@cindex 3D grids
This module, contributed by Philippe Ivaldi, can be used for drawing
3D grids. Here is an example (further examples can be found in
@code{grid3.asy} and at @url{http://www.piprime.fr/files/asymptote/grid3/}):
@verbatiminclude grid3xyz.asy
@sp 1
@center @image{grid3xyz}
@node solids
@section @code{solids}
@cindex @code{solids}
This solid geometry package defines a structure @code{revolution} that
can be used to fill and draw surfaces of revolution. The following example
uses it to display the outline of a circular cylinder of radius 1
with axis @code{O--1.5unit(Y+Z)} with perspective projection:
@verbatiminclude cylinderskeleton.asy
@sp 1
@center @image{cylinderskeleton}
Further illustrations are provided in the example files @code{cylinder.asy},
@code{cones.asy}, @code{hyperboloid.asy}, and @code{torus.asy}.
The structure @code{skeleton} contains the three-dimensional wireframe
used to visualize a volume of revolution:
@verbatim
struct skeleton {
struct curve {
path3[] front;
path3[] back;
}
// transverse skeleton (perpendicular to axis of revolution)
curve transverse;
// longitudinal skeleton (parallel to axis of revolution)
curve longitudinal;
}
@end verbatim
@node tube
@section @code{tube}
@cindex @code{tube}
This package extends the @code{tube} surfaces constructed in
@code{three_arrows.asy} to arbitrary cross sections, colors, and spine
transformations. The routine
@verbatim
surface tube(path3 g, coloredpath section,
transform T(real)=new transform(real t) {return identity();},
real corner=1, real relstep=0);
@end verbatim
@noindent
draws a tube along @code{g} with cross section @code{section}, after
applying the transformation @code{T(t)} at @code{relpoint(g,t)}.
The parameter @code{corner} controls the number of elementary tubes at
the angular points of @code{g}. A nonzero value of @code{relstep}
specifies a fixed relative time step (in the sense of
@code{relpoint(g,t)}) to use in constructing elementary tubes along @code{g}.
The type @code{coloredpath} is a generalization of @code{path} to
which a @code{path} can be cast:
@cindex @code{coloredpath}
@verbatim
struct coloredpath
{
path p;
pen[] pens(real);
int colortype=coloredSegments;
}
@end verbatim
@noindent
@cindex @code{coloredSegments}
@cindex @code{coloredNodes}
Here @code{p} defines the cross section and
the method @code{pens(real t)} returns an array of pens (interpreted
as a cyclic array) used for shading the tube patches at
@code{relpoint(g,t)}. If @code{colortype=coloredSegments}, the tube patches
are filled as if each segment of the section was colored with the pen
returned by @code{pens(t)}, whereas if @code{colortype=coloredNodes}, the
tube components are vertex shaded as if the nodes of the section were colored.
A @code{coloredpath} can be constructed with one of the routines:
@verbatim
coloredpath coloredpath(path p, pen[] pens(real),
int colortype=coloredSegments);
coloredpath coloredpath(path p, pen[] pens=new pen[] {currentpen},
int colortype=coloredSegments);
coloredpath coloredpath(path p, pen pen(real));
@end verbatim
@noindent
In the second case, the pens are independent of the relative time.
In the third case, the array of pens contains only one pen, which
depends of the relative time.
The casting of @code{path} to @code{coloredpath} allows the
use of a @code{path} instead of a @code{coloredpath}; in this case the
shading behaviour is the default shading behavior for a surface.
An example of @code{tube} is provided in the file
@code{trefoilknot.asy}. Further examples can be found at
@url{http://www.piprime.fr/files/asymptote/tube/}.
@node flowchart
@section @code{flowchart}
@cindex @code{flowchart}
This package provides routines for drawing flowcharts. The primary
structure is a @code{block}, which represents a single block on the
flowchart. The following eight functions return a position on the appropriate
edge of the block, given picture transform @code{t}:
@verbatim
pair block.top(transform t=identity());
pair block.left(transform t=identity());
pair block.right(transform t=identity());
pair block.bottom(transform t=identity());
pair block.topleft(transform t=identity());
pair block.topright(transform t=identity());
pair block.bottomleft(transform t=identity());
pair block.bottomright(transform t=identity());
@end verbatim
@cindex @code{block.top}
@cindex @code{block.left}
@cindex @code{block.right}
@cindex @code{block.bottom}
@cindex @code{block.topleft}
@cindex @code{block.topright}
@cindex @code{block.bottomleft}
@cindex @code{block.bottomright}
@noindent
To obtain an arbitrary position along the boundary of the block in user
coordinates, use:
@verbatim
pair block.position(real x, transform t=identity());
@end verbatim
@cindex @code{block.position}
@noindent
@cindex @code{block.center}
The center of the block in user coordinates is stored in
@code{block.center} and the block size in @code{PostScript} coordinates
is given by @code{block.size}.
