1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/*****
* runpath3.in
*
* Runtime functions for path3 operations.
*
*****/
pair => primPair()
triple => primTriple()
path3 => primPath3()
boolarray* => booleanArray()
realarray* => realArray()
realarray2* => realArray2()
triplearray* => tripleArray()
triplearray2* => tripleArray2()
#include "path3.h"
#include "array.h"
#include "drawsurface.h"
#include "predicates.h"
using namespace camp;
using namespace vm;
typedef array boolarray;
typedef array realarray;
typedef array realarray2;
typedef array triplearray;
typedef array triplearray2;
using types::booleanArray;
using types::realArray;
using types::realArray2;
using types::tripleArray;
using types::tripleArray2;
// Autogenerated routines:
path3 path3(triplearray *pre, triplearray *point, triplearray *post,
boolarray *straight, bool cyclic)
{
size_t n=checkArrays(pre,point);
checkEqual(n,checkArray(post));
checkEqual(n,checkArray(straight));
mem::vector<solvedKnot3> nodes(n);
for(size_t i=0; i < n; ++i) {
nodes[i].pre=read<triple>(pre,i);
nodes[i].point=read<triple>(point,i);
nodes[i].post=read<triple>(post,i);
nodes[i].straight=read<bool>(straight,i);
}
return path3(nodes,(Int) n,cyclic);
}
path3 :nullPath3()
{
return nullpath3;
}
bool ==(path3 a, path3 b)
{
return a == b;
}
bool !=(path3 a, path3 b)
{
return !(a == b);
}
triple point(path3 p, Int t)
{
return p.point((Int) t);
}
triple point(path3 p, real t)
{
return p.point(t);
}
triple precontrol(path3 p, Int t)
{
return p.precontrol((Int) t);
}
triple precontrol(path3 p, real t)
{
return p.precontrol(t);
}
triple postcontrol(path3 p, Int t)
{
return p.postcontrol((Int) t);
}
triple postcontrol(path3 p, real t)
{
return p.postcontrol(t);
}
triple dir(path3 p, Int t, Int sign=0, bool normalize=true)
{
return p.dir(t,sign,normalize);
}
triple dir(path3 p, real t, bool normalize=true)
{
return p.dir(t,normalize);
}
triple accel(path3 p, Int t, Int sign=0)
{
return p.accel(t,sign);
}
triple accel(path3 p, real t)
{
return p.accel(t);
}
real radius(path3 p, real t)
{
triple v=p.dir(t,false);
triple a=p.accel(t);
real d=dot(a,v);
real v2=v.abs2();
real a2=a.abs2();
real denom=v2*a2-d*d;
real r=v2*sqrt(v2);
return denom > 0 ? r/sqrt(denom) : 0.0;
}
real radius(triple z0, triple c0, triple c1, triple z1, real t)
{
triple v=(3.0*(z1-z0)+9.0*(c0-c1))*t*t+(6.0*(z0+c1)-12.0*c0)*t+3.0*(c0-z0);
triple a=6.0*(z1-z0+3.0*(c0-c1))*t+6.0*(z0+c1)-12.0*c0;
real d=dot(a,v);
real v2=v.abs2();
real a2=a.abs2();
real denom=v2*a2-d*d;
real r=v2*sqrt(v2);
return denom > 0 ? r/sqrt(denom) : 0.0;
}
path3 reverse(path3 p)
{
return p.reverse();
}
path3 subpath(path3 p, Int a, Int b)
{
return p.subpath((Int) a, (Int) b);
}
path3 subpath(path3 p, real a, real b)
{
return p.subpath(a,b);
}
Int length(path3 p)
{
return p.length();
}
bool cyclic(path3 p)
{
return p.cyclic();
}
bool straight(path3 p, Int t)
{
return p.straight(t);
}
path3 unstraighten(path3 p)
{
return p.unstraighten();
}
// return the maximum distance squared of points c0 and c1 from
// the respective internal control points of z0--z1.
real straightness(triple z0, triple c0, triple c1, triple z1)
{
return Straightness(z0,c0,c1,z1);
}
// return the straightness of segment i of path3 g.
