1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/* **********************************************************************
* binarytree: An Asymptote module to draw binary trees *
* *
* Copyright(C) 2006 *
* Tobias Langner tobias[at]langner[dot]nightlabs[dot]de *
* *
* Modified by John Bowman *
* *
* Condensed mode: *
* Copyright(C) 2012 *
* Gerasimos Dimitriadis dimeg [at] intracom [dot] gr *
* *
************************************************************************
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public *
* License as published by the Free Software Foundation; either *
* version 3 of the License, or(at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this library; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin St, Fifth Floor, *
* Boston, MA 02110-1301 USA *
* *
* Or get it online: *
* http: //www.gnu.org/copyleft/lesser.html *
* *
***********************************************************************/
// default values
real minDistDefault=0.2cm;
real nodeMarginDefault=0.1cm;
// structure to represent nodes in a binary tree
struct binarytreeNode {
int key;
binarytreeNode left;
binarytreeNode right;
binarytreeNode parent;
bool spans_calculated=false;
int left_span,total_left_span;
int right_span,total_right_span;
void update_spans();
// Get the horizontal span of the tree consisting of the current
// node plus the whole subtree that is rooted at the right child
// (condensed mode)
int getTotalRightSpan() {
if(spans_calculated == false) {
update_spans();
}
return total_right_span;
}
// Get the horizontal span of the tree consisting of the current
// node plus the whole subtree that is rooted at the left child
// (condensed mode)
int getTotalLeftSpan() {
if(spans_calculated == false) {
update_spans();
}
return total_left_span;
}
// Get the horizontal distance between this node and its right child
// (condensed mode)
int getRightSpan() {
if(spans_calculated == false) {
update_spans();
}
return right_span;
}
// Get the horizontal distance between this node and its left child
// (condensed mode)
int getLeftSpan() {
if(spans_calculated == false) {
update_spans();
}
return left_span;
}
// Update all span figures for this node.
// condensed mode)
update_spans=new void() {
if(spans_calculated == true)
return;
left_span=0;
total_left_span=0;
right_span=0;
total_right_span=0;
if(left != null) {
left_span=left.getTotalRightSpan()+1;
total_left_span=left_span+left.getTotalLeftSpan();
}
if(right != null) {
right_span=right.getTotalLeftSpan()+1;
total_right_span=right_span+right.getTotalRightSpan();
}
spans_calculated=true;
};
// set the left child of this node
void setLeft(binarytreeNode left) {
this.left=left;
this.left.parent=this;
}
// set the right child of this node
void setRight(binarytreeNode right) {
this.right=right;
this.right.parent=this;
}
// return a boolean indicating whether this node is the root
bool isRoot() {
return parent == null;
}
// return the level of the subtree rooted at this node.
int getLevel() {
if(isRoot())
return 1;
else
return parent.getLevel()+1;
}
// set the children of this binarytreeNode
void setChildren(binarytreeNode left, binarytreeNode right) {
setLeft(left);
setRight(right);
}
// create a new binarytreeNode with key <key>
static binarytreeNode binarytreeNode(int key) {
binarytreeNode toReturn=new binarytreeNode;
toReturn.key=key;
return toReturn;
}
// returns the height of the subtree rooted at this node.
int getHeight() {
if(left == null && right == null)
return 1;
if(left == null)
return right.getHeight()+1;
if(right == null)
return left.getHeight()+1;
return max(left.getHeight(),right.getHeight())+1;
}
}
binarytreeNode operator init() {return null;}
// "constructor" for binarytreeNode
binarytreeNode binarytreeNode(int key)=binarytreeNode.binarytreeNode;
// draw the tree rooted at the given <node> at the given position <pos>, with
// <height>=the height of the containing tree,
// <minDist>=the minimal horizontal distance of two nodes at the lowest level,
// <levelDist>=the vertical distance between two levels,
// <nodeDiameter>=the diameter of one node.
object draw(picture pic=currentpicture, binarytreeNode node, pair pos,
int height, real minDist, real levelDist, real nodeDiameter,
pen p=currentpen, bool condensed=false) {
Label label=Label(math((string) node.key),pos);
binarytreeNode left=node.left;
binarytreeNode right=node.right;
// return the distance for two nodes at the given <level> when the
// containing tree has height <height>
// and the minimal distance between two nodes is <minDist> .
real getDistance(int level, int height, real minDist) {
return(nodeDiameter+minDist)*2^(height-level);
}
// return the horiontal distance between node <n> and its left child
// (condensed mode)
real getLeftDistance(binarytreeNode n) {
return(nodeDiameter+minDist) *(real)n.getLeftSpan() * 0.5;
}
// return the horiontal distance between node <n> and its right child
// (condensed mode)
real getRightDistance(binarytreeNode n) {
return(nodeDiameter+minDist) *(real)n.getRightSpan() * 0.5;
}
real dist=getDistance(node.getLevel(),height,minDist)/2;
// draw the connection between the two nodes at the given positions
// by calculating the connection points and drawing the corresponding
// arrow.
void deferredDrawNodeConnection(pair parentPos, pair childPos) {
pic.add(new void(frame f, transform t) {
pair start,end;
// calculate connection path
transform T=shift(nodeDiameter/2*unit(t*childPos-t*parentPos));
path arr=(T*t*parentPos)--(inverse(T)*t*childPos);
draw(f,PenMargin(arr,p).g,p,Arrow(5));
});
pic.addPoint(parentPos);
pic.addPoint(childPos);
}
if(left != null) {
pair childPos;
if(condensed == false) {
childPos=pos-(0,levelDist)-(dist/2,0);
}
else {
childPos=pos-(0,levelDist)-((real)getLeftDistance(node),0);
}
draw(pic,left,childPos,height,minDist,levelDist,nodeDiameter,p,condensed);
deferredDrawNodeConnection(pos,childPos);
}
if(right != null) {
pair childPos;
if(condensed == false) {
childPos=pos-(0,levelDist)+(dist/2,0);
}
else {
childPos=pos-(0,levelDist)+((real)getRightDistance(node),0);
}
draw(pic,right,childPos,height,minDist,levelDist,nodeDiameter,p,condensed);
deferredDrawNodeConnection(pos,childPos);
}
picture obj;
draw(obj,circle((0,0),nodeDiameter/2),p);
label(obj,label,(0,0),p);
add(pic,obj,pos);
return label;
}
struct key {
int n;
bool active;
}
key key(int n, bool active=true) {key k; k.n=n; k.active=active; return k;}
key operator cast(int n) {return key(n);}
int operator cast(key k) {return k.n;}
int[] operator cast(key[] k) {
int[] I;
for(int i=0; i < k.length; ++i)
I[i]=k[i].n;
return I;
}
key nil=key(0,false);
// structure to represent a binary tree.
struct binarytree {
binarytreeNode root;
int[] keys;
// add the given <key> to the tree by searching for its place and
// inserting it there.
void addKey(int key) {
binarytreeNode newNode=binarytreeNode(key);
if(root == null) {
root=newNode;
keys.push(key);
return;
}
binarytreeNode n=root;
while(n != null) {
if(key < n.key) {
if(n.left != null)
n=n.left;
else {
n.setLeft(newNode);
keys.push(key);
return;
}
} else if(key > n.key) {
if(n.right != null)
n=n.right;
else {
n.setRight(newNode);
keys.push(key);
return;
}
}
}
}
// return the height of the tree
int getHeight() {
if(root == null)
return 0;
else
return root.getHeight();
}
// add all given keys to the tree sequentially
void addSearchKeys(int[] keys) {
for(int i=0; i < keys.length; ++i) {
int key=keys[i];
// Ignore duplicate keys
if(find(this.keys == key) == -1)
addKey(key);
}
}
binarytreeNode build(key[] keys, int[] ind) {
if(ind[0] >= keys.length) return null;
key k=keys[ind[0]];
++ind[0];
if(!k.active) return null;
binarytreeNode bt=binarytreeNode(k);
binarytreeNode left=build(keys,ind);
binarytreeNode right=build(keys,ind);
bt.left=left; bt.right=right;
if(left != null) left.parent=bt;
if(right != null) right.parent=bt;
return bt;
}
void addKeys(key[] keys) {
int[] ind={0};
root=build(keys,ind);
this.keys=keys;
}
// return all key in the tree
int[] getKeys() {
return keys;
}
}
binarytree searchtree(...int[] keys)
{
binarytree bt;
bt.addSearchKeys(keys);
return bt;
}
binarytree binarytree(...key[] keys)
{
binarytree bt;
bt.addKeys(keys);
return bt;
}
// draw the given binary tree.
void draw(picture pic=currentpicture, binarytree tree,
real minDist=minDistDefault, real nodeMargin=nodeMarginDefault,
pen p=currentpen, bool condensed=false)
{
int[] keys=tree.getKeys();
// calculate the node diameter so that all keys fit into it
frame f;
for(int i=0; i < keys.length; ++i)
label(f,math(string(keys[i])),p);
real nodeDiameter=abs(max(f)-min(f))+2*nodeMargin;
real levelDist=nodeDiameter*1.8;
draw(pic,tree.root,(0,0),tree.getHeight(),minDist,levelDist,nodeDiameter,p,
condensed);
}
|