@noindent
A frame containing the block is returned by
@verbatim
frame block.draw(pen p=currentpen);
@end verbatim
@cindex @code{block.draw}
The following block generation routines accept a Label, string, or
frame for their object argument:
@table @dfn
@item rectangular block with an optional header (and padding @code{dx} around header and body):
@cindex @code{rectangle}
@verbatim
block rectangle(object header, object body, pair center=(0,0),
pen headerpen=mediumgray, pen bodypen=invisible,
pen drawpen=currentpen,
real dx=3, real minheaderwidth=minblockwidth,
real minheaderheight=minblockwidth,
real minbodywidth=minblockheight,
real minbodyheight=minblockheight);
block rectangle(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real dx=3, real minwidth=minblockwidth,
real minheight=minblockheight);
@end verbatim
@item parallelogram block:
@cindex @code{parallelogram}
@verbatim
block parallelogram(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real dx=3, real slope=2,
real minwidth=minblockwidth,
real minheight=minblockheight);
@end verbatim
@item diamond-shaped block:
@cindex @code{diamond}
@verbatim
block diamond(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real ds=5, real dw=1,
real height=20, real minwidth=minblockwidth,
real minheight=minblockheight);
@end verbatim
@item circular block:
@cindex @code{circle}
@verbatim
block circle(object body, pair center=(0,0), pen fillpen=invisible,
pen drawpen=currentpen, real dr=3,
real mindiameter=mincirclediameter);
@end verbatim
@item rectangular block with rounded corners:
@cindex @code{roundrectangle}
@verbatim
block roundrectangle(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real ds=5, real dw=0, real minwidth=minblockwidth,
real minheight=minblockheight);
@end verbatim
@item rectangular block with beveled edges:
@cindex @code{bevel}
@verbatim
block bevel(object body, pair center=(0,0), pen fillpen=invisible,
pen drawpen=currentpen, real dh=5, real dw=5,
real minwidth=minblockwidth, real minheight=minblockheight);
@end verbatim
@end table
To draw paths joining the pairs in @code{point} with right-angled lines,
use the routine:
@cindex @code{path}
@cindex @code{Horizontal}
@cindex @code{Vertical}
@verbatim
path path(pair point[] ... flowdir dir[]);
@end verbatim
@noindent
The entries in @code{dir} identify whether successive
segments between the pairs specified by @code{point} should be drawn
in the @code{Horizontal} or @code{Vertical} direction.
Here is a simple flowchart example (see also the example
@code{controlsystem.asy}):
@verbatiminclude flowchartdemo.asy
@sp 1
@center @image{flowchartdemo}
@node contour
@section @code{contour}
@cindex @code{contour}
This package draws contour lines.
To construct contours corresponding to the values in a real array @code{c}
for a function @code{f} on @code{box(a,b)}, use the routine
@verbatim
guide[][] contour(real f(real, real), pair a, pair b,
real[] c, int nx=ngraph, int ny=nx,
interpolate join=operator --, int subsample=1);
@end verbatim
@noindent
The integers @code{nx} and @code{ny} define the resolution.
The default resolution, @code{ngraph x ngraph} (here @code{ngraph}
defaults to @code{100}) can be increased for greater accuracy.
The default interpolation operator is @code{operator --} (linear). Spline
interpolation (@code{operator ..}) may produce smoother
contours but it can also lead to overshooting.
The @code{subsample} parameter indicates the number of interior points
that should be used to sample contours within each @code{1 x 1} box;
the default value of @code{1} is usually sufficient.
To construct contours for an array of data values on a uniform
two-dimensional lattice on @code{box(a,b)}, use
@verbatim
guide[][] contour(real[][] f, pair a, pair b, real[] c,
interpolate join=operator --, int subsample=1);
@end verbatim
To construct contours for an array of data values on a nonoverlapping
regular mesh specified by the two-dimensional array @code{z},
@verbatim
guide[][] contour(pair[][] z, real[][] f, real[] c,
interpolate join=operator --, int subsample=1);
@end verbatim
@noindent
To construct contours for an array of values @code{f} specified at
irregularly positioned points @code{z}, use the routine
@verbatim
guide[][] contour(pair[] z, real[] f, real[] c,
interpolate join=operator --, int subsample=1);
@end verbatim
@noindent
The contours themselves can be drawn with one of the routines
@verbatim
void draw(picture pic=currentpicture, Label[] L=new Label[],
guide[][] g, pen p=currentpen);
void draw(picture pic=currentpicture, Label[] L=new Label[],
guide[][] g, pen[] p);
@end verbatim
The following simple example draws the contour at value @code{1}
for the function @math{z=x^2+y^2}, which is a unit circle:
@verbatiminclude onecontour.asy
@sp 1
@center @image{onecontour}
The next example draws and labels multiple contours for the function
@math{z=x^2-y^2} with the resolution @code{100 x 100}, using a dashed
pen for negative contours and a solid pen for positive (and zero) contours:
@verbatiminclude multicontour.asy
@sp 1
@center @image{multicontour}
The next example illustrates how contour lines can be drawn on color
density images:
@verbatiminclude imagecontour.asy
@sp 1
@center @image{imagecontour}
Finally, here is an example that illustrates the construction of contours
from irregularly spaced data:
@verbatiminclude irregularcontour.asy
@sp 1
@center @image{irregularcontour}
In the above example, the contours of irregularly spaced data are constructed by
first creating a triangular mesh from an array @code{z} of pairs:
@cindex @code{triangulate}
@verbatim
int[][] triangulate(pair[] z);
@end verbatim
@verbatiminclude triangulate.asy
@sp 1
@center @image{triangulate}
The example @code{Gouraudcontour} illustrates how to produce color
density images over such irregular triangular meshes.
@code{Asymptote} uses a robust version of Paul Bourke's Delaunay triangulation
algorithm based on the public-domain exact arithmetic predicates written by
Jonathan Shewchuk.
@node contour3
@section @code{contour3}
@cindex @code{contour3}
This package draws surfaces described as the null space of real-valued
functions of @math{(x,y,z)} or real[][][] matrices.
Its usage is illustrated in the example file @code{magnetic.asy}.
@node slopefield
@section @code{slopefield}
@cindex @code{slopefield}
To draw a slope field for the differential equation @math{dy/dx=f(x,y)} (or
@math{dy/dx=f(x)}), use:
@verbatim
picture slopefield(real f(real,real), pair a, pair b,
int nx=nmesh, int ny=nx,
real tickfactor=0.5, pen p=currentpen,
arrowbar arrow=None);
@end verbatim
@noindent
Here, the points @code{a} and @code{b} are the lower left and upper
right corners of the rectangle in which the slope field is to be drawn,
@code{nx} and @code{ny} are the respective number of ticks in the
@math{x} and @math{y} directions, @code{tickfactor} is the fraction of
the minimum cell dimension to use for drawing ticks, and @code{p} is
the pen to use for drawing the slope fields.
The return value is a picture that can be added to
@code{currentpicture} via the @code{add(picture)} command.
The function
@cindex @code{curve}
@verbatim
path curve(pair c, real f(real,real), pair a, pair b);
@end verbatim
@noindent
takes a point (@code{c}) and a slope field-defining function @code{f}
and returns, as a path, the curve passing through that point. The points
@code{a} and @code{b} represent the rectangular boundaries over which
the curve is interpolated.
Both @code{slopefield} and @code{curve} alternatively accept a function
@code{real f(real)} that depends on @math{x} only, as seen in this example:
@verbatiminclude slopefield1.asy
@sp 1
@center @image{slopefield1}
@node ode
@section @code{ode}
@cindex @code{ode}
The @code{ode} module, illustrated in the example @code{odetest.asy},
implements a number of explicit numerical integration schemes for
ordinary differential equations.
@node Options
@chapter Command-line options
@cindex options
@cindex command-line options
Type @code{asy -h} to see the full list of command-line options
supported by @code{Asymptote}:
@verbatiminclude options
All boolean options can be negated by prepending @code{no} to the option name.
If no arguments are given, @code{Asymptote} runs in interactive mode
(@pxref{Interactive mode}). In this case, the default output file
is @code{out.eps}.
If @code{-} is given as the file argument, @code{Asymptote} reads from
standard input.
If multiple files are specified, they are treated as separate
@code{Asymptote} runs.
@cindex @code{autoimport}
If the string @code{autoimport} is nonempty, a module with this name is
automatically imported for each run as the final step in loading module
@code{plain}.
@anchor{configuration file}
@cindex configuration file
@cindex @code{ASYMPTOTE_CONFIG}
@cindex @code{config}
@cindex @code{settings}
@anchor{settings}
Default option values may be entered as @code{Asymptote} code in a
configuration file named @code{config.asy} (or the file specified by
the environment variable @code{ASYMPTOTE_CONFIG} or @code{-config} option).
@code{Asymptote} will look for this file in its usual search path
(@pxref{Search paths}). Typically the configuration file is placed in the
@code{.asy} directory in the user's home directory
(@code{%USERPROFILE%\.asy} under @code{MSDOS}).
Configuration variables are accessed using the long form of the option names:
@verbatim
import settings;
outformat="pdf";
batchView=false;
interactiveView=true;
batchMask=false;
interactiveMask=true;
@end verbatim
Command-line options override these defaults. Most configuration
variables may also be changed at runtime.
@cindex @code{dvipsOptions}
@cindex @code{hyperrefOptions}
@cindex @code{convertOptions}
@cindex @code{gsOptions}
@cindex @code{psviewerOptions}
@cindex @code{pdfviewerOptions}
@cindex @code{glOptions}
The advanced configuration variables @code{dvipsOptions},
@code{hyperrefOptions}, @code{convertOptions}, @code{gsOptions},
@code{psviewerOptions}, @code{pdfviewerOptions}, and @code{glOptions}
allow specialized options to be passed as a string to the respective
applications or libraries. The default value of @code{hyperrefOptions}
is @code{setpagesize=false,unicode,pdfborder=0 0 0}.
If you insert
@verbatim
import plain;
settings.autoplain=true;
@end verbatim
@noindent
at the beginning of the configuration file, it can contain arbitrary
@code{Asymptote} code.
@cindex @code{convert}
@cindex @code{output}
@cindex @code{format}
@cindex @code{ImageMagick}
@cindex @code{render}
@cindex @code{antialias}
@cindex @code{size}
@cindex @code{latex}
@cindex @code{tex}
@cindex @code{pdflatex}
@cindex @code{xelatex}
@cindex @code{context}
@cindex @code{EPS}
@cindex @code{PDF}
@cindex @code{SVG}
@anchor{convert}
The default output format is @acronym{EPS} for the (default)
@code{latex} and @code{tex} tex engine and @acronym{PDF} for the
@code{pdflatex}, @code{xelatex}, and @code{context} tex engines.
Alternative output formats may be produced using the @code{-f} option
(or @code{outformat} setting). To produce @acronym{SVG} output,
first install @code{dvisvgm} (version 0.8.7 or later) from
@url{http://dvisvgm.sourceforge.net/down.html} and be sure to use the
@code{latex} or @code{tex} tex engine.
@code{Asymptote} can also produce any output format supported
by the @code{ImageMagick} @code{convert} program (version 6.3.5 or
later recommended; an @code{Invalid Parameter} error message indicates
that the @code{MSDOS} utility @code{convert} is being used instead of
the one that comes with @code{ImageMagick}).
The optional setting @code{-render n} requests
an output resolution of @code{n} pixels per @code{bp}. Antialiasing is
controlled by the parameter @code{antialias}, which by default
specifies a sampling width of 2 pixels.
To give other options to @code{convert}, use the
@code{convertOptions} setting or call convert manually. This example
emulates how @code{Asymptote} produces antialiased @code{tiff} output at
one pixel per @code{bp}:
@verbatim
asy -o - venn | convert -alpha Off -density 144x144 -geometry 50%x eps:- venn.tiff
@end verbatim
@cindex @code{nosafe}
@cindex @code{safe}
@cindex @code{system}
If the option @code{-nosafe} is given, @code{Asymptote} runs
in unsafe mode. This enables the @code{int system(string s)} and
@code{int system(string[] s)} calls, allowing one
to execute arbitrary shell commands. The default mode, @code{-safe},
disables this call.
