1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
/*****
* profiler.h
* Andy Hammerlindl 2010/07/24
*
* Profiler for the execution of the virtual machine bytecode.
*****/
#ifndef PROFILER_H
#define PROFILER_H
#if !defined(_WIN32)
#include <sys/time.h>
#endif
#include <iostream>
#include "inst.h"
#include "seconds.h"
namespace vm {
#ifdef DEBUG_BLTIN
string lookupBltin(bltin b);
#endif
inline position positionFromLambda(lambda *func) {
if (func == 0)
return nullPos;
program& code = *func->code;
// Check for empty program.
if (code.begin() == code.end())
return nullPos;
return code.begin()->pos;
}
inline void printNameFromLambda(ostream& out, lambda *func) {
if (!func) {
out << "<top level>";
return;
}
#ifdef DEBUG_FRAME
string name = func->name;
#else
string name = "";
#endif
// If unnamed, use the pointer address.
if (name.empty())
out << func;
else
out << name;
out << " at ";
positionFromLambda(func).printTerse(out);
}
inline void printNameFromBltin(ostream& out, bltin b) {
#ifdef DEBUG_BLTIN
string name = lookupBltin(b);
#else
string name = "";
#endif
if (!name.empty())
out << name << " ";
out << "(builtin at " << (void *)b << ")";
}
class profiler : public gc {
// To do call graph analysis, each call stack that occurs in practice is
// represented by a node. For instance, if f and g are functions, then
// f -> g -> g
// is represented by a node and
// g -> f -> g
// is represented by a different one.
struct node {
// The top-level function of the call stack. It is either an asymptote
// function with a given lambda, or a builtin function, with a given
// bltin.
lambda *func;
bltin cfunc;
// The number of times the top-level function has been called resulting in
// this specific call stack.
int calls;
// The number of bytecode instructions executed with this exact call stack.
// It does not include time spent in called function.
int instructions;
// Number of instructions spent in this function or its children. This is
// computed by computeTotals.
int instTotal;
// The number of real-time nanoseconds spent in this node. WARNING: May
// be wildly inaccurate.
long long nsecs;
// Total including children.
long long nsecsTotal;
// Call stacks resulting from calls during this call stack.
mem::vector<node> children;
node()
: func(0), cfunc(0), calls(0),
instructions(0), instTotal(0),
nsecs(0), nsecsTotal(0) {}
node(lambda *func)
: func(func), cfunc(0), calls(0),
instructions(0), instTotal(0),
nsecs(0), nsecsTotal(0) {}
node(bltin b)
: func(0), cfunc(b), calls(0),
instructions(0), instTotal(0),
nsecs(0), nsecsTotal(0) {}
// Return the call stack resulting from a call to func when this call
// stack is current.
node *getChild(lambda *func) {
size_t n = children.size();
for (size_t i = 0; i < n; ++i)
if (children[i].func == func)
return &children[i];
// Not found, create a new one.
children.push_back(node(func));
return &children.back();
}
node *getChild(bltin func) {
size_t n = children.size();
for (size_t i = 0; i < n; ++i)
if (children[i].cfunc == func)
return &children[i];
// Not found, create a new one.
children.push_back(node(func));
return &children.back();
}
void computeTotals() {
instTotal = instructions;
nsecsTotal = nsecs;
size_t n = children.size();
for (size_t i = 0; i < n; ++i) {
children[i].computeTotals();
instTotal += children[i].instTotal;
nsecsTotal += children[i].nsecsTotal;
}
}
void pydump(ostream& out) {
#ifdef DEBUG_FRAME
string name = func ? func->name : "<top level>";
#else
string name = "";
#endif
out << "dict(\n"
<< " name = '" << name << " " << func << "',\n"
<< " pos = '" << positionFromLambda(func) << "',\n"
<< " calls = " << calls << ",\n"
<< " instructions = " << instructions << ",\n"
<< " nsecs = " << nsecs << ",\n"
<< " children = [\n";
size_t n = children.size();
for (size_t i = 0; i < n; ++i) {
children[i].pydump(out);
out << ",\n";
}
out << " ])\n";
}
};
// An empty call stack.
node emptynode;
// All of the callstacks.
std::stack<node *> callstack;
node &topnode() {
return *callstack.top();
}
// Arc representing one function calling another. Used only for building
// the output for kcachegrind.
struct arc : public gc {
int calls;
int instTotal;
long long nsecsTotal;
arc() : calls(0), instTotal(0), nsecsTotal(0) {}
void add(node& n) {
calls += n.calls;
instTotal += n.instTotal;
nsecsTotal += n.nsecsTotal;
}
};
// Representing one function and its calls to other functions.
