1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
/*****
* types.h
* Andy Hammerlindl 2002/06/20
*
* Used by the compiler as a way to keep track of the type of a variable
* or expression.
*
*****/
#ifndef TYPES_H
#define TYPES_H
#include <iostream>
#include <cstdio>
#include <cassert>
#include "errormsg.h"
#include "symbol.h"
#include "common.h"
#include "util.h"
using std::ostream;
using sym::symbol;
// Forward declaration.
namespace trans {
class access;
class varEntry;
}
namespace absyntax {
class varinit;
extern varinit *Default;
}
namespace types {
enum ty_kind {
ty_null,
ty_record, // "struct" in Asymptote language
ty_function,
ty_overloaded,
#define PRIMITIVE(name,Name,asyName) ty_##name,
#define PRIMERROR
#include "primitives.h"
#undef PRIMERROR
#undef PRIMITIVE
ty_array
};
// Forward declarations.
class ty;
struct signature;
typedef mem::vector<ty *> ty_vector;
typedef ty_vector::iterator ty_iterator;
// Checks if two types are equal in the sense of the language.
// That is primitive types are equal if they are the same kind.
// Structures are equal if they come from the same struct definition.
// Arrays are equal if their cell types are equal.
bool equivalent(const ty *t1, const ty *t2);
// If special is true, this is the same as above. If special is false, just
// the signatures are compared.
bool equivalent(const ty *t1, const ty *t2, bool special);
class caster {
public:
virtual ~caster() {}
virtual trans::access *operator() (ty *target, ty *source) = 0;
virtual bool castable(ty *target, ty *source) = 0;
};
class ty : public gc {
public:
const ty_kind kind;
ty(ty_kind kind)
: kind(kind) {}
virtual ~ty();
virtual void print (ostream& out) const;
virtual void printVar (ostream& out, string name) const {
print(out);
out << " " << name;
}
// Returns true if the type is a user-defined type or the null type.
// While the pair, path, etc. are stored by reference, this is
// transparent to the user.
virtual bool isReference() {
return true;
}
virtual signature *getSignature() {
return 0;
}
virtual const signature *getSignature() const {
return 0;
}
virtual bool primitive() {
return false;
}
bool isError() const { return kind == ty_error; }
bool isNotError() const { return !isError(); }
// The following are only used by the overloaded type, but it is so common
// to test for an overloaded type then iterate over its types, that this
// allows the code:
// if (t->isOverloaded()) {
// for (ty_iterator i = t->begin(); i != t->end(); ++i) {
// ...
// }
// }
// For speed reasons, only begin has an assert to test if t is overloaded.
bool isOverloaded() const {
return kind == ty_overloaded;
}
bool isNotOverloaded() const { return !isOverloaded(); }
ty_iterator begin();
ty_iterator end();
// If a default initializer is not stored in the environment, the abstract
// syntax asks the type if it has a "default" default initializer, by calling
// this method.
virtual trans::access *initializer() {
return 0;
}
// If a cast function is not stored in the environment, ask the type itself.
// This handles null->record casting, and the like. The caster is used as a
// callback to the environment for casts of subtypes.
virtual trans::access *castTo(ty *, caster &) {
return 0;
}
// Just checks if a cast is possible.
virtual bool castable(ty *target, caster &c) {
return castTo(target, c);
}
// For pair's x and y, and array's length, this is a special type of
// "field".
// In actually, it returns a function which takes the object as its
// parameter and returns the necessary result.
// These should not have public permission, as modifying them would
// have strange results.
virtual trans::varEntry *virtualField(symbol, signature *) {
return 0;
}
// varGetType for virtual fields.
// Unless you are using functions for virtual fields, the base implementation
// should work fine.
virtual ty *virtualFieldGetType(symbol id);
#if 0
// Returns the type. In case of functions, return the equivalent type
// but with no default values for parameters.
virtual ty *stripDefaults()
{
return this;
}
#endif
// Returns true if the other type is equivalent to this one.
// The general function equivalent should be preferably used, as it properly
// handles overloaded type comparisons.
virtual bool equiv(const ty *other) const
{
return this==other;
}
// Returns a number for the type for use in a hash table. Equivalent types
// must yield the same number.
virtual size_t hash() const = 0;
};
class primitiveTy : public ty {
public:
primitiveTy(ty_kind kind)
: ty(kind) {}
bool primitive() {
return true;
}
bool isReference() {
return false;
}
ty *virtualFieldGetType(symbol );
trans::varEntry *virtualField(symbol, signature *);
bool equiv(const ty *other) const
{
return this->kind==other->kind;
}
size_t hash() const {
return (size_t)kind + 47;
}
};
class nullTy : public primitiveTy {
public:
nullTy()
: primitiveTy(ty_null) {}
bool isReference() {
return true;
}
trans::access *castTo(ty *target, caster &);
size_t hash() const {
return (size_t)kind + 47;
}
};
// Ostream output, just defer to print.