@cindex offset
@cindex @code{align}
A @code{PostScript} offset may be specified as a pair (in @code{bp}
units) with the @code{-O} option:
@verbatim
asy -O 0,0 file
@end verbatim
@noindent
The default offset is zero. The default value of the page alignment
setting @code{align} is @code{Center}.
@cindex @code{-c}
The @code{-c} (@code{command}) option may be used to execute arbitrary
@code{Asymptote} code on the command line as a string. It is not
necessary to terminate the string with a semicolon. Multiple @code{-c}
options are executed in the order they are given. For example
@verbatim
asy -c 2+2 -c "sin(1)" -c "size(100); draw(unitsquare)"
@end verbatim
@noindent
produces the output
@verbatim
4
0.841470984807897
@end verbatim
@noindent
and draws a unitsquare of size @code{100}.
@cindex @code{-u}
The @code{-u} (@code{user}) option may be used to specify arbitrary
@code{Asymptote} settings on the command line as a string. It is not
necessary to terminate the string with a semicolon. Multiple @code{-u}
options are executed in the order they are given. Command-line code like
@code{-u x=sqrt(2)} can be executed within a module like this:
@verbatim
real x;
usersetting();
write(x);
@end verbatim
@cindex @code{-l}
When the @code{-l} (@code{listvariables}) option is used with file
arguments, only global functions and variables defined in the specified
file(s) are listed.
Additional debugging output is produced with each additional @code{-v} option:
@table @code
@item -v
Display top-level module and final output file names.
@item -vv
Also display imported and included module names and final @code{LaTeX} and
@code{dvips} processing information.
@item -vvv
Also output @code{LaTeX} bidirectional pipe diagnostics.
@item -vvvv
Also output knot guide solver diagnostics.
@item -vvvvv
Also output @code{Asymptote} traceback diagnostics.
@end table
@node Interactive mode
@chapter Interactive mode
@cindex interactive mode
Interactive mode is entered by executing the command @code{asy} with
no file arguments. When the @code{-multiline} option is disabled (the default),
each line must be a complete @code{Asymptote} statement (unless
explicitly continued by a final backslash character @code{\});
it is not necessary to terminate input lines with a semicolon.
If one assigns @code{settings.multiline=true}, interactive code can be
entered over multiple lines; in this mode, the automatic termination of
interactive input lines by a semicolon is inhibited. Multiline mode is useful
for cutting and pasting @code{Asymptote} code directly into the
interactive input buffer.
@cindex @code{%}
Interactive mode can be conveniently used as a calculator: expressions
entered at the interactive prompt (for which a corresponding @code{write}
function exists) are automatically evaluated and written to @code{stdout}.
If the expression is non-writable, its type signature will be printed out
instead. In either case, the expression can be referred to using the symbol
@code{%} in the next line input at the prompt. For example:
@verbatim
> 2+3
5
> %*4
20
> 1/%
0.05
> sin(%)
0.0499791692706783
> currentpicture
<picture currentpicture>
> %.size(200,0)
>
@end verbatim
@cindex @code{operator answer}
The @code{%} symbol, when used as a variable, is shorthand for the identifier
@code{operator answer}, which is set by the prompt after each written
expression evaluation.
The following special commands are supported only in interactive mode
and must be entered immediately after the prompt:
@table @code
@cindex @code{help}
@item help
view the manual;
@item erase
erase @code{currentpicture};
@cindex @code{input}
@item reset
reset the @code{Asymptote} environment to its initial state, except for
changes to the settings module (@pxref{settings}), the current directory
(@pxref{cd}), and breakpoints (@pxref{Debugger});
@cindex @code{input}
@item input FILE
does an interactive reset, followed by the command
@code{include FILE}. If the file name @code{FILE} contains
nonalphanumeric characters, enclose it with quotation marks.
A trailing semi-colon followed by optional @code{Asymptote} commands may
be entered on the same line.
@cindex @code{quit}
@cindex @code{exit}
@cindex @code{history}
@anchor{history}
@item quit
exit interactive mode (@code{exit} is a synonym; the abbreviation
@code{q} is also accepted unless there exists a top-level variable named
@code{q}).
@cindex @code{historylines}
A history of the most recent 1000 (this number can be changed with the
@code{historylines} configuration variable) previous commands will be retained
in the file @code{.asy/history} in the user's home directory (unless
the command-line option @code{-localhistory} was specified, in which case
the history will be stored in the file @code{.asy_history} in the
current directory).
@end table
Typing @code{ctrl-C} interrupts the execution of @code{Asymptote} code
and returns control to the interactive prompt.
Interactive mode is implemented with the @acronym{GNU} @code{readline} library,
with command history and auto-completion. To customize the key bindings, see:
@url{http://cnswww.cns.cwru.edu/php/chet/readline/readline.html}
@cindex @code{Python} usage
The file @code{asymptote.py} in the @code{Asymptote} system directory
provides an alternative way of entering @code{Asymptote} commands
interactively, coupled with the full power of @code{Python}. Copy this
file to your @code{Python path} and then execute from within
@code{Python} the commands
@verbatim
from asymptote import *
g=asy()
g.size(200)
g.draw("unitcircle")
g.send("draw(unitsquare)")
g.fill("unitsquare, blue")
g.clip("unitcircle")
g.label("\"$O$\", (0,0), SW")
@end verbatim
@node GUI
@chapter Graphical User Interface
@cindex graphical user interface
@cindex @acronym{GUI}
@cindex mouse
@cindex wheel mouse
@cindex @code{Button-1}
@cindex @code{Button-2}
@cindex @code{xasy}
In the event that adjustments to the final figure are required, the
preliminary Graphical User Interface (@acronym{GUI}) @code{xasy} included with
@code{Asymptote} allows you to move graphical objects and draw new ones.
The modified figure can then be saved as a normal @code{Asymptote} file.
@menu
* GUI installation:: Installing @code{xasy}
* GUI usage::
@end menu
@node GUI installation
@section GUI installation
@cindex GUI installation
As @code{xasy} is written in the interactive scripting language
@code{Python/TK}, it requires @code{Python}
(@url{http://www.python.org}), the @code{Python Imaging Library}
(@url{http://www.pythonware.com/products/pil/}), and the @code{tkinter}
package (included with @code{Python} under @code{Microsoft Windows}) be
installed. @code{Fedora Linux} users can either install
@code{tkinter} with the commands
@verbatim
yum install tkinter
yum install tk-devel
@end verbatim
@noindent
or manually install the @code{tkinter}, @code{tix}, @code{tk},
and @code{tk-devel} packages.
Pictures are deconstructed into the @acronym{PNG} image format, which
supports full alpha channel transparency. Under @code{Microsoft Windows},
this requires @code{Python 2.6.2} and the @code{Python Imaging Library}:
@quotation
@url{http://www.python.org/ftp/python/2.6.2/python-2.6.2.msi}
@end quotation
@quotation
@url{http://effbot.org/downloads/PIL-1.1.7.win32-py2.6.exe}.
@end quotation
@noindent
On @code{UNIX} systems, place
@url{http://effbot.org/downloads/Imaging-1.1.7.tar.gz} in the
@code{Asymptote} source directory, and type (as the root user):
@verbatim
tar -zxf Imaging-1.1.7.tar.gz
cd Imaging-1.1.7
python setup.py install
@end verbatim
@node GUI usage
@section GUI usage
@cindex GUI usage
@cindex @code{deconstruct}
A wheel mouse is convenient for raising and lowering objects within
@code{xasy}, to expose the object to be moved. If a wheel mouse is not
available, mouse @code{Button-2} can be used to repeatedly lower an
object instead. When run from the command line, @code{xasy} accepts
a command line option @code{-x n}, which sets the initial magnification
to @code{n}.
Deconstruction of compound objects (such as arrows) can be prevented
by enclosing them within the commands
@verbatim
void begingroup(picture pic=currentpicture);
void endgroup(picture pic=currentpicture);
@end verbatim
By default, the elements of a picture or frame will be grouped
together on adding them to a picture. However, the elements of a frame
added to another frame are not grouped together by default: their
elements will be individually deconstructed (@pxref{add}).
@node PostScript to Asymptote
@chapter @code{PostScript} to @code{Asymptote}
@cindex @code{pstoedit}
The excellent @code{PostScript} editor @code{pstoedit} (version 3.50 or later;
available from @url{http://sourceforge.net/projects/pstoedit/}) includes an
@code{Asymptote} backend. Unlike virtually all other @code{pstoedit}
backends, this driver includes native clipping, even-odd fill rule,
@code{PostScript} subpath, and full image support. Here is an example:
@noindent
@code{asy -V @value{Datadir}/doc/asymptote/examples/venn.asy}
@noindent
@verbatim
pstoedit -f asy venn.eps test.asy
asy -V test
@end verbatim
@noindent
If the line widths aren't quite correct, try giving @code{pstoedit} the
@code{-dis} option.
If the fonts aren't typeset correctly, try giving @code{pstoedit} the
@code{-dt} option.
@node Help
@chapter Help
@cindex help
@cindex forum
A list of frequently asked questions (@acronym{FAQ}) is maintained at
@quotation
@url{http://asymptote.sourceforge.net/FAQ}
@end quotation
@noindent
Questions on installing and using @code{Asymptote} that are not
addressed in the @acronym{FAQ} should be sent to the
@code{Asymptote} forum:
@quotation
@url{http://sourceforge.net/projects/asymptote/forums/forum/409349}
@end quotation
@noindent
Including an example that illustrates what you are trying to do will help
you get useful feedback.
@code{LaTeX} problems can often be diagnosed with the @code{-vv} or
@code{-vvv} command-line options.
Contributions in the form of patches or @code{Asymptote} modules can be
posted here:
@quotation
@url{http://sourceforge.net/tracker/?atid=685685&group_id=120000}
@end quotation
@noindent
To receive announcements of upcoming releases, please subscribe to
@code{Asymptote} at
@quotation
@url{http://freshmeat.net/projects/asy}
@end quotation
@cindex bug reports
@noindent
If you find a bug in @code{Asymptote}, please check (if possible)
whether the bug is still present in the latest @code{Subversion}
developmental code (@pxref{Subversion}) before submitting a bug
report. New bugs can be submitted using the Bug Tracking System at
@quotation
@url{http://sourceforge.net/projects/asymptote}
@end quotation
@noindent
To see if the bug has already been fixed,
check bugs with Status @code{Closed} and recent lines in
@quotation
@url{http://asymptote.sourceforge.net/ChangeLog}
@end quotation
@noindent
@cindex stack overflow
@cindex segmentation fault
@cindex @code{libsigsegv}
@code{Asymptote} can be configured with the optional @acronym{GNU} library
@code{libsigsegv}, available from
@url{http://libsigsegv.sourceforge.net}, which allows one to distinguish
user-generated @code{Asymptote} stack overflows (@pxref{stack overflow})
from true segmentation faults (due to internal C++ programming errors;
please submit the @code{Asymptote} code that generates such segmentation
faults along with your bug report).
