1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
/*****
* application.cc
* Andy Hammerlindl 2005/05/20
*
* An application is a matching of arguments in a call expression to formal
* parameters of a function. Since the language allows default arguments,
* keyword arguments, rest arguments, and anything else we think of, this
* is not a simple mapping.
*****/
#include "application.h"
#include "exp.h"
#include "coenv.h"
#include "runtime.h"
#include "runarray.h"
using namespace types;
using absyntax::varinit;
using absyntax::arrayinit;
using absyntax::arglist;
namespace trans {
// Lower scores are better. Packed is added onto the other qualifiers so
// we may score both exact and casted packed arguments.
const score FAIL=0, EXACT=1, CAST=2;
const score PACKED=2;
bool castable(env &e, formal& target, formal& source) {
return target.Explicit ? equivalent(target.t,source.t)
: e.castable(target.t,source.t, symbol::castsym);
}
score castScore(env &e, formal& target, formal& source) {
return equivalent(target.t,source.t) ? EXACT :
(!target.Explicit &&
e.fastCastable(target.t,source.t)) ? CAST : FAIL;
}
void restArg::transMaker(coenv &e, Int size, bool rest) {
// Push the number of cells and call the array maker.
e.c.encode(inst::intpush, size);
e.c.encode(inst::builtin, rest ? run::newAppendedArray :
run::newInitializedArray);
}
void restArg::trans(coenv &e, temp_vector &temps)
{
// Push the values on the stack.
for (mem::list<arg *>::iterator p = inits.begin(); p != inits.end(); ++p)
(*p)->trans(e, temps);
if (rest)
rest->trans(e, temps);
transMaker(e, (Int)inits.size(), (bool)rest);
}
class maximizer {
app_list l;
// Tests if x is as good (or better) an application as y.
bool asgood(application *x, application *y) {
// Matches to open signatures are always worse than matches to normal
// signatures.
if (x->sig->isOpen)
return y->sig->isOpen;
else if (y->sig->isOpen)
return true;
assert (x->scores.size() == y->scores.size());
// Test if each score in x is no higher than the corresponding score in
// y.
return std::equal(x->scores.begin(), x->scores.end(), y->scores.begin(),
std::less_equal<score>());
}
bool better(application *x, application *y) {
return asgood(x,y) && !asgood(y,x);
}
// Add an application that has already been determined to be maximal.
// Remove any other applications that are now not maximal because of its
// addition.
void addMaximal(application *x) {
app_list::iterator y=l.begin();
while (y!=l.end())
if (better(x,*y))
y=l.erase(y);
else
++y;
l.push_front(x);
}
// Tests if x is maximal.
bool maximal(application *x) {
for (app_list::iterator y=l.begin(); y!=l.end(); ++y)
if (better(*y,x))
return false;
return true;
}
public:
maximizer() {}
void add(application *x) {
if (maximal(x))
addMaximal(x);
}
app_list result() {
return l;
}
};
ty *restCellType(signature *sig) {
formal& f=sig->getRest();
if (f.t) {
array *a=dynamic_cast<array *>(f.t);
if (a)
return a->celltype;
}
return 0;
}
void application::initRest() {
formal& f=sig->getRest();
if (f.t) {
ty *ct = restCellType(sig);
if (!ct)
vm::error("formal rest argument must be an array");
rf=formal(ct, symbol::nullsym, false, f.Explicit);
}
if (f.t || sig->isOpen) {
rest=new restArg();
}
}
//const Int REST=-1;
const Int NOMATCH=-2;
Int application::find(symbol name) {
formal_vector &f=sig->formals;
for (size_t i=index; i<f.size(); ++i)
if (f[i].name==name && args[i]==0)
return (Int)i;
return NOMATCH;
}
bool application::matchDefault() {
if (index==args.size())
return false;
else {
formal &target=getTarget();
if (target.defval) {
args[index]=new defaultArg(target.t);
advanceIndex();
return true;
}
else
return false;
}
}
bool application::matchArgumentToRest(env &e, formal &source,
varinit *a, size_t evalIndex)
{
if (rest) {
score s=castScore(e, rf, source);
if (s!=FAIL) {
rest->add(seq.addArg(a, rf.t, evalIndex));
scores.push_back(s+PACKED);
return true;
}
}
return false;
}
bool application::matchAtSpot(size_t spot, env &e, formal &source,
varinit *a, size_t evalIndex)
{
formal &target=sig->getFormal(spot);
score s=castScore(e, target, source);
if (s == FAIL)
return false;
else if (sig->formalIsKeywordOnly(spot) && source.name == symbol::nullsym)
return false;
else {
// The argument matches.