struct fun : public gc {
int instructions;
long long nsecs;
mem::map<lambda *, arc> arcs;
mem::map<bltin, arc> carcs;
fun() : instructions(0), nsecs(0) {}
void addChildTime(node& n) {
if (n.cfunc)
carcs[n.cfunc].add(n);
else
arcs[n.func].add(n);
}
void analyse(node& n) {
instructions += n.instructions;
nsecs += n.nsecs;
size_t numChildren = n.children.size();
for (size_t i = 0; i < numChildren; ++i)
addChildTime(n.children[i]);
}
void dump(ostream& out) {
// The unused line number needed by kcachegrind.
static const string POS = "1";
out << POS << " " << instructions << " " << nsecs << "\n";
for (mem::map<lambda *, arc>::iterator i = arcs.begin();
i != arcs.end();
++i)
{
lambda *l = i->first;
arc& a = i->second;
out << "cfl=" << positionFromLambda(l) << "\n";
out << "cfn=";
printNameFromLambda(out, l);
out << "\n";
out << "calls=" << a.calls << " " << POS << "\n";
out << POS << " " << a.instTotal << " " << a.nsecsTotal << "\n";
}
for (mem::map<bltin, arc>::iterator i = carcs.begin();
i != carcs.end();
++i)
{
bltin b = i->first;
arc& a = i->second;
out << "cfl=C++ code" << endl;
out << "cfn=";
printNameFromBltin(out, b);
out << "\n";
out << "calls=" << a.calls << " " << POS << "\n";
out << POS << " " << a.instTotal << " " << a.nsecsTotal << "\n";
}
}
};
// The data for each asymptote function.
mem::map<lambda *, fun> funs;
// The data for each C++ function.
mem::map<bltin, fun> cfuns;
void analyseNode(node& n) {
fun& f = n.cfunc ? cfuns[n.cfunc] :
funs[n.func];
f.analyse(n);
size_t numChildren = n.children.size();
for (size_t i = 0; i < numChildren; ++i)
analyseNode(n.children[i]);
}
// Convert data in the tree of callstack nodes into data for each function.
void analyseData() {
emptynode.computeTotals();
analyseNode(emptynode);
}
// Timing data.
utils::cpuTimer timestamp;
void startLap() {
timestamp.reset();
}
// Called whenever the stack is about to change, in order to record the time
// duration for the current node.
void recordTime() {
topnode().nsecs += (long long) timestamp.nanoseconds(true);
}
public:
profiler();
void beginFunction(lambda *func);
void endFunction(lambda *func);
void beginFunction(bltin func);
void endFunction(bltin func);
void recordInstruction();
// TODO: Add position, type of instruction info to profiling.
// Dump all of the data out in a format that can be read into Python.
void pydump(ostream &out);
// Dump all of the data in a format for kcachegrind.
void dump(ostream& out);
};
inline profiler::profiler()
: emptynode()
{
callstack.push(&emptynode);
startLap();
}
inline void profiler::beginFunction(lambda *func) {
assert(func);
assert(!callstack.empty());
recordTime();
callstack.push(topnode().getChild(func));
++topnode().calls;
}
inline void profiler::endFunction(lambda *func) {
assert(func);
assert(!callstack.empty());
assert(topnode().func == func);
recordTime();
callstack.pop();
}
inline void profiler::beginFunction(bltin cfunc) {
assert(cfunc);
assert(!callstack.empty());
recordTime();
callstack.push(topnode().getChild(cfunc));
++topnode().calls;
}
inline void profiler::endFunction(bltin cfunc) {
assert(cfunc);
assert(!callstack.empty());
assert(topnode().cfunc == cfunc);
recordTime();
callstack.pop();
}
inline void profiler::recordInstruction() {
assert(!callstack.empty());
++topnode().instructions;
}
inline void profiler::pydump(ostream& out) {
out << "profile = ";
emptynode.pydump(out);
}
inline void profiler::dump(ostream& out) {
analyseData();
out << "events: Instructions Nanoseconds\n";
for (mem::map<lambda *, fun>::iterator i = funs.begin();
i != funs.end();
++i)
{
lambda *l = i->first;
fun& f = i->second;
out << "fl=" << positionFromLambda(l) << "\n";
out << "fn=";
printNameFromLambda(out, l);
out << "\n";
f.dump(out);
}
for (mem::map<bltin, fun>::iterator i = cfuns.begin();
i != cfuns.end();
++i)
{
bltin b = i->first;
fun& f = i->second;
out << "fl=C++ code\n";
out << "fn=";
printNameFromBltin(out, b);
out << "\n";
f.dump(out);
}
}
} // namespace vm
#endif // PROFILER_H
|