@node Debugger
@chapter Debugger
@cindex debugger
Asymptote now includes a line-based (as opposed to code-based)
debugger that can assist the user in following flow control. To set a
break point in file @code{file} at line @code{line}, use the command
@cindex @code{stop}
@verbatim
void stop(string file, int line, code s=quote{});
@end verbatim
@noindent
The optional argument @code{s} may be used to conditionally set the variable
@code{ignore} in @code{plain_debugger.asy} to @code{true}. For example, the
first 10 instances of this breakpoint will be ignored (the
variable @code{int count=0} is defined in @code{plain_debugger.asy}):
@verbatim
stop("test",2,quote{ignore=(++count <= 10);});
@end verbatim
To set a break point in file @code{file} at the first line containing
the string @code{text}, use
@verbatim
void stop(string file, string text, code s=quote{});
@end verbatim
@noindent
To list all breakpoints, use:
@cindex @code{breakpoints}
@verbatim
void breakpoints();
@end verbatim
@noindent
To clear a breakpoint, use:
@cindex @code{clear}
@verbatim
void clear(string file, int line);
@end verbatim
@noindent
To clear all breakpoints, use:
@verbatim
void clear();
@end verbatim
The following commands may be entered at the debugging prompt:
@table @code
@cindex @code{help}
@item @code{h}
help;
@cindex @code{continue}
@item @code{c}
continue execution;
@cindex @code{inst}
@item @code{i}
step to the next instruction;
@cindex @code{step}
@item @code{s}
step to the next executable line;
@cindex @code{next}
@item @code{n}
step to the next executable line in the current file;
@cindex @code{file}
@item @code{f}
step to the next file;
@cindex @code{return}
@item @code{r}
return to the file associated with the most recent breakpoint;
@cindex @code{trace}
@item @code{t}
toggle tracing (@code{-vvvvv}) mode;
@cindex @code{quit}
@item @code{q}
quit debugging and end execution;
@cindex @code{exit}
@item @code{x}
exit the debugger and run to completion.
@end table
@noindent
Arbitrary @code{Asymptote} code may also be entered at the debugging prompt;
however, since the debugger is implemented with @code{eval}, currently
only top-level (global) variables can be displayed or modified.
The debugging prompt may be entered manually with the call
@verbatim
void breakpoint(code s=quote{});
@end verbatim
@node Credits
@chapter Acknowledgments
@cindex acknowledgments
Financial support for the development of @code{Asymptote} was generously
provided by the Natural Sciences and Engineering Research Council of
Canada, the Pacific Institute for Mathematical Sciences, and the
University of Alberta Faculty of Science.
We also would like to acknowledge the previous work of John D. Hobby,
author of the program @code{MetaPost} that inspired the development of
@code{Asymptote}, and Donald E. Knuth, author of @TeX{} and
@code{MetaFont} (on which @code{MetaPost} is based).
The authors of @code{Asymptote} are Andy Hammerlindl, John Bowman, and
Tom Prince. Sean Healy designed the @code{Asymptote} logo. Other
contributors include Michail Vidiassov, Radoslav Marinov, Orest Shardt,
Chris Savage, Philippe Ivaldi, Olivier Guib@'e, Jacques Pienaar,
Mark Henning, Steve Melenchuk, Martin Wiebusch, and Stefan Knorr.
@node Index
@unnumbered Index
@printindex cp
@bye
@c LocalWords: randMax Gaussrand asy cindex indices resized LaTeX TK latin au
@c LocalWords: latexusage tex bbox PostScript subdirectory gcc emacs ASYDIR
@c LocalWords: documentclass usepackage subpath shipout sqrt xN Mx bw AcroRd
@c LocalWords: xscale xaxis yaxis BeginBar GIF postprocessing fpu de rpair xy
@c LocalWords: ImageMagick defaultfontsize defaultlinewidth cd
@c LocalWords: startup natively xasy tkinter VxN yingyang currentpicture toc
@c LocalWords: MetaPost MetaFont Hammerlindl Healy texinfo autoload setq setf
@c LocalWords: printindex setfilename settitle dircategory direntry titlepage
@c LocalWords: vskip filll insertcopying ifnottex detailmenu alist augroup PQ
@c LocalWords: bool behaviour facto zxf login Debian dev filetypedetect SVN
@c LocalWords: FFTW bp readline gv eps args Boehm gc evenoddoverlap png joe
@c LocalWords: boolean initializer expi dir xpart ypart STL substring rfind
@c LocalWords: pos substr strftime typedef pxref unitcircle yscale Bezier iff
@c LocalWords: postcontrol precontrol atleast nullpath arclength arctime rgb
@c LocalWords: dirtime currentpen colorspaces grayscale cmyk defaultpen x cx
@c LocalWords: linetype longdashed dashdotted longdashdotted linewidth y XP
@c LocalWords: fontsize defaultfilename keepAspect IgnoreAspect ise flushleft
@c LocalWords: src dest XDR txt getc fout stdin stdout endl xinput eof js prc
@c LocalWords: xoutput Microsystem's eol exponentials postfix sayhi th Ubuntu
@c LocalWords: sqr intop addby libm asin acos atan sinh tanh asinh acosh cbrt
@c LocalWords: atanh fabs hypot fmod ceil srand dereferenced alice pete sqrtx
@c LocalWords: eval fft csv runtime nonalphanumeric labely LeftTicks NoTicks
@c LocalWords: RightTicks BottomTop LeftRight Ticksize UTF BufNewFile BufRead