args[spot]=seq.addArg(a, target.t, evalIndex);
if (spot==index)
advanceIndex();
scores.push_back(s);
return true;
}
}
bool application::matchArgument(env &e, formal &source,
varinit *a, size_t evalIndex)
{
assert(!source.name);
if (index==args.size())
// Try to pack into the rest array.
return matchArgumentToRest(e, source, a, evalIndex);
else
// Match here, or failing that use a default and try to match at the next
// spot.
return matchAtSpot(index, e, source, a, evalIndex) ||
(matchDefault() && matchArgument(e, source, a, evalIndex));
}
bool application::matchNamedArgument(env &e, formal &source,
varinit *a, size_t evalIndex)
{
assert(source.name);
Int spot=find(source.name);
return spot!=NOMATCH && matchAtSpot(spot, e, source, a, evalIndex);
}
bool application::complete() {
if (index==args.size())
return true;
else if (matchDefault())
return complete();
else
return false;
}
bool application::matchRest(env &e, formal &source, varinit *a,
size_t evalIndex) {
// First make sure all non-rest arguments are matched (matching to defaults
// if necessary).
if (complete())
// Match rest to rest.
if (rest) {
formal &target=sig->getRest();
score s=castScore(e, target, source);
if (s!=FAIL) {
rest->addRest(seq.addArg(a, target.t, evalIndex));
scores.push_back(s);
return true;
}
}
return false;
}
// When the argument should be evaluated, possibly adjusting for a rest
// argument which occurs before named arguments.
size_t adjustIndex(size_t i, size_t ri)
{
return i < ri ? i : i+1;
}
bool application::matchSignature(env &e, types::signature *source,
arglist &al) {
formal_vector &f=source->formals;
#if 0
cout << "num args: " << f.size() << endl;
cout << "num keyword-only: " << sig->numKeywordOnly << endl;
#endif
size_t ri = al.rest.val ? al.restPosition : f.size();
// First, match all of the named (non-rest) arguments.
for (size_t i=0; i<f.size(); ++i)
if (f[i].name)
if (!matchNamedArgument(e, f[i], al[i].val, adjustIndex(i,ri)))
return false;
// Then, the unnamed.
for (size_t i=0; i<f.size(); ++i)
if (!f[i].name)
if (!matchArgument(e, f[i], al[i].val, adjustIndex(i,ri)))
return false;
// Then, the rest argument.
if (source->hasRest())
if (!matchRest(e, source->getRest(), al.rest.val, ri))
return false;
// Fill in any remaining arguments with their defaults.
return complete();
}
bool application::matchOpen(env &e, signature *source, arglist &al) {
assert(rest);
// Pack all given parameters into the rest argument.
formal_vector &f=source->formals;
for (size_t i = 0; i < f.size(); ++i)
if (al[i].name)
// Named arguments are not handled by open signatures.
return false;
else
rest->add(seq.addArg(al[i].val, f[i].t, i));
if (source->hasRest())
rest->addRest(new varinitArg(al.rest.val, source->getRest().t));
return true;
}
application *application::match(env &e, function *t, signature *source,
arglist &al) {
assert(t->kind==ty_function);
application *app=new application(t);
bool success = t->getSignature()->isOpen ?
app->matchOpen(e, source, al) :
app->matchSignature(e, source, al);
//cout << "MATCH " << success << endl;
return success ? app : 0;
}
void application::transArgs(coenv &e) {
temp_vector temps;
for(arg_vector::iterator a=args.begin(); a != args.end(); ++a)
(*a)->trans(e,temps);
if (rest)
rest->trans(e,temps);
}
bool application::exact() {
if (sig->isOpen)
return false;
for (score_vector::iterator p = scores.begin(); p != scores.end(); ++p)
if (*p != EXACT)
return false;
return true;
}
bool application::halfExact() {
if (sig->isOpen)
return false;
if (scores.size() != 2)
return false;
if (scores[0] == EXACT && scores[1] == CAST)
return true;
if (scores[0] == CAST && scores[1] == EXACT)
return true;
return false;
}
// True if any of the formals have names.
bool namedFormals(signature *sig)
{
formal_vector& formals = sig->formals;
size_t n = formals.size();
for (size_t i = 0; i < n; ++i) {
if (formals[i].name)
return true;
}
return false;
}
// Tests if arguments in the source signature can be matched to the formals
// in the target signature with no casting or packing.
// This allows overloaded args, but not named args.
bool exactMightMatch(signature *target, signature *source)
{
// Open signatures never exactly match.
if (target->isOpen)
return false;
#if 0
assert(!namedFormals(source));
#endif
formal_vector& formals = target->formals;
formal_vector& args = source->formals;
// Sizes of the two lists.
size_t fn = formals.size(), an = args.size();
// Indices for the two lists.
size_t fi = 0, ai = 0;
while (fi < fn && ai < an) {
if (equivalent(formals[fi].t, args[ai].t)) {
// Arguments match, move to the next.
++fi; ++ai;
} else if (formals[fi].defval) {
// Match formal to default value.
++fi;
} else {
// Failed to match formal.
return false;
}
}
assert(fi == fn || ai == an);
// Packing array arguments into the rest formal is inexact. Do not allow it
// here.
if (ai < an)
return false;
assert(ai == an);
// Match any remaining formal to defaults.
while (fi < fn)
if (formals[fi].defval) {
// Match formal to default value.
++fi;
} else {
// Failed to match formal.
return false;
}
// Non-rest arguments have matched.
assert(fi == fn && ai == an);
// Try to match the rest argument if given.
if (source->hasRest()) {
if (!target->hasRest())
return false;
if (!equivalent(source->getRest().t, target->getRest().t))
return false;
}
// All arguments have matched.
return true;
}
// Tries to match applications without casting. If an application matches
// here, we need not attempt to match others with the slower, more general
// techniques.
app_list exactMultimatch(env &e,
types::overloaded *o,
types::signature *source,
arglist &al)
{
assert(source);
app_list l;
// This can't handle named arguments.
if (namedFormals(source))
return l; /* empty */
for (ty_vector::iterator t=o->sub.begin(); t!=o->sub.end(); ++t)
{
if ((*t)->kind != ty_function)
continue;
function *ft = (function *)*t;
// First we run a test to see if all arguments could be exactly matched.
// If this returns false, no such match is possible.
// If it returns true, an exact match may or may not be possible.
if (!exactMightMatch(ft->getSignature(), source))
continue;
application *a=application::match(e, ft, source, al);
// Consider calling
// void f(A a=new A, int y)
// with
// f(3)
// This matches exactly if there is no implicit cast from int to A.
// Otherwise, it does not match.
// Thus, there is no way to know if the
// match truly is exact without looking at the environment.
// In such a case, exactMightMatch() must return true, but there is no
// exact match. Such false positives are eliminated here.
//
// Consider calling
// void f(int x, real y=0.0, int z=0)
// with
// f(1,2)
// exactMightMatch() will return true, matching 1 to x and 2 to z, but the
// application::match will give an inexact match of 1 to x to 2 to y, due
// to the cast from int to real. Therefore, we must test for exactness
// even after matching.
if (a && a->exact())
l.push_back(a);
}
//cout << "EXACTMATCH " << (!l.empty()) << endl;
return l;
}
bool halfExactMightMatch(env &e,
signature *target, types::ty *t1, types::ty *t2)
{
formal_vector& formals = target->formals;
if (formals.size() < 2)
return false;
if (formals.size() > 2) {
// We should probably abort the whole matching in this case. For now,
// return true and let the usual matching handle it.
return true;
}
assert(formals[0].t);
assert(formals[1].t);
// These casting tests if successful will be repeated again by
// application::match. It would be nice to avoid this somehow, but the
// additional complexity is probably not worth the minor speed improvement.
if (equivalent(formals[0].t, t1))
return e.fastCastable(formals[1].t, t2);
else
return equivalent(formals[1].t, t2) && e.fastCastable(formals[0].t, t1);
}
// Most common after exact matches are cases such as
// 2 + 3.4 (int, real) --> (real, real)
// that is, binary operations where one of the operands matches exactly and the
// other does not. This function searches for these so-called "half-exact"
// matches. This should only be called after exactMultimatch has failed.
app_list halfExactMultimatch(env &e,
types::overloaded *o,
types::signature *source,
arglist &al)
{
assert(source);
app_list l;
// Half exact is only in the case of two arguments.