inline ostream& operator<< (ostream& out, const ty& t)
{ t.print(out); return out; }
struct array : public ty {
ty *celltype;
ty *pushtype;
ty *poptype;
ty *appendtype;
ty *inserttype;
ty *deletetype;
array(ty *celltype)
: ty(ty_array), celltype(celltype), pushtype(0), poptype(0),
appendtype(0), inserttype(0), deletetype(0) {}
virtual bool isReference() {
return true;
}
bool equiv(const ty *other) const {
return other->kind==ty_array &&
equivalent(this->celltype,((array *)other)->celltype);
}
size_t hash() const {
return 1007 * celltype->hash();
}
Int depth() {
if (array *cell=dynamic_cast<array *>(celltype))
return cell->depth() + 1;
else
return 1;
}
void print(ostream& out) const
{ out << *celltype << "[]"; }
ty *pushType();
ty *popType();
ty *appendType();
ty *insertType();
ty *deleteType();
// Initialize to an empty array by default.
trans::access *initializer();
// NOTE: General vectorization of casts would be here.
// Add length and push as virtual fields.
ty *virtualFieldGetType(symbol id);
trans::varEntry *virtualField(symbol id, signature *sig);
};
/* Base types */
#define PRIMITIVE(name,Name,asyName) \
ty *prim##Name(); \
ty *name##Array(); \
ty *name##Array2(); \
ty *name##Array3();
#define PRIMERROR
#include "primitives.h"
#undef PRIMERROR
#undef PRIMITIVE
ty *primNull();
struct formal {
ty *t;
symbol name;
bool defval;
bool Explicit;
formal(ty *t,
symbol name=symbol::nullsym,
bool optional=false,
bool Explicit=false)
: t(t), name(name),
defval(optional), Explicit(Explicit) {}
// string->symbol translation is costly if done too many times. This
// constructor has been disabled to make this cost more visible to the
// programmer.
#if 0
formal(ty *t,
const char *name,
bool optional=false,
bool Explicit=false)
: t(t), name(symbol::trans(name)),
defval(optional ? absyntax::Default : 0), Explicit(Explicit) {}
#endif
friend ostream& operator<< (ostream& out, const formal& f);
};
bool equivalent(const formal& f1, const formal& f2);
bool argumentEquivalent(const formal &f1, const formal& f2);
typedef mem::vector<formal> formal_vector;
// Holds the parameters of a function and if they have default values
// (only applicable in some cases).
struct signature : public gc {
formal_vector formals;
// The number of keyword-only formals. These formals always come after the
// regular formals.
size_t numKeywordOnly;
// Formal for the rest parameter. If there is no rest parameter, then the
// type is null.
formal rest;
bool isOpen;
signature()
: numKeywordOnly(0), rest(0), isOpen(false)
{}
struct OPEN_t {};
static const OPEN_t OPEN;
explicit signature(OPEN_t) : numKeywordOnly(0), rest(0), isOpen(true) {}
signature(signature &sig)
: formals(sig.formals), numKeywordOnly(sig.numKeywordOnly),
rest(sig.rest), isOpen(sig.isOpen)
{}
virtual ~signature() {}
void add(formal f) {
formals.push_back(f);
}
void addKeywordOnly(formal f) {
add(f);
++numKeywordOnly;
}
void addRest(formal f) {
rest=f;
}
bool hasRest() const {
return rest.t;
}
size_t getNumFormals() const {
return rest.t ? formals.size() + 1 : formals.size();
}
formal& getFormal(size_t n) {
assert(n < formals.size());
return formals[n];
}
const formal& getFormal(size_t n) const {
assert(n < formals.size());
return formals[n];
}
formal& getRest() {
return rest;
}
const formal& getRest() const {
return rest;
}
bool formalIsKeywordOnly(size_t n) const
{
assert(n < formals.size());
return n >= formals.size() - numKeywordOnly;
}
friend string toString(const signature& s);
friend ostream& operator<< (ostream& out, const signature& s);
friend bool equivalent(const signature *s1, const signature *s2);
// Check if a signature of argument types (as opposed to formal parameters)
// are equivalent. Here, the arguments, if named, must have the same names,
// and (for simplicity) no overloaded arguments are allowed.