@c LocalWords: ticksize subintervals xlimits filetype plugin setlocal makeprg
@c LocalWords: ylimits uncommented automin automax cp uninstall reals ecast
@c LocalWords: scaleT unicode RightSide yx yy NoAlign legendmargin opic CCW
@c LocalWords: arrowbar LeftSide EndBar BeginArrow lly feynman isi showtarget
@c LocalWords: EndArrow BeginArcArrow EndArcArrow ArcArrow ArcArrows NoFill
@c LocalWords: filldraw fillpen drawpen errorformat bigsquare bezier darkblue
@c LocalWords: quartercircle darkgreen lightblue urx ury texpreamble sgn texi
@c LocalWords: lineargraph datagraph vertices parametricgraph uncomment ggv
@c LocalWords: loggraph generalaxis texhash arrowsize arrowangle arrowlength
@c LocalWords: SuppressQuiet MoveQuiet LIBREADLINE config MacOS prebuilt svn
@c LocalWords: ghostview gsview SIGHUP PDF acroread xpdf cutbefore strptime
@c LocalWords: libsigsegv intersectionpoint dotfactor vv firstcut pq logticks
@c LocalWords: Unisys dvips vvv vvvv vvvvv traceback lastcut cutafter infodir
@c LocalWords: zxvf xargs cond polargraph xmin xmax plabel YZero labelling ln
@c LocalWords: ymin ymax XZero xequals tickmin tickmax unlabelled se pq pena
@c LocalWords: yequals Nobre Barbarosie Schwaiger nearearth conicurv Wiebusch
@c LocalWords: unfill posterSize ngraph interpolatetype ctrl dt pic getint Ai
@c LocalWords: NNE jxf linecap linejoin unitsquare shadedtiling ei nomarker
@c LocalWords: westnile minipage ra penb paletteticks drawline nV FillDraw uv
@c LocalWords: susceptibleM flushright secondaryX secondaryY secondaryaxis tt
@c LocalWords: titlelabel columnlabel rb xtick ytick labelx XEquals YEquals
@c LocalWords: treetest eetomumu fermi backend pstoedit drawtree xFF MSDOS gz
@c LocalWords: vimrc CFLAGS verbatiminclude online noindent bezier superpath
@c LocalWords: evenodd squarecap roundcap extendcap miterjoin roundjoin NFSS
@c LocalWords: beveljoin fillrule zerowinding insideness lineskip cmr pcrr Hx
@c LocalWords: AvantGarde Bookman Helvetica NewCenturySchoolBook minbound pdf
@c LocalWords: Palatino TimesRoman ZapfChancery ZapfDingbats german basealign
@c LocalWords: nondeconstructed backends usr venn labelsquare nobasealign dp
@c LocalWords: NoMargin BeginMargin EndMargin BeginPenMargin EndPenMargin dm
@c LocalWords: PenMargin PenMargins TrueMargin labelmargin errorbars errorbar
@c LocalWords: dpx dpy dmx dmy barsize arrowsize BeginDotMargin DotMargin acc
@c LocalWords: EndDotMargin DotMargins NColors BWRainbow colorspace labelled
@c LocalWords: PaletteTicks defaultformat leastsquares bjam fprintf endgroup
@c LocalWords: begingroup xmargin ymargin pbox box ellipse wget exe Gouraud
@c LocalWords: multithreaded newframe init emph nums concat xline yline zpart
@c LocalWords: colatitude zscale cosh nullpen MetaFontbook cyclicflag FreeBSD
@c LocalWords: nodeps Ghostgum beginlabel endlabel pTick ptick loggrid SAS dy
@c LocalWords: currentprojection latticeshading subpictures colinear unitcube
@c LocalWords: Autoscaling solveQuadratic MidArrow MidArcArrow Prebuilt url
@c LocalWords: pdftex comment getstring getstringprefix getreal defaultS hsv
@c LocalWords: ticklocate autoscaleT autoscaling vectorfield autolimits dvi
@c LocalWords: zlimits inline dvipdf hyperdvi autoconf gui zerowindingoverlap
@c LocalWords: prepended intMax quadraticroots cubicroots filltype prepend dx
@c LocalWords: ticklabel popup UnFill markroutine marknodes markuniform erf
@c LocalWords: intersectpoint cyrillic mathtext russian brokenaxis Datadir ds
@c LocalWords: resetdefaultpen latticeshade axialshade radialshade erfc det
@c LocalWords: gouraudshade unescaped nmesh surfacepen getpair MikTeX dw YZ
@c LocalWords: meshpen localhistory axisT roundedpath unitsize aSin accel pre
@c LocalWords: fontcommand makepen aCos aTan Knorr roundpath BeginPoint nView
@c LocalWords: MidPoint EndPoint nmask antialiasing autoplain batchMask libgc
@c LocalWords: batchView clearGUI ignoreGUI interactiveMask interactiveView
@c LocalWords: listvariables outformat parseonly prepending psviewer nCircle
@c LocalWords: pdfviewer papertype tabcompletion noautoplain plugins Teixeira
@c LocalWords: embeddedmovie historylines RadialShade penc penr CJK tgz GPL
@c LocalWords: legendlinelength legendskip USERPROFILE LDFLAGS currentlight
@c LocalWords: subsampled sinc kai AtBeginDocument GBK clearpage lasy texpath
@c LocalWords: AtEndDocument zaxis maxbound truepoint paperwidth paperheight
@c LocalWords: GSL deriv texcolors fixedscaling UpsideDown texreset slidedemo
@c LocalWords: subitem newslide realMin realMax realEpsilon realDigits gsl dh
@c LocalWords: obliqueX asycolors monthaxis xautoscale yautoscale zautoscale
@c LocalWords: obliqueZ obliqueY cylinderskeleton block llcorner dr py nx CPU
@c LocalWords: loc topleft topright bottomleft bottomright flowrectangle UTC
@c LocalWords: chartblock flowdiamond flowcircle xlabel BezierSurface el xyz
@c LocalWords: flowroundrectangle flowbevel flowpath drawflow blocks ny cpu
@c LocalWords: multipleView usersetting mediumgray flowchartdemo ylabel nv xf