formal_vector& formals = source->formals;
if (formals.size() != 2 || source->hasRest())
return l; /* empty */
// This can't handle named arguments.
if (namedFormals(source))
return l; /* empty */
// Alias the two argument types.
types::ty *t1 = formals[0].t;
types::ty *t2 = formals[1].t;
assert(t1); assert(t2);
for (ty_vector::iterator t=o->sub.begin(); t!=o->sub.end(); ++t)
{
if ((*t)->kind != ty_function)
continue;
function *ft = (function *)*t;
#if 1
if (!halfExactMightMatch(e, ft->getSignature(), t1, t2))
continue;
#endif
application *a=application::match(e, ft, source, al);
#if 1
if (a && a->halfExact())
l.push_back(a);
#endif
}
return l;
}
// Simple check if there are too many arguments to match the candidate
// function.
// A "tooFewArgs" variant was also implemented at some point, but did
// not give any speed-up.
bool tooManyArgs(types::signature *target, types::signature *source) {
return source->getNumFormals() > target->getNumFormals() &&
!target->hasRest();
}
// The full overloading resolution system, which handles casting of arguments,
// packing into rest arguments, named arguments, etc.
app_list inexactMultimatch(env &e,
types::overloaded *o,
types::signature *source,
arglist &al)
{
assert(source);
app_list l;
#define DEBUG_GETAPP 0
#if DEBUG_GETAPP
//cout << "source: " << *source << endl;
//cout << "ARGS: " << source->getNumFormals() << endl;
bool perfect=false;
bool exact=false;
bool halfExact=false;
#endif
for(ty_vector::iterator t=o->sub.begin(); t!=o->sub.end(); ++t) {
if ((*t)->kind==ty_function) {
#if DEBUG_GETAPP
function *ft = dynamic_cast<function *>(*t);
signature *target = ft->getSignature();
if (equivalent(target, source))
perfect = true;
#endif
// Check if there are two many arguments to match.
if (tooManyArgs((*t)->getSignature(), source))
continue;
application *a=application::match(e, (function *)(*t), source, al);
if (a)
l.push_back(a);
#if DEBUG_GETAPP
if (a && !namedFormals(source)) {
assert(a->exact() == exactlyMatchable(ft->getSignature(), source));
if (a->halfExact() && !namedFormals(source)) {
assert(halfExactMightMatch(e, target, source->getFormal(0).t,
source->getFormal(1).t));
}
}
if (a && a->exact())
exact = true;
if (a && a->halfExact())
halfExact = true;
#endif
}
}
#if DEBUG_GETAPP
cout << (perfect ? "PERFECT" :
exact ? "EXACT" :
halfExact ? "HALFEXACT" :
"IMPERFECT")
<< endl;
#endif
if (l.size() > 1) {
// Return the most specific candidates.
maximizer m;
for (app_list::iterator x=l.begin(); x!=l.end(); ++x) {
assert(*x);
m.add(*x);
}
return m.result();
}
else
return l;
}
enum testExactType {
TEST_EXACT,
DONT_TEST_EXACT,
};
// Sanity check for multimatch optimizations.
void sameApplications(app_list a, app_list b, testExactType te) {
assert(a.size() == b.size());
if (te == TEST_EXACT) {
for (app_list::iterator i = a.begin(); i != a.end(); ++i) {
if (!(*i)->exact()) {
cout << *(*i)->getType() << endl;
}
assert((*i)->exact());
}
for (app_list::iterator i = b.begin(); i != b.end(); ++i)
assert((*i)->exact());
}
if (a.size() == 1)
assert(equivalent(a.front()->getType(), b.front()->getType()));
}
app_list multimatch(env &e,
types::overloaded *o,
types::signature *source,
arglist &al)
{
app_list a = exactMultimatch(e, o, source, al);
if (!a.empty()) {
#if DEBUG_CACHE
// Make sure that exactMultimatch and the fallback return the same
// application(s).
sameApplications(a, inexactMultimatch(e, o, source, al), TEST_EXACT);
#endif
return a;
}
a = halfExactMultimatch(e, o, source, al);
if (!a.empty()) {
#if DEBUG_CACHE
sameApplications(a, inexactMultimatch(e, o, source, al), DONT_TEST_EXACT);
#endif
return a;
}
// Slow but most general method.
return inexactMultimatch(e, o, source, al);
}
} // namespace trans
|