friend bool argumentEquivalent(const signature *s1, const signature *s2);
#if 0
friend bool castable(signature *target, signature *source);
friend Int numFormalsMatch(signature *s1, signature *s2);
#endif
size_t hash() const;
// Return a unique handle for this signature
size_t handle();
};
struct function : public ty {
ty *result;
signature sig;
function(ty *result)
: ty(ty_function), result(result) {}
function(ty *result, signature::OPEN_t)
: ty(ty_function), result(result), sig(signature::OPEN) {}
function(ty *result, signature *sig)
: ty(ty_function), result(result), sig(*sig) {}
function(ty *result, formal f1)
: ty(ty_function), result(result) {
add(f1);
}
function(ty *result, formal f1, formal f2)
: ty(ty_function), result(result) {
add(f1);
add(f2);
}
function(ty *result, formal f1, formal f2, formal f3)
: ty(ty_function), result(result) {
add(f1);
add(f2);
add(f3);
}
function(ty *result, formal f1, formal f2, formal f3, formal f4)
: ty(ty_function), result(result) {
add(f1);
add(f2);
add(f3);
add(f4);
}
virtual ~function() {}
void add(formal f) {
sig.add(f);
}
void addRest(formal f) {
sig.addRest(f);
}
virtual bool isReference() {
return true;
}
bool equiv(const ty *other) const
{
if (other->kind==ty_function) {
function *that=(function *)other;
return equivalent(this->result,that->result) &&
equivalent(&this->sig,&that->sig);
}
else return false;
}
size_t hash() const {
return sig.hash()*0x1231+result->hash();
}
void print(ostream& out) const
{ out << *result << sig; }
void printVar (ostream& out, string name) const {
result->printVar(out,name);
out << sig;
}
ty *getResult() {
return result;
}
signature *getSignature() {
return &sig;
}
const signature *getSignature() const {
return &sig;
}
#if 0
ty *stripDefaults();
#endif
// Initialized to null.
trans::access *initializer();
};
// This is used in getType expressions when an overloaded variable is accessed.
class overloaded : public ty {
public:
ty_vector sub;
// Warning: The venv endScope routine relies heavily on the current
// implementation of overloaded.
public:
overloaded()
: ty(ty_overloaded) {}
overloaded(ty *t)
: ty(ty_overloaded) { add(t); }
virtual ~overloaded() {}
bool equiv(const ty *other) const
{
for(ty_vector::const_iterator i=sub.begin();i!=sub.end();++i)
if (equivalent(*i,other))
return true;
return false;
}
size_t hash() const {
// Overloaded types should not be hashed.
assert(False);
return 0;
}
#ifdef __clang__
#elif __GNUC__
#pragma GCC push_options
#pragma GCC optimize("O2")
#endif
void add(ty *t) {
if (t->kind == ty_overloaded) {
overloaded *ot = (overloaded *)t;
copy(ot->sub.begin(), ot->sub.end(),
inserter(this->sub, this->sub.end()));
}
else
sub.push_back(t);
}
#ifdef __clang__
#elif __GNUC__
#pragma GCC pop_options
#endif
// Only add a type distinct from the ones currently in the overloaded type.
// If special is false, just the distinct signatures are added.
void addDistinct(ty *t, bool special=false);
// If there are less than two overloaded types, the type isn't really
// overloaded. This gives a more appropriate type in this case.
ty *simplify() {
switch (sub.size()) {
case 0:
return 0;
case 1: {
return sub.front();
}
default:
return new overloaded(*this);
}
}
// Returns the signature-less type of the set.
ty *signatureless();
// True if one of the subtypes is castable.
bool castable(ty *target, caster &c);
size_t size() const { return sub.size(); }
// Use default printing for now.
};
inline ty_iterator ty::begin() {
assert(this->isOverloaded());
return ((overloaded *)this)->sub.begin();
}
inline ty_iterator ty::end() {
return ((overloaded *)this)->sub.end();
}
// This is used to encapsulate iteration over the subtypes of an overloaded
// type. The base method need only be implemented to handle non-overloaded
// types.
class collector {
public:
virtual ~collector() {}
virtual ty *base(ty *target, ty *source) = 0;
virtual ty *collect(ty *target, ty *source) {
if (overloaded *o=dynamic_cast<overloaded *>(target)) {
ty_vector &sub=o->sub;
overloaded *oo=new overloaded;
for(ty_vector::iterator x = sub.begin(); x != sub.end(); ++x) {
types::ty *t=collect(*x, source);
if (t)
oo->add(t);
}
return oo->simplify();
}
else if (overloaded *o=dynamic_cast<overloaded *>(source)) {
ty_vector &sub=o->sub;
overloaded *oo=new overloaded;
for(ty_vector::iterator y = sub.begin(); y != sub.end(); ++y) {
// NOTE: A possible speed optimization would be to replace this with a
// call to base(), but this is only correct if we can guarantee that an
// overloaded type has no overloaded sub-types.
types::ty *t=collect(target, *y);
if (t)
oo->add(t);
}
return oo->simplify();
}
else
return base(target, source);
}
};
class tester {
public:
virtual ~tester() {}
virtual bool base(ty *target, ty *source) = 0;
virtual bool test(ty *target, ty *source) {
if (overloaded *o=dynamic_cast<overloaded *>(target)) {
ty_vector &sub=o->sub;
for(ty_vector::iterator x = sub.begin(); x != sub.end(); ++x)
if (test(*x, source))
return true;
return false;
}
else if (overloaded *o=dynamic_cast<overloaded *>(source)) {
ty_vector &sub=o->sub;
for(ty_vector::iterator y = sub.begin(); y != sub.end(); ++y)
if (base(target, *y))
return true;
return false;
}
else
return base(target, source);
}
};
} // namespace types
GC_DECLARE_PTRFREE(types::primitiveTy);
GC_DECLARE_PTRFREE(types::nullTy);
#endif
|