1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
#include <cmath>
#include <cassert>
#include <cfloat>
// Compute a numerical approximation to an integral via adaptive Simpson's Rule
// This routine ignores underflow.
const int nest=DBL_MANT_DIG;
typedef struct {
bool left; // left interval?
double psum, f1t, f2t, f3t, dat, estr;
} TABLE;
bool // Returns true iff successful.
simpson(double& integral, // Approximate value of the integral.
double (*f)(double), // Pointer to function to be integrated.
double a, double b, // Lower, upper limits of integration.
double acc, // Desired relative accuracy of integral.
// Try to make |error| <= acc*abs(integral).
double dxmax) // Maximum limit on the width of a subinterval
// For periodic functions, dxmax should be
// set to the period or smaller to prevent
// premature convergence of Simpson's rule.
{
double diff,area,estl,estr,alpha,da,dx,wt,est,fv[5];
TABLE table[nest],*p,*pstop;
static const double sixth=1.0/6.0;
bool success=true;
p=table;
pstop=table+nest-1;
p->left=true;
p->psum=0.0;
alpha=a;
da=b-a;
fv[0]=(*f)(alpha);
fv[2]=(*f)(alpha+0.5*da);
fv[4]=(*f)(alpha+da);
wt=sixth*da;
est=wt*(fv[0]+4.0*fv[2]+fv[4]);
area=est;
// Have estimate est of integral on (alpha, alpha+da).
// Bisect and compute estimates on left and right half intervals.
// integral is the best value for the integral.
for(;;) {
dx=0.5*da;
double arg=alpha+0.5*dx;
fv[1]=(*f)(arg);
fv[3]=(*f)(arg+dx);
wt=sixth*dx;
estl=wt*(fv[0]+4.0*fv[1]+fv[2]);
estr=wt*(fv[2]+4.0*fv[3]+fv[4]);
integral=estl+estr;
diff=est-integral;
area -= diff;
if(p >= pstop) success=false;
if(!success || (fabs(diff) <= acc*fabs(area) && da <= dxmax)) {
// Accept approximate integral.
// If it was a right interval, add results to finish at this level.
// If it was a left interval, process right interval.
for(;;) {
if(p->left == false) { // process right-half interval
alpha += da;
p->left=true;
p->psum=integral;
fv[0]=p->f1t;
fv[2]=p->f2t;
fv[4]=p->f3t;
da=p->dat;
est=p->estr;
break;
}
integral += p->psum;
if(--p <= table) return success;
}
} else {
// Raise level and store information for processing right-half interval.
++p;
da=dx;
est=estl;
p->left=false;
p->f1t=fv[2];
p->f2t=fv[3];
p->f3t=fv[4];
p->dat=dx;
p->estr=estr;
fv[4]=fv[2];
fv[2]=fv[1];
}
}
}
// Use adaptive Simpson integration to determine the upper limit of
// integration required to make the definite integral of a continuous
// non-negative function close to a user specified sum.
// This routine ignores underflow.
bool // Returns true iff successful.
unsimpson(double integral, // Given value for the integral.
double (*f)(double), // Pointer to function to be integrated.
double a, double& b, // Lower, upper limits of integration (a <= b).
// The value of b provided on entry is used
// as an initial guess; somewhat faster if the
// given value is an underestimation.
double acc, // Desired relative accuracy of b.
// Try to make |integral-area| <= acc*integral.
double& area, // Computed integral of f(x) on [a,b].
double dxmax, // Maximum limit on the width of a subinterval
// For periodic functions, dxmax should be
// set to the period or smaller to prevent
// premature convergence of Simpson's rule.
double dxmin=0) // Lower limit on sampling width.
{
double diff,estl,estr,alpha,da,dx,wt,est,fv[5];
double sum,parea,pdiff,b2;
TABLE table[nest],*p,*pstop;
static const double sixth=1.0/6.0;
p=table;
pstop=table+nest-1;
p->psum=0.0;
alpha=a;
parea=0.0;
pdiff=0.0;
for(;;) {
p->left=true;
da=b-alpha;
fv[0]=(*f)(alpha);
fv[2]=(*f)(alpha+0.5*da);
fv[4]=(*f)(alpha+da);
wt=sixth*da;
est=wt*(fv[0]+4.0*fv[2]+fv[4]);
area=est;
// Have estimate est of integral on (alpha, alpha+da).
// Bisect and compute estimates on left and right half intervals.
// Sum is better value for integral.
bool cont=true;
while(cont) {
dx=0.5*da;
double arg=alpha+0.5*dx;
fv[1]=(*f)(arg);
fv[3]=(*f)(arg+dx);
wt=sixth*dx;
estl=wt*(fv[0]+4.0*fv[1]+fv[2]);
estr=wt*(fv[2]+4.0*fv[3]+fv[4]);
sum=estl+estr;
diff=est-sum;
assert(sum >= 0.0);
area=parea+sum;
b2=alpha+da;
if(fabs(fabs(integral-area)-fabs(pdiff))+fabs(diff) <= fv[4]*acc*(b2-a)){
b=b2;
return true;
}
if(fabs(integral-area) > fabs(pdiff+diff)) {
if(integral <= area) {
p=table;
p->left=true;
p->psum=parea;
} else {
if((fabs(diff) <= fv[4]*acc*da || dx <= dxmin) && da <= dxmax) {
// Accept approximate integral sum.
// If it was a right interval, add results to finish at this level.
// If it was a left interval, process right interval.
pdiff += diff;
for(;;) {
if(p->left == false) { // process right-half interval
parea += sum;
alpha += da;
p->left=true;
p->psum=sum;
fv[0]=p->f1t;
fv[2]=p->f2t;
fv[4]=p->f3t;
da=p->dat;
est=p->estr;
break;
}
sum += p->psum;
parea -= p->psum;
if(--p <= table) {
p=table;
p->psum=parea=sum;
alpha += da;
b += b-a;
cont=false;
break;
}
}
continue;
}
}
}
if(p >= pstop) return false;
// Raise level and store information for processing right-half interval.
++p;
da=dx;
est=estl;
p->psum=0.0;
p->left=false;
p->f1t=fv[2];
p->f2t=fv[3];
p->f3t=fv[4];
p->dat=dx;
p->estr=estr;
fv[4]=fv[2];
fv[2]=fv[1];
}
}
}
|