real straightness(path3 p, Int t)
{
if(p.straight(t)) return 0;
return Straightness(p.point(t),p.postcontrol(t),p.precontrol(t+1),
p.point(t+1));
}
bool piecewisestraight(path3 p)
{
return p.piecewisestraight();
}
real arclength(path3 p)
{
return p.arclength();
}
real arclength(triple z0, triple c0, triple c1, triple z1)
{
return arcLength(z0,c0,c1,z1);
}
real arctime(path3 p, real dval)
{
return p.arctime(dval);
}
realarray* intersect(path3 p, path3 q, real fuzz=-1)
{
bool exact=fuzz <= 0.0;
if(fuzz < 0)
fuzz=BigFuzz*::max(::max(length(p.max()),length(p.min())),
::max(length(q.max()),length(q.min())));
std::vector<real> S,T;
real s,t;
if(intersections(s,t,S,T,p,q,fuzz,true,exact)) {
array *V=new array(2);
(*V)[0]=s;
(*V)[1]=t;
return V;
} else
return new array(0);
}
realarray2* intersections(path3 p, path3 q, real fuzz=-1)
{
bool exact=fuzz <= 0.0;
if(fuzz < 0)
fuzz=BigFuzz*::max(::max(length(p.max()),length(p.min())),
::max(length(q.max()),length(q.min())));
bool single=!exact;
real s,t;
std::vector<real> S,T;
bool found=intersections(s,t,S,T,p,q,fuzz,single,exact);
if(!found) return new array(0);
array *V;
if(single) {
V=new array(1);
array *Vi=new array(2);
(*V)[0]=Vi;
(*Vi)[0]=s;
(*Vi)[1]=t;
} else {
size_t n=S.size();
V=new array(n);
for(size_t i=0; i < n; ++i) {
array *Vi=new array(2);
(*V)[i]=Vi;
(*Vi)[0]=S[i];
(*Vi)[1]=T[i];
}
}
stable_sort(V->begin(),V->end(),run::compare2<real>());
return V;
}
realarray* intersect(path3 p, triplearray2 *P, real fuzz=-1)
{
triple *A;
copyArray2C(A,P,true,4);
if(fuzz <= 0) fuzz=BigFuzz*::max(::max(length(p.max()),length(p.min())),
norm(A,16));
std::vector<real> T,U,V;
bool found=intersections(T,U,V,p,A,fuzz,true);
delete[] A;
if(found) {
array *W=new array(3);
(*W)[0]=T[0];
(*W)[1]=U[0];
(*W)[2]=V[0];
return W;
} else
return new array(0);
}
realarray2* intersections(path3 p, triplearray2 *P, real fuzz=-1)
{
triple *A;
copyArray2C(A,P,true,4);
if(fuzz <= 0) fuzz=BigFuzz*::max(::max(length(p.max()),length(p.min())),
norm(A,16));
std::vector<real> T,U,V;
intersections(T,U,V,p,A,fuzz,false);
delete[] A;
size_t n=T.size();
array *W=new array(n);
for(size_t i=0; i < n; ++i) {
array *Wi=new array(3);
(*W)[i]=Wi;
(*Wi)[0]=T[i];
(*Wi)[1]=U[i];
(*Wi)[2]=V[i];
}
return W; // Sorting will done in asy.
}
Int size(path3 p)
{
return p.size();
}
path3 &(path3 p, path3 q)
{
return camp::concat(p,q);
}
triple min(path3 p)
{
return p.min();
}
triple max(path3 p)
{
return p.max();
}
realarray *mintimes(path3 p)
{
array *V=new array(3);
triple v=p.mintimes();
(*V)[0]=v.getx();
(*V)[1]=v.gety();
(*V)[2]=v.getz();
return V;
}
realarray *maxtimes(path3 p)
{
array *V=new array(3);
triple v=p.maxtimes();
(*V)[0]=v.getx();
(*V)[1]=v.gety();
(*V)[2]=v.getz();
return V;
}
path3 Operator *(realarray2 *t, path3 g)
{
return transformed(*t,g);
}
pair minratio(path3 g)
{
return g.ratio(::min);
}
pair maxratio(path3 g)
{
return g.ratio(::max);
}
// Return a negative (positive) value if a--b--c--cycle is oriented
// counterclockwise (clockwise) when viewed from d or zero if all four
// points are coplanar.
// The value returned is the determinant
// |a.x a.y a.z 1|
// |b.x b.y b.z 1|
// |c.x c.y c.z 1|
// |d.x d.y d.z 1|
real orient(triple a, triple b, triple c, triple d)
{
real A[]={a.getx(),a.gety(),a.getz()};
real B[]={b.getx(),b.gety(),b.getz()};
real C[]={c.getx(),c.gety(),c.getz()};
real D[]={d.getx(),d.gety(),d.getz()};
return orient3d(A,B,C,D);
}
// Return a positive (negative) value if e lies inside (outside)
// the sphere passing through the points a,b,c,d oriented so that
// a--b--c--cycle appears in clockwise order when viewed from d
// or zero if all five points are cospherical.
// The value returned is the determinant
// |a.x a.y a.z a.x^2+a.y^2+a.z^2 1|
// |b.x b.y b.z b.x^2+b.y^2+b.z^2 1|
// |c.x c.y c.z c.x^2+c.y^2+c.z^2 1|
// |d.x d.y d.z d.x^2+d.y^2+d.z^2 1|
// |e.x e.y e.z e.x^2+e.y^2+e.z^2 1|
real insphere(triple a, triple b, triple c, triple d, triple e)
{
real A[]={a.getx(),a.gety(),a.getz()};
real B[]={b.getx(),b.gety(),b.getz()};
real C[]={c.getx(),c.gety(),c.getz()};
real D[]={d.getx(),d.gety(),d.getz()};
real E[]={e.getx(),e.gety(),e.getz()};
return insphere(A,B,C,D,E);
}
|