@c LocalWords: zlabel slopefields cputime roundrectangle slopefield libgccpp
@c LocalWords: tickfactor USERNAME writeable imagecontour logimage Dumoulin's
@c LocalWords: NoCrop parametricsurface realmult SoftLight HardLight interp
@c LocalWords: ColorDodge ColorBurn Ivaldi buildcycle autorotate mexicanhat
@c LocalWords: Gouraudcontour pdflatex preconfigured perline linelength hskip
@c LocalWords: penimage filloutside legendhskip legendvskip maxwidth CDlabel
@c LocalWords: tensorshade MPEG framepoint nonfunction Radoslav Marinov Mepis
@c LocalWords: Pienaar Melenchuk finalout Linspire Dpkg sudo dpkg dtx Tcount
@c LocalWords: windingnumber clickable pdfmovie dfn du animationdelay fprime
@c LocalWords: slidemovies ifdraft embeddedu externalmovie headerpen bodypen
@c LocalWords: GaussianSurface multiline binarytree tridiagonal portably AIX
@c LocalWords: binarytreetest Henning subsample breakpoint locator wireframe
@c LocalWords: labelpath intersectionpoints PSTricks pstextpath curvedlabel
@c LocalWords: LeftJustified RightJustified tickmodifier gunzip gmake IRIX dv
@c LocalWords: texcommand RET SITEDIR filegraph pathmarkers POSIX binput AOB
@c LocalWords: boutput nonportable markinterval stickframe circlebarframe tix
@c LocalWords: crossframe tildeframe markangle StickIntervalMarker gswin expm
@c LocalWords: CrossIntervalMarker CircleBarIntervalMarker Ghostscript syzygy
@c LocalWords: TildeIntervalMarker autoimport calculateTransform bitwise tk
@c LocalWords: headersize bodysize minheaderwidth minheaderheight minwidth ZX
@c LocalWords: minbodywidth minbodyheight minheight mindiameter reltime PNG
@c LocalWords: relpoint Syzygy syzygies seekeof splinetype notaknot slopea ZY
@c LocalWords: slopeb nonperiodic circlescale MarkFill ScaleX ScaleY xformat
@c LocalWords: onecontour multicontour irregularcontour dvipsOptions saveline
@c LocalWords: dirSpecifier controlSpecifier tensionSpecifier atleastflag bsp
@c LocalWords: curlSpecifier cputimeformat initializers arbitary redeclaring
@c LocalWords: firstname lastname multdiagonal Raphson OmitTick OmitFormat sp
@c LocalWords: NoZero NoZeroFormat abbrevation gsOptions namespace redeclared
@c LocalWords: atLeast intMin globalwrite quarticroots deconsruct substrings
@c LocalWords: usleep currentpatterns trailingzero Orest Shardt DefaultHead
@c LocalWords: SimpleHead HookHead TeXHead multipage NURBS inlinemovie dxmax
@c LocalWords: simpson NoBox truesize autoscale shadestroke recurses mintimes
@c LocalWords: nonoverlapping texengine maxtimes maxheight pdb TEXMFCONFIG Jn
@c LocalWords: piecewisestraight unitrand graphmarkers antialias nolight newl
@c LocalWords: Delaunay Shewchuk convertOptions APPDATA pdfreload tempFile Yn
@c LocalWords: pdfreloadOptions deferred OpenGL Phong Blinn renderer unitbox
@c LocalWords: bezulate Shardt's rasterized viewport unitdisk unitplane devel
@c LocalWords: unitcylinder unitcone solidcone unitfrustum unitsphere nslices
@c LocalWords: DPostScript YZZero freeglut externalprc nonrendered nosafe KDE
@c LocalWords: unithemisphere versa XYplane xypart unitsolidcone YZEquals xml
@c LocalWords: XZEquals XYEquals XZZero XYZero InTicks OutTicks InOutTicks
@c LocalWords: fitscreen planeproject strokepath meshlight nullpens arrowdir
@c LocalWords: diffusepen ambientpen emissivepen specularpen arrowbarb keyval
@c LocalWords: hstretch vstretch roundbox nonconvex miterlimit basealigin cmd
@c LocalWords: maxviewport maxtile antialiased sphericalharmonic attachfile
@c LocalWords: vertexshading smoothelevation glOptions iconified iconify kate
@c LocalWords: psviewerOptions pdfviewerOptions viewportmargin asyattach SVG
@c LocalWords: multisampling autogen multisample coloredpath relstep flowdir
@c LocalWords: colortype coloredSegments coloredNodes trefoilknot scaledgraph
@c LocalWords: minblockwidth minblockheight mincirclediameter nonassociative
@c LocalWords: nonintegral gettriple enablerepo hexidecimal XeLaTeX xelatex
@c LocalWords: dvipdfmx autoadjust viewportsize viewportwidth viewportheight
@c LocalWords: subregions nonsimply functionshade shader floatingdisk TopView
@c LocalWords: functionshading maxlength LeftView odetest RadialShadeDraw CLZ
@c LocalWords: vectorfieldsphere RightView FrontView BackView BottomView CTZ
@c LocalWords: addViews outprefix addAllViews xsplinetype ysplinetype rotateX
@c LocalWords: usplinetype vsplinetype leftbutton middlebutton rightbutton
@c LocalWords: rotateY rotateZ wheelup zoomin wheeldown zoomout TeXLive pnorm
@c LocalWords: viewportshift signedint signedness psview multiplatform nowarn
@c LocalWords: singlereal singleint writeoverloaded dvisvg reddash lexorder
@c LocalWords: bigdiagonal autobillboard dvisvgm maxtiles hyperrefOptions
@c LocalWords: setpagesize pdfborder controlsystem OmitTickInterval SixViews
@c LocalWords: OmitTickIntervals tickmodifiers autorotated SixViewsUS latexmk
@c LocalWords: ThreeViewsUS ThreeViewsFR SixViewsFR ThreeViews partialsum
@c LocalWords: defaultrender Vidiassov latexmkrc mktemp DOSendl DOSnewl perl
@c LocalWords: filename asyinclude latemk penfunctionimage
|