File: python3

package info (click to toggle)
ataqv 1.3.1%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,588 kB
  • sloc: cpp: 18,703; javascript: 1,527; python: 500; makefile: 181; sh: 161
file content (149 lines) | stat: -rw-r--r-- 6,732 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
From: Michael R. Crusoe <michael.crusoe@gmail.com>
Subject: convert scripts to Python3
--- a/src/scripts/mkarv
+++ b/src/scripts/mkarv
@@ -1,6 +1,6 @@
-#!/usr/bin/env python
+#!/usr/bin/python3
+
 
-from __future__ import print_function
 
 import argparse
 import collections
@@ -301,10 +301,10 @@ def add_fraction_of_reads(fragment_lengt
     Given a map of fragment lengths to read counts, calculate the fraction of all reads represented at each fragment length.
     """
     total_reads = 0.0
-    for fragment_length, count in fragment_length_counts.items():
+    for fragment_length, count in list(fragment_length_counts.items()):
         total_reads += count
 
-    for fragment_length, count in fragment_length_counts.items():
+    for fragment_length, count in list(fragment_length_counts.items()):
         if total_reads < 1:
             fraction = 0
         else:
@@ -322,7 +322,7 @@ def prepare_fragment_length_counts(fragm
     """
 
     # adjust the distribution to the requested maximum fragment length
-    prepared_counts = collections.defaultdict(long)
+    prepared_counts = collections.defaultdict(int)
     for fragment_length, count, fraction_of_total_reads in fragment_length_counts:
         if fragment_length <= max_fragment_length:
             prepared_counts[fragment_length] = count
@@ -336,16 +336,16 @@ def construct_fragment_length_reference(
     """
     Construct a reference fragment length density distribution from all metrics in `data`.
     """
-    metrics = data['metrics'].values()
+    metrics = list(data['metrics'].values())
     metrics_count = len(metrics)
 
-    reference_distribution = collections.defaultdict(long)
+    reference_distribution = collections.defaultdict(int)
     for m in metrics:
-        for fragment_length, [count, fraction_of_total_reads] in m['fragment_length_counts'].items():
+        for fragment_length, [count, fraction_of_total_reads] in list(m['fragment_length_counts'].items()):
             if fragment_length <= max_fragment_length:
                 reference_distribution[fragment_length] += count
 
-    for fragment_length, count in reference_distribution.items():
+    for fragment_length, count in list(reference_distribution.items()):
         reference_distribution[fragment_length] /= metrics_count
 
     add_fraction_of_reads(reference_distribution)
@@ -382,7 +382,7 @@ def calculate_fragment_length_distance(m
 
     nonreference_cdf = make_cdf(metrics['fragment_length_counts'])
 
-    diff = list(map(lambda x: x[0] - x[1], zip(nonreference_cdf, reference_cdf)))
+    diff = list([x[0] - x[1] for x in zip(nonreference_cdf, reference_cdf)])
     if diff:
         distance = (abs(max(diff)) > abs(min(diff))) and max(diff) or min(diff)
 
@@ -404,7 +404,7 @@ def add_fragment_length_distances(data,
 
         loaded_distribution = {}
         try:
-            loaded_distribution = {int(k): int(v) for k, v in json.load(open_maybe_gzipped(reference)).items()}
+            loaded_distribution = {int(k): int(v) for k, v in list(json.load(open_maybe_gzipped(reference)).items())}
         except:
             with open(reference, 'rb') as f:
                 dialect = csv.Sniffer().sniff(f.read(1024))
@@ -425,8 +425,8 @@ def add_fragment_length_distances(data,
             logging.warn('Reference distribution lacks value at fragment length {}; assigning zero'.format(fragment_length))
 
     # adjust the distribution to the requested maximum fragment length
-    cleaned_distribution = collections.defaultdict(long)
-    for fragment_length, [count, fraction_of_all_reads] in fragment_length_reference['distribution'].items():
+    cleaned_distribution = collections.defaultdict(int)
+    for fragment_length, [count, fraction_of_all_reads] in list(fragment_length_reference['distribution'].items()):
         if fragment_length <= max_fragment_length:
             cleaned_distribution[fragment_length] = count
 
@@ -443,15 +443,15 @@ def add_fragment_length_distances(data,
 
 def calculate_reference_peak_metrics(data):
     reference_peak_metrics = {
-        'source': 'calculated from ' + ', '.join(sorted([m['name'] for m in data['metrics'].values()])),
+        'source': 'calculated from ' + ', '.join(sorted([m['name'] for m in list(data['metrics'].values())])),
         'cumulative_fraction_of_hqaa': [],
         'cumulative_fraction_of_territory': []
     }
-    cfh = zip(*[metrics['peak_percentiles']['cumulative_fraction_of_hqaa'] for name, metrics in sorted(data['metrics'].items())])
-    reference_peak_metrics['cumulative_fraction_of_hqaa'] = map(lambda x: sum(x) / len(x), cfh)
+    cfh = list(zip(*[metrics['peak_percentiles']['cumulative_fraction_of_hqaa'] for name, metrics in sorted(data['metrics'].items())]))
+    reference_peak_metrics['cumulative_fraction_of_hqaa'] = [sum(x) / len(x) for x in cfh]
 
-    cft = zip(*[metrics['peak_percentiles']['cumulative_fraction_of_territory'] for name, metrics in sorted(data['metrics'].items())])
-    reference_peak_metrics['cumulative_fraction_of_territory'] = map(lambda x: sum(x) / len(x), cft)
+    cft = list(zip(*[metrics['peak_percentiles']['cumulative_fraction_of_territory'] for name, metrics in sorted(data['metrics'].items())]))
+    reference_peak_metrics['cumulative_fraction_of_territory'] = [sum(x) / len(x) for x in cft]
 
     return reference_peak_metrics
 
@@ -512,12 +512,12 @@ PERCENTAGES = {
 
 
 def prepare_for_viewer(data):
-    for name, metrics in data.items():
+    for name, metrics in list(data.items()):
         del metrics['peaks']
         del metrics['peaks_fields']
 
         metrics['percentages'] = {}
-        for numerator, denominator in PERCENTAGES.items():
+        for numerator, denominator in list(PERCENTAGES.items()):
             key = '{}__{}'.format(numerator, denominator)
             if metrics[denominator] == 0:
                 if metrics[numerator] == 0:
--- a/src/scripts/srvarv
+++ b/src/scripts/srvarv
@@ -1,4 +1,4 @@
-#!/usr/bin/env python
+#!/usr/bin/python3
 
 import argparse
 import os
@@ -7,8 +7,8 @@ try:
     import http.server as httpserver
     import socketserver
 except:
-    import SimpleHTTPServer as httpserver
-    import SocketServer as socketserver
+    import http.server as httpserver
+    import socketserver as socketserver
 
 
 if __name__ == '__main__':
@@ -28,7 +28,7 @@ if __name__ == '__main__':
     instance = os.path.abspath(args.instance)
     os.chdir(args.instance)
 
-    print('Serving ataqv web viewer instance from {} at http://localhost:{}'.format(instance, args.port))
+    print(('Serving ataqv web viewer instance from {} at http://localhost:{}'.format(instance, args.port)))
     try:
         httpd.serve_forever()
     except KeyboardInterrupt: